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Circulating inflammatory monocytes are attracted to infected mucosa and differentiate

into macrophage or dendritic cells endowed with enhanced bactericidal and antigen

presenting capacities. In this brief Perspective we discuss the newly emerging insight

into how the cAMP signaling capacity of Bordetella pertussis adenylate cyclase toxin

manipulates the differentiation of monocytes and trigger dedifferentiation of the alveolar

macrophages to facilitate bacterial colonization of human airways.
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INTRODUCTION

To proliferate at sufficient numbers on mucosal surfaces and transmit to a new host, bacterial
pathogens have to evade host innate and adaptive immune responses (1). Host cells sense the
microbe-associated molecular patterns (MAMPs) through an array of cell surface and intracellular
sensors (e.g., TLRs and NOD-like receptors and other) and release cytokine and chemokine
signals that attract circulating leukocytes, like neutrophils and monocytes, to the infected site
(2). Growth factors and cytokines, such as M-CSF, GM-CSF, IL-4, type I interferons, and other
signaling molecules produced in the tissue then shape the transition of infiltrating monocytes
into macrophage or dendritic cells (DCs) (3–6). Differentiation of infiltrating monocytes at the
mucosal surface involves several complex transition stages that lead to acquisition of macrophage
capabilities involved in clearance of pathogens (7–9). The differentiated monocyte-derived cells
are endowed with enhanced phagocytic and bactericidal capacities and contribute to initiation and
shaping of adaptive B and T lymphocyte immune responses through presentation of antigens to T
cells and cytokine release (3, 10).

The Gram-negative coccobacillus Bordetella pertussis is an obligate human pathogen that causes
the respiratory illness called pertussis, or whooping cough. Newborns and infants are at a particular
risk of a fatal course of pertussis due to a congenital immunosuppressive environment at their
mucosa that limits the innate immune defenses (11). In fact, pertussis used to be the first cause
of infant mortality in industrialized countries prior to introduction of efficient pertussis vaccines
(12). Despite global vaccine coverage, the whooping cough illness remains the least-controlled
vaccine-preventable infectious disease with estimated over 20 million cases and more than 150,000
deaths occurring annually world-wide (13). This is due to an amazing capacity of the pathogen to
overcome the innate and adaptive immune defenses of host airway mucosa. If not complicated
by a secondary infection, whooping cough is the only major infectious disease that is not
accompanied by fever. It starts by a catarrhal phase with symptoms resembling the common
cold, with runny nose, sneezing and cough that make B. pertussis infections highly contagious
(14). B. pertussis bacteria employ a whole array of sophisticated virulence factors to subvert host
immunity and convert the nasopharynx of the infected individual to a safe niche for proliferation
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to the high numbers and eliciting of catarrh needed for
transmission by aerosol. The bacteria adhere to the ciliated
epithelial cells of the upper airways through their fimbriae
(FIM2/3), form microcolonies growing between the cilia of
epithelial cells and eventually form a biofilm on ciliated epithelia
(15, 16). The filamentous hemagglutinin (FhaB, processed to
FHA), the outer membrane autotransporter pertactin (Prn) and
tracheal colonization factor A (TcfA) mediate tight adhesion to
epithelial and/or immune cell membrane and the Vag8, BrkA,
and FHA proteins effectively inhibit bactericidal complement
deposition on bacterial outer surface (16). Additional outer
membrane autotransporters likely play as yet unknown roles
in immune subversion by the bacterium and a Type Three
Secretion System (T3SS) injectosome delivers the BteA/BopC
effector into host cells to suppress inflammatory signaling by an
as yet unknown mechanism (17, 18). Finally, B. pertussis secretes
two major immunomodulatory protein toxins that manipulate
signaling of host immune cells. The more notoriously known
pertussis toxin (PT) is an AB5 family toxin that delivers into
a broad variety of cell types an ADP-ribosylating enzyme (19).
Its action inactivates the inhibitory Gαi/o subunits of trimeric
G proteins and thereby hijacks a whole array of G protein-
coupled receptor (GPCR) signaling-regulated pathways (20).
This accounts for the systemic effects of PT action, such as the
delay in neutrophil arrival to the infected site due to inhibition
of chemokine receptor expression, proliferation of lymphocytes
and the leukocyte egress from bonemarrow. It yields a potentially
life-threatening hyperleukocytosis (21) with formation of mixed
leukocyte aggregates in arterioles contributes to pulmonary
hypertension and heart failure in infants (22). Perturbations of
immune functions of lymphocytes by PT action are among other
due to upregulated endogenous adenylyl cyclase activity and
cAMP accumulation in PT-affected cells (21).

The other major toxin, the adenylate cyclase toxin-hemolysin
(CyaA, ACT of AC-Hly) is a highly active cell invasive adenylyl
cyclase enzyme on its own and belongs to the most potent
factors by which B. pertussis disarms the innate immune
system and hijacks the adaptive immune responses. At the
local concentrations of CyaA produced on infected epithelial
layers (23, 24) the toxin could act directly also on airway
epithelial cells. CyaA can compromise the epithelial barrier
function by cAMP signaling-triggered disruption of tight
junctions between epithelial cells and can suppress antimicrobial
peptide production (25). The toxin then would primarily
target the sentinel cells of innate immunity through binding
of complement receptor-3 (CR3, known as the αMβ2 integrin
or CD11b/CD18). CR3 is expressed on neutrophils, NK
cells, monocytes, macrophages, dendritic cells and certain
B cell subtypes (26–28). Upon engagement of the CD11b
subunit of CR3, the CyaA toxin inserts into the plasma
membrane of phagocytes and translocates into their cytosol
its N-terminal adenylyl cyclase enzyme domain (29). This
gets activated by binding of intracellular calmodulin and
catalyzes a massive and unregulated conversion of cellular
ATP into the key second messenger signaling molecule
cAMP that ablates the bactericidal capacities of phagocytes
(28, 30, 31). Signaling of cAMP near-instantly blocks Syk,

RhoA and MAPK (e.g., p38 and ERK1/2) activities, thus
inhibiting opsonophagocytic uptake of bacteria and the
assembly of the NADPH oxidase, thereby blocking oxidative
burst of neutrophils and preventing killing of bacteria by
reactive oxygen species (32–34). At the same time cAMP
signaling activates the tyrosine phosphatase SHP-1 and
triggers AP-1 transcription factor dephosphorylation thereby
blocking iNOS expression and inducible NO production by
macrophages (35).

While not having been reported to exert systemic effects,
the local CyaA action most likely delays or subverts also
induction of adaptive T and B cell-mediated immune
responses at the infected mucosa. Through its subversive
cAMP signaling activity on CR3-expressing intraepithelial
and submucosal dendritic cells (DC), the CyaA-mediated
elevation of cAMP would deregulate DC maturation in
response to TLR ligands. CyaA action blocks proinflammatory
IL-12 and TNFα cytokine secretion and upregulates IL-
10 release, while impairing the capacity of DCs to traffic,
process and present antigens on MHC class II and I
molecules to CD4+ and CD8+ T cells (36). At the same
time, cAMP signaling enhances the migratory capacity
of such tolerogenic DCs that are capable of expanding
CD4+CD25+Foxp3+ T regulatory cells, limiting Th1 and
eventually enhancing Th17 cell expansion (36–38). The biased
cytokine secretion profile of T cells likely skews and/or delays
also antibody response and this aspect of CyaA action still
awaits exploration.

BORDETELLA PERTUSSIS ADENYLATE
CYCLASE TOXIN SUBVERTS MONOCYTE
DIFFERENTIATION AND
DEDIFFERENTIATES AIRWAY
MACROPHAGES TO LESS BACTERICIDAL
MONOCYTE-LIKE CELL TYPE

Recently, we observed that in B. pertussis-infected mouse lungs
the CyaA toxin action inhibited differentiation of infiltrating
monocytes into macrophage and dendritic cells (39). Due
to its extremely high catalytic activity, CyaA at even very
low amounts generates enough intracellular cAMP to elicit
a subversive “signaling storm” in host phagocytes through
activation of the protein kinase A (PKA)-directed pathways.
Exposure to as little as 22.5 pM (4 ng/mL) CyaA provokes
a complete inhibition of the M-CSF-driven transition of
human monocytes into macrophages without affecting their
viability and toxin concentrations over 50 pM (10 ng/mL)
trigger apoptosis of human monocyte/macrophage cells
(40–42).

Tissue-infiltrating monocytes are short-lived, lack the self-
renewal ability and exhibit a modest phagocytic and bactericidal
activity. In contrast, the more phagocytic and highly bactericidal
mature macrophages are capable of self-renewal (6). We
observed that exposure of monocytes to CyaA/cAMP signaling
blocked M-CSF-driven formation of intracellular granules
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FIGURE 1 | CyaA manipulates phagocyte differentiation. Monocytes get recruited to the infected tissue by the secreted chemoattractants and mature into

macrophages. B. pertussis secreted CyaA and in part pertussis toxin action blocks the differentiation of monocytes into macrophage cells and provokes

de-differentiation of patrolling alveolar human macrophages to less bactericidal monocyte-like cells.
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FIGURE 2 | Model for B. pertussis CyaA regulated complex signaling pathways to block the monocyte differentiation and to trigger macrophage dedifferentiation.

CyaA toxin recognizes CD11b molecule on phagocytes to translocate its adenylate cyclase (AC) domain across the cell membrane. Upon interaction with the host cell

(Continued)
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FIGURE 2 | protein calmodulin, AC enzyme gets activated and catalyzes the conversion of cellular ATP to cAMP. cAMP signal transduction via PKA then inactivates

RhoA and/OR activates LATS1/2 to inhibit Yap regulated gene expression and prevents monocytes from acquiring bigger cell size, a typical macrophage feature; this

signaling pathway could also block the macrophages from retaining large cell size and triggers their dedifferentiation. The decrease in Yap activity is paralleled by the

inactivation of AKT/PKB to suppress the cell growth signaling in order to reduce cell size. Elevated cAMP level subverts IL-2 receptor signaling which upregulates the

M-CSF receptor expression and that makes the monocyte less sensitive to pro-differentiating M-CSF growth factor. These complex CyaA-mediated signaling events

culminate in subverting macrophage-based host protective functions to compromise the anti-Bordetella host immune responses.

and prevented development of larger Golgi bodies and the
formation of an expanded ER network typical for the mature
macrophage cells (6, 42–44). Hence, CyaA/cAMP-elicited
signaling restricted development of organelles required for
enhanced synthesis and secretion of cytokines and providing
membranes for formation of phagosomes (45–47). The
mechanism by which CyaA-elicited cAMP signaling through the
PKA-regulated pathways blocks M-CSF-triggered differentiation
into macrophages requires further investigation. A plausible
hypothesis would be that cAMP signaling inhibits the expression
of the receptor for IL-2 (IL-2R) and thus reduced IL-2 signaling
downregulates expression of the M-CSF receptor, making the
CyaA-exposed monocytes insensitive to pro-differentiating
signals (42, 48, 49).

Moreover, we observed that cAMP signaling of CyaA also
provoked de-differentiation of mature terminally differentiated
tissue-resident human alveolar macrophages back into
monocyte-like cells (42). This likely plays a major role in
immune evasion by the whooping cough agent. Dedifferentiation
of macrophages to monocyte-like cells would relieve also
the bactericidal pressure of the complement system, since
macrophages contribute to host defense through production of
complement components on the mucosa and by complement-
dependent opsonophagocytic killing of bacteria (50, 51). With
their self-renewal capacity, macrophages belong to the longest
living immune cell types that patrol the airway mucosa (6).
Lung alveoli harbor high numbers of tissue resident alveolar
macrophages established during embryonic development.
The CyaA-elicited macrophage cell shrinkage and loss of
intracellular organelle number and size in primary human
alveolar macrophages could plausibly be due to a cAMP/PKA-
driven block of cell growth signaling emanating from the
AKT/PKB and Hippo signaling pathways (41, 42, 52). Indeed,
LATS1/2 phosphorylates and inactivates the downstream
transcriptional regulator Yap/Taz that regulates expression
of genes involved in cell size and organ growth (53). Upon
phosphorylation by LATS1/2, Yap/Taz is sequestered by the
14-3-3 binding protein and degraded in the cytoplasm (54).
Activation of PKA by CyaA-produced cAMP inhibits Syk
signaling and RhoA (27, 32, 55) and inactivation of RhoA
by PKA is known to induce LATS1/2 activity (56). Hence, it
will be important to assess, if CyaA/cAMP signaling through
PKA triggers an inhibitory phosphorylation of Yap on Ser380

by LATS1/2 (52). Through Yap-inactivating effects, the CyaA-
generated cAMP signaling would inhibit cell size growth during
both differentiation and dedifferentiation of macrophages

(42, 52). This would possibly also delay the induction of adaptive
immune responses, since macrophages are the prime source of
IL-1β and IL-12 cytokines involved in CD4+ T-cell activation
and expansion (57). The related Bordetella bronchiseptica
bacteria were shown to reach the nose and lung-draining
lymph nodes (58) and it deserves to be determined if the
produced CyaA triggers de-differentiation of the macrophages
at the sub-capsular sinus (SCS) of the lymph nodes (59).
Preventing these cells from collecting particulate antigens and
making these available to follicular B cells would compromise
the induction of humoral immune response (59), possibly
contributing to the chronic nature of B. bronchiseptica infections
of mammals.

CONCLUDING REMARKS

The bactericidal and antigen presenting capacities of
macrophage and dendritic cells play a sentinel role in
innate host defense and in induction of adaptive immune
responses to bacterial infection. The respiratory pathogen B.
pertussis utilizes a cAMP elevating toxin (CyaA) to reduce
macrophage activities through a complex signaling network
(schematically depicted in Figure 1 and in Figure 2) that
inhibits monocyte differentiation into macrophage cells and
triggers dedifferentiation of airway macrophages to the less
phagocytic immune cell types. All these complex events would
then compromise host’s anti-Bordetella immune responses,
enabling immune evasion and bacterial proliferation at the
nasopharyngeal mucosa.
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