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ABSTRACT
Early life, including the establishment of the intestinal microbiome, represents a critical window of 
growth and development. Postnatal factors affecting the microbiome, including mode of delivery, 
feeding type, and antibiotic exposure have been widely investigated, but questions remain regard-
ing the influence of exposures in utero on infant gut microbiome assembly. This systematic review 
aimed to synthesize evidence on exposures before birth, which affect the early intestinal micro-
biome. Five databases were searched in August 2019 for studies exploring pre-pregnancy or 
pregnancy ‘exposure’ data in relation to the infant microbiome. Of 1,441 publications identified, 
76 were included. Factors reported influencing microbiome composition and diversity included 
maternal antibiotic and probiotic uses, dietary intake, pre-pregnancy body mass index (BMI), 
gestational weight gain (GWG), diabetes, mood, and others. Eleven studies contributed to three 
meta-analyses quantifying associations between maternal intrapartum antibiotic exposure (IAP), 
BMI and GWG, and infant microbiome alpha diversity (Shannon Index). IAP, maternal overweight/ 
obesity and excessive GWG were all associated with reduced diversity. Most studies were observa-
tional, few included early recruitment or longitudinal follow-up, and the timing, frequency, and 
methodologies related to stool sampling and analysis were variable. Standardization and collabora-
tion are imperative to enhance understanding in this complex and rapidly evolving area.
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INTRODUCTION

The developmental origins of health and disease 
and the microbiome

The Developmental Origins of Health and Disease 
(DOHaD) hypothesis proposes that the period 
from conception to age 2 years – the ‘First 
1,000 Days’ of life – is a critical window of growth 
and development.1 This period is characterized by 
rapid maturation of the metabolic, endocrine, 
neural, and immune signal/response pathways 
that underpin regulatory capabilities – all of 
which are highly influenced by both the maternal 
milieu and exposures in the perinatal environment. 
Collectively, these can ‘program’ offspring develop-
ment in ways that affect future disease risk.2,3 

During these first thousand days, fetal exposure to 
microbial metabolites occurs and ultimately micro-
bial colonization of the neonatal gastrointestinal 

tract also takes place as an integral part of postnatal 
maturation.4,5 The outcome is a complex adaptive 
system (human ‘holobiont’) with an interconnected 
network between microbiome, immune function, 
and metabolic regulation, affecting an individual’s 
nutrient metabolism, development, and long-term 
health outcomes.2,3,6,7 The DOHaD framework 
may therefore be extended to incorporate the 
microbiome (a dynamic community with the prop-
erty of self-similarity over time), in recognition of 
the influence of perinatal factors on microbiome 
assembly in early life, and their possible long-term 
effects.7

The presence and activity of a “symbiotic” intest-
inal infant microbiome is known to affect processes 
of nutrient uptake, maintenance of gut barrier 
function, and immune response 8 as well as pro-
moting optimal growth, 2,3,9 immune system 
maturation, 10,11 and neurodevelopment.12,13 Such 
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wide-ranging influence means that maladaptive 
interactions between the nascent postnatal micro-
bial community, host, and their environment are 
also possible and a spectrum of adverse outcomes, 
including obesity, inflammatory bowel disease, 
allergies, asthma, cardiovascular disease, and neu-
rodevelopmental disorders have been associated 
with microbiome differences.14,15 Whilst only part 
of the complex interplay between a host and their 
genetics and environment (much of which is 
genetically constrained), it follows that any factor 
that influences the composition, stability, or activity 
of the microbial community (or affects the host 
capability to perceive and respond) in early life 
may be considered a risk factor for predisposition 
toward disease. The concept of “dysbiosis” has been 
proposed to distinguish those diseases with com-
plex etiology that cannot be adequately explained 
by genetic factors or a single pathogenic agent. 
Observational studies suggest that gestational age, 
16–18 delivery mode 16,19–24 and early postnatal fac-
tors, including infant feeding, 21,25,26 antibiotic 
treatment, 27,28 and household exposures, 29–32 

affect the composition and/or diversity of the infant 
intestinal microbiome. However, differences in 
sample size and methodologies concerning how 
and when the microbiome is characterized, and 
indeed the application of the very concepts of 
microbiome and dysbiosis, have limited compari-
son of findings across studies.

‘Normal’ development of the human intestinal 
microbiome

In order to measure the effect of exposures on 
shaping the infant microbiome, the determination 
of a ‘normal’ infant microbiome state is a crucial, 
yet challenging task. There has been significant 
variation in how the characterization of the micro-
biome has been performed, 33,34 alongside a grow-
ing appreciation for potentially vast differences 
between the microbiomes of apparently healthy 
people that underpin unique and complex interac-
tions with their environment, genetics, and 
lifestyle.35,36 Likewise, understanding the expected 
development and maturation of an individual’s gut 
microbiome from birth is ongoing. Whilst contro-
versy remains regarding antenatal exposures such 
as in utero gut colonization 37–39 and the long-term 

influence of perinatal exposures including delivery 
mode, 40,41 it is understood that children under 
36 months of age have dynamic and highly indivi-
dual microbial profiles characterized by a lower 
diversity index (fewer bacterial species) compared 
to older children and adults.42 Postnatal develop-
ment of an individual’s microbiome appears to 
occur in two colonization ‘phases’, separated by 
the introduction of solid food around 6 months, 
and is further influenced by illness, antibiotic expo-
sure, and other environmental factors (Table 2). 
The interplay between these exposures informs 
the establishment of a comparatively stable, 
“adult-like” composition by early childhood, 
43,51,52,58,59 including those born prematurely.60 

Preterm neonates have a less species-diverse micro-
biome, often with an abundance distribution char-
acterized by higher levels of facultatively anaerobic 
pathogens such as Enterobacter, Enterococcus, 
Klebsiella, and Staphylococcus compared to term 
neonates.61,62 These differences persist until chil-
dren are at least 4 years of age.62

Shortly after birth, the neonatal gut is rapidly colo-
nized by facultatively anaerobic bacteria typically 
including strains of Enterobacter, Enterococcus, 
Staphylococcus, and Streptococcus genera.4,5 

Colonization continues with the commencement of 
milk feeding, and the development of a simple com-
munity of obligate anaerobes, though breastfed 
infants have distinct microbial colonization patterns 
compared to their formula-fed counterparts, 4,26,63,64 

further modified by breastfeeding exclusivity and 
duration.26 Results from the Canadian Healthy 
Infant Longitudinal Development (CHILD) study 
showed that the richness and diversity of infant gut 
microbiota at 4 months of age are lowest in exclusively 
breastfed infants, higher in partially breastfed infants, 
and highest in infants receiving formula.64 Low gut 
bacterial diversity in breastfeeding infants is thought 
to be a result of breastmilk oligosaccharides which 
serve as substrates for a limited number of gut 
microbes.65 Meanwhile, infants who are predomi-
nately formula-fed are associated with lower levels of 
Bifidobacteria and Lactobacilli alongside higher diver-
sity, dominated by Bacteroides, Staphylococci, 
Enterococci, and Clostridia.5,21 At 12 months, there 
remain distinct characteristics in microbiome compo-
sition in infants still receiving breastmilk, character-
ized by enrichment of Bifidobacteriaceae, 
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Veillonellaceae and Proteobacteria.64 Whether early 
differences in microbiome composition owing to 
feeding type persist across early childhood is less 
clear. A recent follow-up study found no significant 
differences in microbiome composition at 1, 2, or 4 
years of age according to breastfeeding in infancy.62

With the introduction of solid foods around 6 
months of age, the infant microbiome evolves from 
a simple, Bifidobacteria-rich community to a more 
diverse community structure alongside increased 
dietary diversity.4,5 Although the introduction of 
solid food spearheads these changes, at 12 months, 
breastfed infants have a greater relative abundance 
of Bifidobacterium and Lactobacillus species com-
pared to that fed formula.21 Cessation of breast-
feeding, rather than exposure to solid food, 
appears to be associated with maturation toward 
an “adult-like” microbiota.4,21,42 Crudely domi-
nated by Bacteroidetes and Firmicutes and with 
increased alpha diversity, 4,5 this mature microbial 
profile is more resilient to environmental chal-
lenges 66–68 but remains capable of adaptive shifts 
in community structure well into 
childhood.53,56,57,62

Links between prenatal maternal exposures, postnatal 
factors and infant gut microbiome assembly: what do 
we know and where are the knowledge gaps?

Pregnancy is accompanied by changes associated 
with metabolic dysfunction, including insulin resis-
tance, dyslipidemia and hypertension, though 
whether these physiological changes are driven by 
intestinal microbiome shifts in the mother, and the 
consequences of these shifts on the developing fetus 
and their subsequent microbiome, are less clear.-
69,70 Maternal nutrition has been shown to play a 
key role in developmental programming and mod-
ification of non-communicable disease risk in off-
spring via epigenetic changes.71 Other maternal 
factors, including antibiotic use, diet, obesity, and 
diabetes have been associated with altered develop-
ment of their children’s intestinal microbiome.72–75 

Further, although a metabolically active microbial 
community is not present in the gut until after 
birth, some microbe exposure may occur in utero, 
including microbe-derived molecules produced by 
the mother’s own microbiome, which may have an 
early predisposing effect signaling pathways in her 
child.2 Postnatally, questions remain regarding 

normal or ‘optimal’ intestinal microbiome assem-
bly and consequences of disturbances to this 
sequence, 37–39 and it remains challenging to isolate 
the impact of advancing age, environmental expo-
sures, and concomitant gut maturation from the 
direct effects of diet and other factors.76 Previous 
narrative reviews have outlined perinatal influences 
on infant microbiome development, 10,63,77,78 

though the strength and nature of associations 
have not been systematically evaluated and many 
underlying mechanisms remain unclear.

The aim of this work was to systematically 
review, and where possible to conduct a meta-ana-
lysis on the evidence for relationships between 
maternal exposures during pregnancy and mea-
sures of the infant intestinal microbiome. 
Secondary aims were to identify knowledge gaps, 
highlight the diversity of methods used in the field, 
and provide recommendations for future research 
to better understand mechanistic links between 
exposures, alterations in microbiome composition, 
diversity and/or function, and later-life disease risk.

METHODS

This systematic review protocol was registered with 
PROSPERO Online 79 [CRD42020150602] and was 
conducted according to the Preferred Reporting 
Items for Systematic Reviews and Meta-Analysis 
(PRISMA) statement.

Study identification

The literature search was conducted by AMG. 
Studies published in English from five relevant 
databases (MEDLINE, EMBASE, Scopus, 
CINAHL, Cochrane/CENTRAL) were collected in 
August 2019, using identified keywords and index 
terms. The search terms were divided into three 
groups, combined with the Boolean phrases 
“AND” between groups and “OR” within groups: 
1 Pregnancy/or pregnan*.mp., or Prenatal.mp., or 
Perinatal.mp., or Maternal.mp., or Mother*.mp. 
and 2 Infant.mp. or Infant/or Infant health.mp. or 
Infant Health/or birth outcome.mp. and 3 

Microbiome.mp. or Microbiota/, or gut micro-
biome.mp. or Gastrointestinal Microbiome/. 
There were no limits applied regarding the year of 
publication.
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Inclusion and exclusion criteria

Articles were included if they: 1 were intervention 
or observational studies (randomized controlled 
trials, case-control, cross-sectional or longitudinal 
studies) conducted in humans only, 2 collected pre- 
pregnancy or pregnancy ‘exposure’ data, indepen-
dent of the maternal intestinal microbiome (any 
kind of exposure permitted), from which an impact 
on infant outcomes was assessed, and 3 collected 
infant outcome/s, including at least one measure of 
the infant intestinal microbiome at less than or 
equal to 12 months of age.

Articles were excluded if they: 1 were of an inap-
propriate study type (animal studies, in vitro studies, 
conference abstracts, and proceedings published more 
than 2 years ago, or which have subsequently resulted 
in a published paper [in which case, the paper was 
included, if appropriate], case series, case reports, 
book chapters, guidelines, commentaries, editorials, 
letters to the editor, reviews and meta-analyses), 2 

did not collect pre-pregnancy or pregnancy “expo-
sure” data, and/or 3 did not measure infant intestinal 
microbiome composition or diversity beyond identi-
fying the abundance of a specific species only.

Study selection

All studies identified were retrieved from online 
databases and exported to the reference management 
system, EndNote (Version X8, Thomson Reuters, 
New York, NY, USA). Studies were screened by 
AMG, based on titles and abstracts. Full texts were 
retrieved following screening and subsequently 
reviewed by AMG and three other authors (RL, RT, 
and KD). Disagreements were resolved by discussion 
with a third investigator (AG).

Study quality

AMG evaluated the methodological quality of 
included studies using the Scottish Intercollegiate 
Guidelines Network (SIGN) checklists 80 for cohort 
and case–control studies and controlled trials. 
Studies were assessed on their internal validity 
with respect to subject selection, outcome assess-
ment, confounding, and statistical analysis. Overall 
quality was coded as high, acceptable, or low/unac-
ceptable based on responses to questions in the 

SIGN tool (see Supplementary Table 1 for assess-
ments for each included study).

Data extraction and synthesis

Data relating to study design, sample size, partici-
pant demographics, pregnancy “exposure/s”, infant 
outcomes, measurement of the infant microbiome, 
and recruitment and follow-up periods were 
extracted using a pre-determined template on 
Microsoft Excel. This information was used to 
construct Table 1 and Supplementary Table 1, 
according to the major study characteristics 
identified that related to the microbiome.

For Table 1, articles were categorized by study type 
(intervention or observational, denoted with a square 
or circle symbol, respectively) and this symbol was 
used to identify the primary “exposure” of interest in 
that publication. Following this, sample size (n) was 
categorized based on the interquartile range of n for 
included studies rounded to the nearest 50, generating 
the following three categories: 0–50 (“small study”, 
light gray), 50–300 (“medium study”, dark gray), and 
300 or more (“large study”, black). These shades were 
then applied to each article characteristic, including 
study features (study continent and microbiome test-
ing timing, methodology, and metrics), and both 
maternal and infant features. Secondary “exposure” 
outcomes (if measured) were also shaded according to 
study size. Finally, articles were stratified according to 
sample size (small to large, from left to right).

For each included publication, data pertaining to 
the composition and/or diversity of the infant intest-
inal microbiome were collected, according to the 
metrics used by authors. In studies investigating the 
impact of maternal probiotic supplementation, the 
presence or absence of the species provided by the 
probiotic supplement was also compiled (Table 3).

Statistical analysis with meta-analysis

It was not possible to perform meta-analyses for all 
exposure groups, owing to diverse interventions 
and/or outcomes measured with respect to the 
infant gut microbiome. Associations were 
described as significant if P < .05. For exposures 
where meta-analysis was possible, data were pooled 
according to pregnancy exposure using a random- 
effects model in Review Manager Software, version 
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5.4 (RevMan, 2020). The Shannon Index, a measure 
of within-sample (alpha) diversity, based on the 
sum of the proportion of each species relative to 
the total number of species in the community, 98 

was used as the primary outcome on which study 
outcomes were compared in meta-analyses. Unless 
otherwise stated, alpha diversity was reported using 
the Shannon Index, calculated on taxon abundances 
after classification to species rank. Authors were 
contacted if data were not available in the text; other-
wise, data were calculated from included figures. 
Where data were not available, the publication was 
not included in the meta-analysis. Means and stan-
dard deviation (SD) were used to calculate the mean 
difference (MD) in alpha diversity between groups, 
according to pregnancy exposure. Heterogeneity was 
assessed in each meta-analysis using Chi2, degrees of 
freedom (df), and I2 statistics. Using the I2, hetero-
geneity was regarded as moderate to substantial if 
30–75% and considerable if greater than 75%, based 
on Cochrane recommendations.99

RESULTS

Study selection

Study selection is summarized in Figure 1. The 
initial database search identified 1,441 unique pub-
lications after the removal of duplicates. Further 

1,237 publications were excluded after assessing 
titles and abstracts based on study type, missing 
data, and/or irrelevance. Full texts of 204 articles 
were retrieved. At this stage, articles were excluded 
if they did not measure a specific pregnancy “expo-
sure” compared to an infant outcome (n = 64) or if 
the measurement of the infant intestinal micro-
biome was limited to one species only and/or a 
valid methodology was not used (n = 45). Others 
were excluded based on inappropriate study type 
(n = 3) or other reasons (n = 6). A total of 76 
publications were therefore included in the review.

Study characteristics and methodologies

The characteristics of included studies are summar-
ized in Table 1. Detailed information regarding 
each included publication is outlined in 
Supplementary File Table 1. Studies were published 
from 2004 to 2019, with the majority (72%) from 
the past 5 years (2015–2019). Most studies were 
observational (74%, n = 56). The remaining 20 
articles (26%) were intervention studies, 12 of 
which were randomized controlled trials. The set-
tings of included studies were Europe (n = 39), 
North America (n = 26), Asia (n = 8), Africa 
(n = 1), South America (n = 1), and Oceania (n = 1).

The total number of mother-infant dyads 
included in the review was 17,509, with a median 

Table 2. Summary of typical development of the intestinal microbiome from birth to early childhood.
Stage of development General microbiome characteristics (reference/s)

Neonate (0–4 weeks) ● Rapid colonization by anaerobic bacteria.43,44

● Meconium is likely to be more reflective of maternal microbiome composition than in response to the delivery mode 
or environmental conditions.43–45

● Altered pattern of colonization associated with prematurity; preterm infants have higher counts of Enterobacteriaceae 
and lower counts of Bacteroidaceae and Bifidobacteria compared to those born at term.46,47 Lower species diversity 
was also observed in preterm compared to term neonates.48

● Differences in microbiota composition due to birth mode are present.49 Infants born vaginally are characterized by a 
higher relative abundance of Bacteroides whereas those born via cesarean section delivery have a lower relative 
abundance of Bifidobacterium and higher levels of Klebsiella, Haemophilus, and Veillonella.50

Milk-fed infant (0–6 months) ● Overall low species diversity continues.21

● Differences in individual species abundance differ by feeding type (breastmilk or formula).49

● Highly individual composition (i.e., high beta diversity).49,51

● Bifidobacterium is the dominant bacterial genus, particularly in breastfed infants.52–54

Mixed-fed infant (6–12 months) ● Introduction of solid food spearheads change in composition, including an increase in the relative abundance of 
Bacteroides and newly dominant genera such as Ruminococcus and Akkermansia.43–45

● Cessation of breastfeeding may or may not occur, has a major impact on composition independent of the introduction 
of solid foods.49,55

● Increasing alpha diversity (Shannon Index) driven largely by increasing species richness.49,50,53

● Highly individual composition (beta diversity) persists.49,51

Toddler (12–36 months) ● Increasing phylogenetic diversity and reducing beta diversity.51

● Cessation of breastfeeding has a major impact on microbiota composition and alpha diversity alongside increasing 
dietary diversity.49

● Approaching microbiome ‘stability’ with ongoing adaptation to the environment.42,51,53

‘Adult-like’ microbiota 
(>36 months)

● Microbiome is more resilient to environmental challenges.56 Stable microbiota ‘signature’ is established.42,51,53

● Alpha diversity (Shannon Index) in early childhood continues to be lower than that of adults.56,57
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sample size of 84 (range: 6–1,681). Some studies 
purposefully recruited women with a history of 
allergic or other diseases (21%, n = 16). The major-
ity of studies (71%, n = 54) recruited women of 
reproductive age via antenatal clinics, typically in 
their second trimester or later. Few (3%, n = 2) used 
advertising campaigns, or recruited via schools and 
shops (n = 1), and others recruited infants at or 
shortly after birth and retrospectively gathered 
maternal data (18%, n = 14). Five studies (7%) did 
not report a clear recruitment strategy. Body Mass 
Index (BMI) was the only exposure for which pre- 

pregnancy data were available in this review; all 
others related to factors during pregnancy and/or 
delivery.

Study methodologies – stool microbiome collection 
and assessment

The majority of studies (76%, n = 58) used 16S 
rRNA gene sequencing as their primary methodol-
ogy for the assessment of the infant microbiome, 
with 12 studies (16%) using more than one method 
(see Table 1 for further detail). Polymerase chain 

Studies identified 
through database search 

(n = 1,996) 

Duplicates removed  
(n = 555) 

Id
en

tif
ic

at
io

n 

Studies remaining after duplicates removed (n = 1,441) 

Studies screened        
(n = 1,441) 

Studies excluded – title and/or 
abstract did not meet inclusion 
criteria (n = 1,237). Reasons: 
• Inappropriate study type              

(n = 900) 
• No pregnancy data collected (n 

= 203) 
• Infant intestinal microbiome not 

measured (n = 95) 
• No infant data available               

(n = 22) 
• Not relevant (n = 17) 

S
cr

ee
ni

ng
 

Full-text articles and 
recent abstracts 

assessed for inclusion (n 
= 204) 

Full-text studies or recent 
abstracts excluded – did not meet 
inclusion criteria (n = 128). 
Reasons: 
• Inappropriate study type or 

design (n = 13) 
• No pregnancy data collected (n 

= 64) 
• Infant intestinal microbiome not 

measured or measured 
inappropriately (n = 45) 

• Not relevant / other (n = 6) 

Eligible articles assessing 
maternal pregnancy factors and 
the infant intestinal microbiome (n 
= 76): 
• Probiotic and prebiotic 

supplementation (n = 18) 
• Antibiotic use during pregnancy 

and/or delivery (n = 16) 
• Weight status and weight gain 

(n = 11) 
• Maternal diet / nutrient 

supplementation (n = 6) 
• Maternal diabetes (n = 4) 
• Maternal mood disorders (n = 

4)  
• Maternal asthma (n = 2) 
• Other (n = 15) 
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Figure 1. Preferred Reporting Items for Systematic Reviews and Meta-analysis (PRISMA) flow diagram of the study selection process for 
the current review on maternal exposures during pregnancy and associations with the infant intestinal microbiome.
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reaction (PCR) (16%, n = 12), fluorescence in situ 
hybridization (FISH) (11%, n = 8), and culture- 
based methods (4%, n = 3) were also used to quan-
tify specific target populations. A small number of 
recent studies (9%, n = 7) also used metagenomic 
sequencing to further characterize the infant 
microbiome. Since all methods ultimately relied 
on a common rRNA phylogeny-based classification 
scheme, species composition and abundance distri-
butions across studies were considered broadly 
comparable. Direct comparison of taxon abun-
dances across different methods was not possible 
and readers are referred to Table 1 and 
Supplementary Table 1 to identify such cases.

The frequency and timing of stool sample 
collection and analysis also varied (Table 1). 
The mean number of stool samples analyzed 
per study was two; whilst five studies analyzed 
more than five samples, 93% sampled between 
one and five times across infancy. Almost half of 
the included studies sampled at least once within 
the first week of life (46%, n = 35), though 83% 
(n = 63) of studies sampled at least once 
between 1 and 4 months. Fewer studies sampled 
between 4 and 6 months (30%, n = 23) or 
beyond 6 months (16%, n = 12).

Results by exposure variable

3.4.1 Probiotic or prebiotic supplementation during 
pregnancy
Seventeen intervention studies 81–97 investigated 
the relationship between prenatal maternal probio-
tic supplementation and the infant intestinal 
microbiome (Table 3), with a variety of other out-
comes studied (e.g., allergy development). 
Probiotics including one 81,84,89,90,96,97 or more 
82,85,83,86–88,91–95 Lactobacillus and/or 
Bifidobacterium species were administered in the 
form of capsules/powder, 85–95 milk/yogurt 82–84 or 
oil droplets 81 to women in their second 84,86,87 or 
third trimester.81–83,85,88–93,95–97 Four studies did 
not describe randomization procedures with regard 
to probiotic intervention, 85–87,89 whilst all others 
were randomized controlled trials (Supplementary 
Table 1). Thirteen articles focused on allergy devel-
opment in high-risk infants, recruiting pregnant 
women with a personal or family history of atopic 
disease, 81,86–97 and three publications investigated 

whether probiotic intervention during pregnancy 
and infancy affected the risk of allergy 
development.85,92,93 Here we focus on evidence of 
whether probiotic administration induced a mea-
surable change in the infant microbiome.

There was limited evidence that maternal pro-
biotic supplementation during pregnancy led to 
ongoing colonization by the probiotic strain within 
the infant gut microbiome or that it impacted over-
all infant microbiome diversity. As shown in Table 
3, eight studies 81,83–85,89,91,92,94 found that at the 
time of probiotic intervention and shortly after 
birth, the species given as a supplement to the 
mother was detected at a significantly higher abun-
dance in infants whose mothers received the sup-
plement compared to controls. However, six 
studies 82,85,86,93,97,94 showed no significant differ-
ences between groups with respect to the relative 
abundance of supplemented species or microbiome 
diversity once the probiotic intervention was 
ceased. A further six studies 81,85,91–93,97 extended 
probiotic supplementation to include infants. 
Three publications 87,92,93 reported that probiotic 
supplementation to both mothers and infants sig-
nificantly reduced the risk of eczema development 
(P = .007 at 10 months and P = .033 at 18 months; 
P = .035 at 24 months; and P = .035 at 3 months, 
respectively). However, the impact of maternal pro-
biotic use on infant microbiota or allergy risk spe-
cifically could not be isolated with this study design.

Notably, 13 articles involved administration of 
preparations that included Lactobacillus rhamnosus 
strains, either as a single species probiotic 
84,89,90,96,97 or in combination with a 
Bifidobacterium species, 82,83,86–88,91,92,95 to 
mothers and/or infants (Table 3). In one study, 
Lactobacillus rhamnosus GG given to mothers colo-
nized infants in the probiotic group with greater 
relative abundance at 10 days (P < .005) and 3 
months (P < .005) of age, compared to controls, 
though this difference was not maintained at 
12 months (P = .783).83 Another study reported 
significantly higher total Bifidobacterial counts in 
supplemented compared to control groups at 6 
months (P < .001); though both mothers and 
infants were supplemented.92 Otherwise, limited 
statistically significant differences were found 
between probiotic and placebo groups in terms of 
the relative abundance of Bifidobacterial strains or 
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Bifidobacterial diversity between 5 days and 6 
months of age.86–89,96,97 Overall diversity at 1 
week of age and measures of alpha and beta diver-
sity at 3 months of age were also not significantly 
associated with Lactobacillus rhamnosus supple-
mentation in pregnancy.83,90

One study provided prebiotic supplementation 
(galactooligosaccharides and long-chain fructooli-
gosaccharides) to pregnant women 100 and two 
studies provided prebiotics alongside probiotics to 
infants.91,92 The former study by Shadid and col-
leagues found that whilst the percentage of 
Bifidobacteria was significantly higher in mothers 
in the prebiotic group compared to the placebo 
group (P = .026), this was not transferred to 
neonates.100 Bifidobacteria and Lactobacilli diver-
sity and similarity indexes, and the percentage of 
neonates who were positive for specific 
Bifidobacterium and Lactobacillus species, did not 
differ between prebiotic-supplemented and placebo 
groups across the first 6 months of life.100

Overall, results showed no persistent effect of 
maternal probiotic or prebiotic supplementation 

on the infant gut microbiome following cessation 
of treatment.

3.4.2 Antibiotic use during pregnancy and delivery
Sixteen articles primarily explored the effect of 
oral antibiotic use in pregnancy 101–105 or intra-
venous antibiotic exposure during delivery (intra-
partum antibiotic prophylaxis, IAP) 48,106–115 on 
infants’ intestinal microbiome composition and/ 
or diversity (Figure 2). IAP was administered for 
maternal Group-B Streptococcus (GBS) positivity, 
106,108–111,113–115 preterm premature rupture of 
the membranes (PPROM), 108,110 and/or as rou-
tine practice in caesarean-section deliveries.108,110 

Five studies investigated antibiotics alongside 
other exposures.116–120

All included studies found some significant dif-
ferences between the gut microbiome composition 
of infants whose mothers were exposed to antibio-
tics prenatally 101−105 or as IAP, 48,106–115 compared 
to unexposed infants (controls). In eight studies, a 
significantly reduced relative abundance of 
Actinobacteria, 106,107,114 specifically the 

IAP; Ampicillin; dose, frequency

IAP; Ampicillin; dose, frequency

Azad 2016 IAP; Penicillin, Cefazolin; number of courses 

Pregnancy     Delivery 1 week 1 month 3 months 6 months 12 months

IAP; Ampicillin, Penicillin, Erythromycin; number of courses, duration of exposure (hours, days)

Corvaglia 2016

IAP; Ampicillin, Cefazolin; dose, frequency

IAP; Amoxicillin; dose, frequency

IAP; Ampicillin; dose, frequency

IAP; Penicillin; dose, frequency, number of courses

Stearns 2017 IAP; Penicillin, Cefazolin, Ampicillin, Cephalexin; duration of exposure (minutes, hours) 

IAP; antibiotics not specified or unknown

Prenatal (not otherwise specified); not specified or unknown

Prenatal and IAP; not specified or unknown

Prenatal (by trimester); Beta-lactams [Penicillin and others], Sulfonamides, Macrolides, Aminoglycosides, Others; number of courses

Prenatal; not specified or unknown

Prenatal (not otherwise specified); Cefazolin; duration of exposure (days)

Arboleya 2015, 2016 

Jia 2019*

Nogaka 2017 

Mazzola 2016

Imoto 2018

Alosio 2016

Jaureguy 2004

Zhou 2018

Zhang 2019

Lee 2014

Pozo-Rubio 2013

Fallani 2010

Figure 2. Timeline of stool sample collection across included articles investigating the role of prenatal antibiotic exposure or 
intrapartum antibiotic prophylaxis (IAP) on infant microbiome composition and/or diversity. Abstracts are denoted with an asterisk 
(*). Filled diamonds (�) represent the time at which maternal antibiotic exposure occurred. Filled circles (∙) represent approximate 
times at which infant samples were collected (timeline not to scale). Articles investigating the use of a single antibiotic are denoted in 
blue, multiple antibiotics in red, and antibiotic categories in orange. Articles for which the type of antibiotic used was not specified are 
indicated in green. Type of antibiotic and measures of dose, frequency or duration of use are indicated for each study, where possible.
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Bifidobacterium genus, 105,106,109,110,109,113,109,115 

was observed in infants whose mothers were trea-
ted with antibiotics prenatally or during delivery, 
compared to controls. In three studies, this differ-
ence did not persist beyond 30 days of age, by 
which time the Bifidobacterial population appeared 
to have recovered.109,113,114 The relative abundance 
of Bacteroidetes 101,106 was also significantly less in 
infants up to six weeks of age whose mothers were 
treated with antibiotics compared to controls. 
Meanwhile, eight publications reported an 
increased relative abundance of Firmicutes 
105,108,112–115 and Proteobacteria 106–108,113–115 in 
infants following maternal antibiotic exposure. In 
contrast, another study found the relative abun-
dance of Firmicutes was significantly higher in pre-
mature antibiotic-unexposed infants compared to 
those exposed to IAP (P < 0.01).107

Delivery mode (vaginal versus caesarean-sec-
tion) modified the effect of antibiotic exposure in 
seven studies, 
48,104,105,101,104,105,108,104,105,110,104,105,115 four of 
which found significant differences in infant micro-
biome composition between those exposed to 
maternal antibiotics and controls, independent of 
a “caesarean-section effect”.104,108,110,115 Azad and 
colleagues 108 found that the duration of differences 
between groups owing to delivery mode diverged 
between elective and emergency caesarean-section 
deliveries at 12 months; whilst infants exposed to 
IAP born via emergency caesarean-section were 
associated with a lower relative abundance of 
Bacteroidetes (P < 0.001) and a higher relative 
abundance of Firmicutes (P < 0.001) and 
Proteobacteria (P < 0.05) compared to vaginally- 
delivered infants without IAP exposure, no persis-
tent microbiota differences were found among 
infants exposed to IAP who were born via vaginal 
or elective caesarean-section delivery.
Whilst information regarding the timing, duration, 
and frequency of antibiotic exposure was variably 
collected in included studies (Figure 2), the specific 
impact of timing and duration of antibiotic expo-
sure was further explored in two studies.104,115 

After adjusting for confounders, one study found 
that compared to unexposed controls, infants 
whose mothers used antibiotics in their second 
trimester of pregnancy had significantly different 
relative abundances of 13 and 17 bacterial amplicon 

sequence variants (ASVs) at three and 12 months of 
age, respectively.104 Stearns and colleagues 115 

found that a longer duration of IAP had a greater 
negative effect on Bifidobacterium populations in 
3-month-old infants, where every hour of maternal 
IAP was associated with a 7% decrease in the rela-
tive abundance of Bifidobacteria.

Differences in the gut microbiome diversity of 
infants exposed to prenatal antibiotics or IAP com-
pared to unexposed infants were investigated in 
eight studies.102,105,106,105,108,105,110,105,113–115 Zou 
and colleagues found that in preterm infants 
exposed to antibiotics prenatally, diversity mea-
sured using the Shannon Index increased across 
the first 2 weeks of life but was not significantly 
associated with antibiotic exposure.105 Four studies 
106,110,113,115 found IAP exposure significantly 
reduced measures of microbiome alpha diversity 
in infants under 1 month of age using the 
Shannon Index (Mazzola and colleagues 113 also 
used Simpson’s Index, Chao1, and observed spe-
cies), whilst this effect was not statistically signifi-
cant in two other studies.102,114 This trend of 
decreased diversity related to IAP exposure was 
no longer significant by 3 months of age in one 
study 115 and appeared modifiable by delivery mode 
in another, 108 where IAP with emergency cesarean 
delivery was associated with increased microbiota 
diversity at 12 months (P < .001) compared to 
vaginal delivery without IAP.

Means and confidence intervals were pooled in a 
meta-analysis including five studies 106,108,110,113,115 

which assessed the relationship between IAP expo-
sure and alpha diversity of the infant intestinal 
microbiome (Figure 3). Maternal IAP exposure 
was associated with a nonsignificant reduction in 
infant α-diversity (mean difference, −0.24, 95% CI: 
−0.58–0.09), with high heterogeneity (I2 = 91%). 
Each study used 16S rRNA gene sequencing for 
microbiome analysis though the age of infants at 
sampling varied from 1 week to 3 months.

3.4.3 Maternal pre-pregnancy BMI and gestational 
weight gain (GWG)

The influence of maternal pre-pregnancy BMI, 121–126 

GWG, 127 or both, 117,128–130 on the infant intestinal 
microbiome was investigated in 11 observational stu-
dies. Standardised definitions of BMI were used to cate-
gorize women as having underweight (<18.5kg/m2), 
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normal weight (18.5-25 kg/m2), overweight (25-30kg/ 
m2), or obese (>30kg/m2).131 GWG was categorised as 
inadequate, adequate or excessive, based on the Institute 
of Medicine’s recommended rates of weight gain 
according to pre-pregnancy BMI.132

Associations between maternal pre-pregnancy BMI, 
GWG and infant microbiome composition and/or 
diversity were inconsistent and were modified by deliv-
ery mode in three articles.124,126,128 In one study includ-
ing 74 neonates, maternal pre-pregnancy BMI in the 
overweight or obese range was associated with a signifi-
cantly different gut microbial community structure (P < 
0.001), enriched in the Bacteroidetes and depleted in 
Enterococcus and Proteobacteria (notably Acinetobacter 
and Pseudomonas), though only in infants delivered 
vaginally.124 In a small study of 30 mother-infant 
pairs, comprising 12 women with pre-pregnancy obesity 
compared to 18 women with normal weight, two-week- 
old infants whose mothers were overweight were asso-
ciated with a significantly higher relative abundance of 
Bacteroides (P = 0.028) and lower relative abundance of 
Proteobacteria (P = 0.03) compared to controls.123 

Meanwhile, in another small study (n = 42), the relative 
abundance of Bacteroides was lower in infants at one 
month of age whose mothers were overweight or obese 
prior to pregnancy (P = 0.028) or had excessive GWG (P 
= 0.025).130 Both associations were no longer significant 
by six months of age.130 Results from the New 
Hampshire Birth Cohort 128 also indicated that birth 
mode modified associations between pre-pregnancy 
BMI and the infant gut microbiome at six weeks of 
age; in those delivered vaginally, maternal overweight/ 
obesity was associated with increased infant gut 

microbiome diversity and a higher relative abundance 
of 15 operational taxonomic units (OTUs), but there 
were no significant associations between pre-pregnancy 
BMI and infant gut microbiome diversity in those born 
via caesarean-section. Meanwhile, GWG was not asso-
ciated with measures of microbial diversity or a different 
relative abundance of gut microbial OTUs in infants, 
regardless of delivery mode.128 When examined across 
the first two years of life, another study found that whilst 
maternal pre-pregnancy BMI and GWG affected the 
maternal microbiome, they were not associated with 
significant differences in offspring gut microbiota in 
composition or diversity.129

Associations between infant microbiome alpha diversity 
(Shannon Index) and maternal pre-pregnancy BMI 
(normal weight versus overweight or obesity) were ana-
lysed in a meta-analysis including four studies 
123,125,128,129 (Figure 4). Maternal overweight/obesity 
was associated with a marginally lower Shannon Index 
(mean difference, −0.01, 95% CI: −0.19-0.17), with con-
siderable heterogeneity (I2 = 81%). Maternal GWG and 
alpha diversity of the infant intestinal microbiome was 
also meta-analysed across two studies 127,128 (Figure 5). 
Excessive GWG was associated with a slightly lower 
diversity in infants compared to those whose mothers 
had adequate GWG (mean difference, −0.07, 95% CI: 
−0.08 – −0.06, I2 = 0%).

3.4.4 Maternal diet and nutrient supplementation 
during pregnancy

Data exploring associations between maternal diet 
(using dietary questionnaires) and the infant intestinal 

Figure 3. Maternal Intrapartum Antibiotic Prophylaxis (IAP) exposure in relation to infant intestinal microbiome diversity, as measured 
by the Shannon Index.

Figure 4. Maternal pre-pregnancy obesity in relation to infant intestinal microbiome diversity, as measured by the Shannon Index.
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microbiome were mixed across six included studies. 
Two observational studies investigated broad dietary 
patterns 133,134 and one assessed maternal fat intake.135 

One trial explored the effect of salmon intake during 
pregnancy, 136 and two intervention studies examined 
maternal vitamin D supplementation.137,138

Maternal dietary food (salmon) or food group intake 
and vitamin D supplementation were not found to have 
significant independent impact on the infant micro-
biome, after adjusting for other factors including demo-
graphic characteristics (e.g. race/ethnicity, maternal 
education), delivery mode and/or breastfeeding status. 
Urwin and collegues 136 found that maternal consump-
tion of salmon twice weekly was not associated with a 
significant effect on maternal or infant gut microbiome 
composition; infants in the salmon group who were 
formula-fed were associated with a trend toward lower 
bacterial counts of the Atopobium cluster compared to 
controls, though this was not observed in breastfed 
infants. Using dietary questionnaires, Lundgren and 
colleagues 133 reported that maternal fruit consumption 
was significantly associated with infant stool micro-
biome composition at six weeks (P = 0.028) though 
only in vaginally delivered, exclusively breastfed infants. 
Similarly, the Vitamin D Antenatal Asthma Reduction 
Trial (VDAART) 134 found that whilst a “healthy” diet-
ary pattern charactersised by a high intake of vegetables 
and low intake of processed meats and deep-fried foods 
was associated with increased diversity (P < 0.001) and 
richness (P < 0.001) in the infant gut, these differences 
failed to reach significance in models adjusted for 
demographics and infant feeding mode. Another pub-
lication from the VDAART 138 found no association 
between prenatal vitamin D supplementation and infant 
microbial diversity at 3-6 months (P = 0.61). Limited 
associations between maternal vitamin D supplementa-
tion, 25-hydroxyvitamin D concentration and the infant 
gut microbiome were likewise observed in the KOALA 
birth cohort study ;137 with the exception of an associa-
tion between vitamin D supplementation and increased 
counts of Bifidobacterium (P = 0.012) in infant stool at 
one month of age, no other associations were significant 
in adjusted models.

Conversely, Chu and colleagues 135 found that, inde-
pendent of maternal BMI, infants whose mothers 

consumed high-fat diets (one SD higher than the 
mean fat intake) were associated with an altered meco-
nium composition (P = 0.001) and a relative depletion 
of Bacteroides (P = 0.02) at six weeks of age, compared 
to controls. All infants received both breastmilk and 
formula at six weeks of age, except for two subjects 
who were exclusively breastfed. Post-hoc analysis 
removing these subjects did not alter the significant 
correlation between the reduced relative abundance of 
Bacteroides and high maternal dietary fat intake during 
pregnancy.

3.4.5 Maternal diabetes

Four studies 72,75,139,140 investigated the influence of 
maternal diabetes mellitus (DM), including GDM, on 
the infant intestinal microbiome. When women with 
pre-existing DM, GDM and normo-glycaemia (con-
trols) were analysed separately, Hu and colleagues 75 

found significant overall microbiome differences 
between DM and GDM groups, and controls (P = 
0.004 and 0.022, respectively), largely driven by relative 
enrichment of Bacteroidetes and depletion of 
Proteobacteria in women with DM. This increased rela-
tive abundance of Bacteroidetes in infants whose 
mothers had GDM (P = 0.029) was replicated in one 
recent abstract (data not shown), 139 but other studies 
72,140 found inverse associations between relative 
Bacteroidetes abundance and both DM status (P < 
0.05 for both) and maternal fasting glucose levels (P = 
0.018) .140 At the genus level, infants whose mothers had 
GDM were associated with a reduced relative abun-
dance of Prevotella and Lactobacillus (both P < 0.05), 
compared to controls .140

3.4.6 Maternal mood disorders and stress

The relationship between maternal depression, anxiety 
or stress and the infant intestinal microbiome was 
explored by four observational studies .141–144 

Maternal mood disorders were associated with changes 
in the infant gut microbiome; however, these were often 
modified by time and other environmental factors. One- 
week-old infants whose mothers had high depressive 
scores during pregnancy were associated with a lower 

Figure 5. Maternal gestational weight gain (GWG) in relation to infant intestinal microbiome diversity, as measured by the Shannon 
Index.
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abundance of Actinobacteria and a higher abundance of 
Proteobacteria compared to controls, although this dif-
ference did not persist over time .141 In a very large 
sample (n = 1,681) of four-month-old infants from the 
CHILD birth cohort, 142 infants of mothers with pre-
natal depressive symptoms, with or without antidepres-
sant treatment, had higher median abundance of 
Lachnospiraceae in their gut compared to infants of 
mothers with few depressive symptoms, which was 
modified by prenatal pet ownership (Pinteraction = 0.02). 
Lee and colleagues 144 similarly reported that whilst 
infants of mothers with high anxiety scores had different 
Escherichia, Bacteroides, Clostridium, and 
Terrisporobacter profiles compared to controls (data 
not shown), this was modified by a healthy maternal 
diet pattern (defined by a high intake of vegetables and 
fruit).

Maternal prenatal reported stress and cortisol levels 
were also found to be significantly associated with 
total microbiota composition (P < 0.01) in Zijlmans et 
al .143 Infants whose mothers were categorised as having 
experienced high cumulative stress during pregnancy (i. 
e., both high reported stress and cortisol concentra-
tions) were characterised by an increased relative abun-
dance of Proteobacterial groups, alongside reduced 
relative abundances of lactic acid bacteria (i.e., 
Lactobacillus, Lactoccus, Aerococcus) and 
Bifidobacteria, compared to controls (P values not 
provided).

3.4.7 Maternal asthma

Two studies 145,146 reported on associations between 
maternal asthma and development of the infant intest-
inal microbiome. In the CHILD birth cohort study, 
infants whose mothers had asthma during pregnancy 
harboured fewer Lactobacilli in their gut microbiota (P 
= 0.02), however this was highly modified by infant sex 
and mother’s ethnicity .145 The Danish COPSAC2010 

cohort found maternal asthma was not associated with 
alpha or beta diversity in the gut microbiome of 12- 
month-old children and described the effect of expo-
sures across the first year of life as either triggering or 
protecting infants from an inherited asthma risk .146

3.4.8 Other maternal demographics, medical 
conditions, and pregnancy complications

A further fifteen studies 50,116,118–120,147–156 analysed a 
variety of maternal factors in relation to the infant 
intestinal microbiome, including maternal ethnicity, 
disease, pregnancy complications and environmental 
exposures during pregnancy.

Lewis and colleagues 152 investigated maternal 
country of origin and found a significant difference 
between the intestinal microbiome of children born 
to mothers in Armenia and Georgia, responsible for 
8.4% of the total variation in microbiome commu-
nity composition between samples. Differences sec-
ondary to race-ethnicity were also found between 
Caucasian and African-American, 116 Asian, 154 

and Latino 150 women in three North American 
studies. Compared to Caucasian, African- 
American race-ethnicity was associated with a 
more phylogenetically diverse gut microbiota in 
neonates (P = .002) and infants (P < .001).116 

Groups of phylogenetically distinct bacterial genera 
were also differentially abundant between women 
recruited through CHILD and South Asian Birth 
Cohort (START-Canada) studies, including when 
adjusted for multiple confounders, including diet 
(P < .001).154 Whilst all studies used 16S rRNA gene 
sequencing, there was substantial variation in the 
timing of stool sampling (from 1 week to 12 months 
of age).

Differences in infant stool composition and/or 
diversity were also highlighted in relation to mater-
nal health status during pregnancy. Compared to 
controls, infants born to mothers with HIV, 147 

GBS, 148 atopic eczema, 120 or Irritable Bowel 
Disease (IBD) 151 had significant differences in gut 
microbiome composition and/or diversity. 
Maternal pregnancy complications, including chor-
ioamnionitis, were also associated with significant 
differences in the intestinal microbiome of preterm 
infants, though the direction and significance of 
these associations varied. Chorioamnionitis was 
associated with altered alpha diversity as measured 
by the Shannon Index; significantly increased (P < 
.01) in one study, 119 though significantly reduced 
(P = .012) in another 156 and non-significantly 
lowered (P = .129) in the third.50

The remaining studies explored lifestyle, 149 pol-
lution, 153 pet ownership 155 or multiple factors 118 

during pregnancy and the infant microbiome and 
are outlined in Supplementary Table 1. These expo-
sures warrant future investigation; although some 
studies were large, associations were often not inde-
pendently associated with the infant gut micro-
biome and require corroboration with further 
studies.
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Risk of bias in included studies

As shown in Supplementary Table 1, two interven-
tion studies 91,92 and two observational studies 
109,140 (5% total included studies) were considered 
to be of high methodological quality as defined by 
the SIGN checklists. These were characterized by 
clearly explained research questions, inclusion/ 
exclusion criteria, and demographics of subjects, 
participant randomization, and concealment pro-
cedures. Potential confounders were also consid-
ered and accounted for in statistical analyses.

The majority of included studies (83%, n = 63) 
were classified as being of acceptable methodological 
quality using the SIGN criteria. These studies 
included clearly defined research questions, rando-
mized assignment of participants (where possible), 
and valid measurement of clinical data and the infant 
intestinal microbiome. However, these studies often 
did not clearly define concealment methodologies, 
and/or provide adequate detail regarding potential 
baseline differences between groups or confounding 
variables, and/or comment on cohort dropout rates.

Three trials (4%) were considered of poor qual-
ity, providing inadequate information regarding 
randomization, concealment, group differences, 
and attrition rates to allow for a higher rating.-
84,85,89 These publications were not included in 
any meta-analyses. Six abstracts (8%) also did not 
provide sufficient detail in order to warrant quality 
assessment.112,121,139,141,144,151

DISCUSSION

The current systematic review of 20 interventions 
and 56 observational studies encompasses 12,770 
and 4,312 mother-infant dyads, respectively, and 
provides a comprehensive synthesis of available 
data on prenatal factors affecting the infant gut 
microbiome. The review synthesizes current evi-
dence on these relationships, including whether 
(or not) they affect the infant microbiome and 
consider their potential impact on infant (and/or 
long term) health outcomes, aligned with the 
DOHaD framework. To our knowledge, this is 
also the first review to quantify associations 
between maternal factors and measures of the 
infant intestinal microbiome, using meta-analysis 
where possible.

Multiple exposures, including maternal antibio-
tic treatment and probiotic use, diet, anthropome-
try, chronic health conditions (obesity, diabetes, 
asthma, and mood disorders), and genetic and 
environmental factors have been examined for 
their association with the infant intestinal micro-
biome. However, current evidence needs to be 
interpreted with caution, as the methodological 
quality of studies in the field is variable and the 
reproducibility, magnitude, and longevity of the 
effects of these exposures – within the context of a 
complex network of contributing factors – remain 
challenging to determine.

Maternal exposures and the infant microbiome – a 
complex picture

Augmentation of the maternal microbiome via 
probiotic or prebiotic supplementation
There is increasing interest in the manipulation of 
the intestinal microbiome through the use of pro-
biotic or prebiotic supplements during pregnancy 
to optimize maternal and infant outcomes. 
However, despite representing the exposures for 
which most data were available, the current review 
provides little support that probiotic or prebiotic 
supplementation during pregnancy has enduring 
effects on the offspring intestinal microbiome. 
Apart from shortly after birth, there were no sig-
nificant differences between groups in the relative 
abundance of supplemented species or overall 
microbiome diversity over time.82,85,86,93,97,94,100 

Many studies also provided probiotics to mothers 
and infants, such that the specific effect of maternal 
supplementation on the infant gut microbiome 
and/or later-life health outcomes could not be 
assessed.85,92,93 Our findings are consistent with a 
recently published systematic review and meta-ana-
lysis which did not find evidence to support pro-
biotic or prebiotic use in reducing the risk of 
preterm birth or other adverse maternal and infant 
outcomes, including GDM, PPROM, and small- 
and large-for-gestational age (SGA, LGA).157

Suppression of the maternal microbiome via 
antibiotic exposure
Antibiotics are provided to approximately 25% of 
pregnant women and account for nearly 80% of all 
medications prescribed during pregnancy.158,159 
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Evidence supporting an association between early 
antibiotic exposure and the risk of allergy/atopy, 160 

obesity, 161 diabetes, 162 and celiac disease, 163 and 
concerns regarding antibiotic resistance, 164 high-
light the need for management guidelines regarding 
the requirement, dose, and duration of perinatal 
antibiotics considering the risk of altering maternal 
and offspring intestinal microbiota.

The current review found that maternal antibiotic 
exposure during delivery was associated with a mod-
est reduction in alpha diversity in their infants, com-
pared to unexposed controls (Figure 3). In non- 
obese diabetic (NOD) mouse models, prenatal anti-
biotic exposure has likewise been associated with 
significantly lower diversity using the Shannon 
index (P = .042), 165 and reduced bacterial diversity 
has been linked with an elevated risk of poorer health 
indicators, including obesity and inflammation.-
166,167 However, many studies in the current review 
found that differences in infant gut microbiome 
composition and/or diversity owing to antibiotic 
exposure were likely to disappear after only a 
month.101,109,106,109,113,109,114 The type, timing, and 
duration of antibiotic exposure (if collected) also 
varied (Figure 2). Whilst one study 115 found a 
dose–response relationship between the duration of 
antibiotic treatment and Bifidobacterium relative 
abundance, further research is required to 
strengthen the evidence for this association and the 
duration of effects. Additionally, whilst some studies 
focused on the use of IAP for specific indications, e. 
g., women with GBS, 106,111,114,115 ongoing investiga-
tion is required to understand whether the indication 
for antibiotic treatment is equally, or perhaps more, 
important than the impact of antibiotic exposure, 
per se. For example, routine IAP in planned cesarean 
section deliveries may confer substantially different 
risks to infants when compared to IAP treatment for 
other reasons (e.g., PPROM or chorioamnionitis), 
which may have independent effects that are mod-
ified or compounded by antibiotic exposure. Overall, 
robust evidence to address the impact of maternal 
exposure to antibiotics on infant health is lacking. 
Whilst some data were available to suggest that 
maternal antibiotic exposure presents an elevated 
risk for altered community assembly, it was of 
small effect size and the ability to clearly separate 
the influence of antibiotics from other factors is 
limited.

Maternal weight status
Through two meta-analyses, the current review 
highlights that maternal pre-pregnancy weight 
and GWG are modestly associated with infant 
intestinal microbiome diversity, with maternal 
overweight/obesity and excessive GWG both asso-
ciated with a slightly reduced Shannon Index 
(Figures 3 and 4). Whilst Collado and colleagues 
130 found numerous compositional differences in 
OTUs classified to genus according to maternal 
pre-pregnancy weight and GWG in infants at one 
and 6 months of age, including higher counts of 
Bifidobacteria in women with normal pre-preg-
nancy BMI and GWG, others found limited com-
positional differences in the intestinal microbiota 
related to maternal weight or GWG, 129,168 even 
when there were differences in the gut bacterial 
composition of mothers according to their weight 
status.

Worldwide, an estimation of nearly forty million 
pregnant women have overweight or obesity, pla-
cing them at greater risk of pregnancy complica-
tions that could affect their infant in the short and 
long terms.169,170 However, as our review high-
lights, despite differences shown in animal models, 
171 maternal weight status is a limited predictor of 
maternal and infant microbiome composition, 172 

likely secondary to the complex interplay between 
weight and other environmental and genetic fac-
tors. During pregnancy, intestinal bacterial popula-
tions change dramatically in composition, richness, 
and diversity 70 even though differences have been 
observed between obese and lean women 73,173 and 
according to GWG strata.174

Further investigation is needed using higher 
resolution microbiome analyses over longer time- 
courses to assess the influence of maternal perinatal 
weight status and GWG on the composition and 
diversity of her infant’s microbiome. Maternal obe-
sity per se may not reliably impact the infant gut 
microbiome when variations in delivery mode, 
breastfeeding, and the transition toward family 
foods are considered. Future studies should also 
seek to determine whether aspects of the maternal 
diet during pregnancy mediate the effects of mater-
nal pre-pregnancy weight and GWG on the infant 
microbiome to inform both weight management 
and nutrition recommendations for women prior 
to and during pregnancy.
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Maternal diet
Evidence that suboptimal nutrition at conception 
and across pregnancy influences pregnancy, birth, 
and infant outcomes, including the prevention of 
neural tube defects 175 and impaired embryonic and 
fetal growth and development have been well 
described.176,177 However, in the current review, 
there were few eligible studies investigating the 
impact of diet in pregnancy, with limited outcomes 
related to the infant microbiome once adjusted for 
covariates including demographics, delivery mode, 
and/or breastfeeding status.133–138

The relationship between dietary components or 
patterns and infant intestinal microbiome compo-
sition and/or diversity is not well understood.78 

Links between dietary macronutrient composition 
and GDM risk 178 and “unhealthy” dietary patterns 
and a higher risk of preterm birth and low birth 
weight 179 have been described. In this review, once 
delivery mode, demographic and other character-
istics were controlled for, there were no significant 
associations between maternal dietary patterns and 
the infant gut microbiome before 6 months.133,134 

Insufficient data were available to elucidate longer- 
term effects of the interaction between maternal 
diet during pregnancy and the offspring 
microbiome.

Beyond dietary patterns, other research has 
focussed on the relationship between gestational 
macronutrient intake, specifically fat, and infant 
outcomes. Evidence from an animal model indi-
cated that a maternal high-fat diet induced micro-
biome changes in offspring which were partially 
correctable by a low-fat “control” diet after 
weaning.180 When extended to humans, 135 the 
neonatal gut microbiota also differed according to 
maternal fat intake during pregnancy, independent 
of maternal BMI, mode of delivery, and breastfeed-
ing status. The stools of infants exposed to a high- 
fat diet (>40% total energy) during pregnancy 
(without significant differences in sugar or fiber 
intake) were characterized by a lower relative abun-
dance of Bacteroides species known to contribute to 
modulating host metabolism and immune system 
development.135 Depleted Bacteroides and higher 
proportions of Firmicutes species abundance are 
associated with obesity in children 181 and adults, 
172 suggestive of a mechanistic link between diet, 
microbiome, and altered weight maintenance 

consistent with the “dysbiosis” concept. However, 
an altered Firmicutes to Bacteroidetes ratio as a 
hallmark of obesity remains debated.182

Another area of interest has been in exploring 
the links between maternal diet, the intestinal 
microbiome, and infant immune development, 
and propensity to allergic diseases, including 
asthma, eczema, and food allergies.183,184 A large 
systematic review and meta-analysis in 2018 
including 260 original studies found that fish oil 
supplementation during pregnancy and lactation 
may reduce the risk of allergic sensitization to the 
egg but did not find associations between other 
dietary exposures and allergic or autoimmune dis-
ease risk.183 Data were inconclusive or inconsistent 
for many dietary exposures therefore definitive 
conclusions could not be drawn.183 Maternal diet-
ary intake and Prevotella presence during preg-
nancy and the relationship with offspring food 
allergy risk have been described recently by authors 
of the Barwon Infant Study.185 A large, dose– 
response relationship was found between maternal 
Prevotella in stool and a reduced risk of infant food 
allergy risk at 12 months. However, associations 
between maternal diet during gestation (fiber 
intake) and maternal Prevotella presence or off-
spring allergy development were not found.185 

While previous research has suggested the release 
of lipopolysaccharides (LPS) from gram-negative 
bacteria induces inflammation associated with the 
progression of disease, 186,187 mechanistic links 
between maternal dietary components, maternal 
gut microbiome and offspring microbiota, immune 
development, and susceptibility toward allergic dis-
ease remain to be elucidated.

Moving beyond independent exposures
The current review highlights the difficulty of 
analyzing the contributions and/or interactions 
of individual prenatal exposures and the infant 
microbiome. Since both mothers and infants can 
be exposed simultaneously to many different 
factors (the impacts of which may depend on 
timing and/or dosage, maybe highly modifiable 
over time, are likely to be related to and/or 
interacting with each other, and can influence 
the delivery and postpartum factors), the need 
to consider a comprehensive, life-course 
approach is clear.
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4.2 Microbiome measurement and assessment of 
composition and diversity

Over the past 15 years, advances in technology, espe-
cially culture-independent high-throughput sequen-
cing technologies, have resulted in an exponential 
increase in research characterizing the composition 
and function of the microbiome and examining their 
associations with health outcomes.34,35 

Simultaneously, conventions in naming, cataloging, 
and analyzing microbes and their properties have 
evolved considerably.34

A key finding of the current review is that the 
frequency and timing of stool sample collection, 
level of taxonomic resolution, microbiome analysis 
methodologies, and indices used to measure diver-
sity vary across studies, limiting the meaningful 
synthesis of results. Since the intestinal microbiome 
is dynamic, comparison of microbiome associa-
tions with other variables must account for tem-
poral variation and cannot be accurately compared 
across developmental stages, owing to transitions in 
diet and immune development. Some included stu-
dies collected meconium, which is likely not a dis-
tinct biological community assembled through in 
situ growth, but rather reflective of microbes from 
other maternal body sites via amniotic fluid or 
placental transfer.120,188,189 More than 40% of 
included studies were also limited by the use of 
fecal sampling at a single timepoint, with an aver-
age of two samples per study, representing only a 
snapshot of the rapidly evolving microbiota during 
infancy and highlighting the need for consecutive 
sampling in future research (Table 1 and 
Supplementary Table 1).

Alpha diversity was used as the primary outcome 
for the three meta-analyses in this review, in an 
attempt for a consistent measure against which 
study outcomes could be compared, and because 
diversity is often associated with a “healthy gut”.-
166,167 Alpha diversity metrics collapse the multiple 
dimensions of community structure to one dimen-
sion (e.g., species richness) or integrate multiple 
dimensions into a single number (e.g., richness 
and abundance in the Shannon Index).98 Such mea-
sures are useful to detect the presence of change but 
are limited in that they do not identify the nature of 
that change.98 The Shannon Index was selected as 
the measure of alpha diversity, since it was the most 

often used index across included studies. Synthesis 
of all available results through the inclusion of 
studies using different diversity indices would 
require a reanalysis of raw data and was beyond 
the scope of the review.

Finally, while most studies included in the current 
review applied 16S rRNA sequencing to provide an 
overview of the taxonomic profiles of the intestinal 
microbiome, a smaller number of more recent studies 
incorporated metagenomic techniques in their study 
design.72,91,95,117,118,121,123 Amplicon sequencing pro-
vides a comprehensive measure of composition 
within the resolution limits of the marker gene, 
whereas metagenomic samples all genes from the 
microbial community in a sample to provide finer 
taxon resolution (at the expense of sample depth) 
and more direct information on the diversity and 
function of intestinal microbiome communities.190 

Technical changes are swiftly advancing the field, 
and whilst careful attention needs to continue to be 
applied to the challenges of analyzing microbiome 
data, owing to its compositional nature 191 and inter-
pretation of results, 190,192 exploring the early life 
metagenomic profile will allow for enhanced under-
standing of the function of intestinal microbiota (and 
their metabolites) in the disease process prior to clin-
ical presentation – a crucial path forward in linking 
the role of the microbiota in health and disease.

Limitations

This review was constrained by the limitations of 
included studies and the current body of evidence. 
Although our adherence to a protocol registered 
with PROSPERO, methodological reporting in 
line with the PRISMA statement, and detailed 
data extraction allowed for a comprehensive com-
parison between a large number of studies, there 
was substantial heterogeneity of data (Table 1). 
Whilst useful in highlighting the diversity of tools 
used and areas of opportunity for further research, 
this heterogeneity meant many studies could not be 
combined in meta-analyses. Abstract publications 
in the past 2 years were included to address poten-
tial publication bias, though without peer review 
this increases the risk of inclusion of studies of poor 
quality. Non-English language studies were ineligi-
ble, which limited the number of included studies. 
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Finally, paternal factors were not explored in the 
current review but represent an important focus of 
future research.

Implications for practice and recommendations for 
future research

This review highlights that the effects of prenatal 
and postnatal exposures on the developing gut 

microbiome are additive, with their relative impacts 
difficult to isolate, such that there is a need to move 
beyond simple associations toward more complex 
analyses and with multiple measures over time, in 
order to understand patterns and mechanisms 
without mis- or over-interpretation of data.35 

Crucially, just as questions related to the maternal 
transfer of microbiota cannot be reliably answered 
without strain-level classification, understanding 

Table 4. Data collection and terminology considerations for pregnancy and infant microbiome studies.
MATERNAL CONSIDERATIONS
Domain Exposures Timing

Demographics Age at study entry; Ethnicity; Socioeconomic status; Parity; Health 
conditions (especially allergic or immune disease)

At recruitment

Antibiotic use Indication; Type; Duration of use; Number of Courses Within 6 months of conception, during pregnancy and/or 
during delivery

Probiotic use Type/Strain; Frequency of use; Duration of use Within 6 months of conception and during pregnancy
Anthropometry Weight; Height; BMI; GWG. 

Ideal: Waist-To-Hip Ratio; Body Composition (Fat Mass; Fat-Free Mass)
At conception and across pregnancy Ideal: at least thrice in 

pregnancy
Dietary intake Dietary patterns; Nutrient intake; Dietary Diversity; Fiber intake; Dietary 

Supplement Intake (type, frequency and duration of use)
Within 6 months of conception and during pregnancy 

Ideal: at least twice in pregnancy
Diabetes status Diagnosis of type I or type II diabetes mellitus prior to conception; 

Diagnosis of GDM; Diagnosis of Insulin Resistance; Metformin use; 
Insulin use

At conception and across pregnancy

Mental health Stress; Self-Efficacy; Mental Illness (Depression; Anxiety; Others) At conception and during pregnancy 
Ideal: at least twice in pregnancy

Medications (e.g. PPIs, 
steroids)

Indication; Type; Duration; Number of Courses Within 6 months of conception, during pregnancy and/or 
during delivery

Others as specific/pertinent to research questions, e.g. sleep, household size, social support, health 
literacy, air pollution, pet ownership, etc.

As relevant to outcomes of interest

INFANT CONSIDERATIONS
Domain Exposures Timing

Demographics Gender; Gestational Age; Siblings (Number; Ages) At birth
Birth mode Vaginal delivery; Surgically assisted delivery; Spontaneous or Induced; 

Indication for cesarean delivery, if applicable)
At birth

Antibiotic use Indication; Type; Duration of use; Number of Courses At birth and any exposure across the first 1,000 days
Probiotic use Type/Strain; Frequency of use; Duration of use; Indication (if applicable) Any exposure across the first 1,000 days
Anthropometry Weight; Length; Weight-for-Length 

Ideal: Body Composition (Fat Mass; Fat-Free Mass)
At birth, 6 months, 12 months and 24 months Ideal: 

whenever dietary intake is assessed
Breastmilk or Formula 

feeding
Breastfeeding; Formula-feeding; Mixed-feeding; Duration of Exclusive 

Breastfeeding; Total Duration of Any Breastfeeding; Total Duration of 
Formula-Feeding; Type of Formula (Standard; Hydrolyzed; Prebiotic- 
Containing)

From birth and across the first 1,000 days, at least four 
times (e.g. 0–3 months, 4–6 months, 8–12 months and 
12–24 months)

Solid food intake Age at Introduction to Solids; Dietary patterns; Nutrient intake; Dietary 
Diversity; Fiber intake; Texture

From 4 to 24 months, at least three times (e.g. 4– 
6 months, 8–12 months and 12–24 months)

Medications Indication; Type; Duration; Number of Courses At birth and any exposure across the first 1,000 days
Others as specific/pertinent to research questions, e.g. neurocognitive development, sleep, 

household size, air pollution, pet ownership, etc.
As relevant to outcomes of interest

METHODOLOGICAL CONSIDERATIONS
Domain Outcomes/considerations

Overall design Recruitment methods and dropout rates clearly described; Comparisons made between participants and those lost to follow up, by 
exposure status; Main potential confounders are identified and accounted for in study design and analysis; Randomization and 
concealment occur where possible.

Terminology Concepts or terms used to describe the gut microbiome should be consistent across studies.
Microbiome analysis Use of culture independent methodology (e.g. 16S rRNA gene sequencing, metagenomic sequencing); Measures of composition (e.g. 

total bacterial counts, relative abundance); Measure of diversity (e.g. Shannon and Simpson indices) and richness (e.g. Chao1); 
Appropriate OTU classification (to amplicon sequence variants, or metagenomic strains); Use of compositional data analytical 
approaches; Clear reporting of methodologies used and limitations of same.

Sampling frequency Longitudinal measurement across the first 1,000 days, with most infant samples after 2 weeks, e.g., Mothers in early pregnancy (0– 
12 weeks); Mothers in late pregnancy (32–40 weeks); Infants at 1–3 months (prior to introduction of solids); Infants at 4–6 months 
(when solids have been introduced); Infants at 9–12 months (increasing dietary diversity and complexity, possible weaning formula 
and/or breastfeeding, introduction of other milks).

BMI = Body Mass Index; GWG = Gestational Weight Gain; GDM = Gestational Diabetes Mellitus; PPI = Proton Pump Inhibitor; OTU = Operational Taxonomic Unit.
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the factors that influence the infant intestinal 
microbiome is not possible with a single timepoint 
and sample. Current variability in the literature 
pertaining to sample size, methodologies used to 
characterize the microbiome, and reporting stan-
dards have also contributed to inconsistent and 
often non-comparable results. Best-practice guide-
lines for microbiome analysis and reporting pro-
vide a useful starting point from which to ground 
future research, 190,192 alongside tailoring research 
designs, such that they are powered to reliably 
answer these knowledge gaps.

Future research should also consider exposures 
during the preconception environment, which are 
arguably equally important in establishing long- 
term health and disease risk.193 Whilst elements of 
a mother’s health during this period, including her 
diet, have been previously studied, 177 it is unknown 
whether the preconception microbiome is also 
important, how this varies across populations, and 
whether preconception presents a specific window of 
opportunity for microbial intervention.

There is a need for large, prospective studies, 
including: (i) broad, ethnically diverse cohorts, 
especially in under-represented populations and 
continents (Australia, Africa, Southeast Asia, and 
South America), (ii) both healthy and subjects with 
chronic disease, (iii) a variety of biological samples 
(including, but not limited to, the gut microbiome) 
and data on dietary, environmental and social 
determinants, and (iv) early recruitment (from pre-
conception) and longitudinal follow-up are 
required in order to identify critical periods of 
change across the life course and to better under-
stand mechanistic links between exposures, altera-
tions in microbiome composition, diversity and/or 
function, and subsequent disease.

A core data set, including standards for methods 
and outcomes used to characterize the human micro-
biome, alongside comprehensive characterization of 
exposures and environments and standardized con-
ceptual terminology, is needed in order to standardize 
research in the field and build the evidence base to 
allow for meaningful recommendations.194 Table 4 
provides preliminary recommendations for future 
studies, including considerations for mothers and 
infants, and study methodologies. It is acknowledged 
that continued advancement in the field, especially in 
metagenomic technologies, will inevitably redefine 

what is known and how current unknowns are 
explored.

CONCLUSIONS

The current systematic review with meta-analysis 
provides a comprehensive synthesis of available 
data on prenatal factors affecting the infant gut 
microbiome, gaps in existing knowledge, and 
opportunities for future research. Whilst there is 
strong interest in how microbial communities are 
established throughout gestation, infancy, and 
childhood, and how they alter in response to innate 
and environmental exposures, there is a lack of 
consistency in methodologies concerning recruit-
ment, follow-up, clinical data collection, stool sam-
pling, and microbiome analysis, necessary for 
robust comparison and synthesis of results. 
Standardization in research investigating associa-
tions between modifiable maternal exposures and 
the offspring intestinal microbiome will allow for 
the enhanced synthesis of research findings, under-
standing of the mechanisms underpinning them, 
and the development of practical solutions to com-
plex health challenges related to the microbiome, 
likely beginning well before birth.
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