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Abstract The leaves of Toona sinensis, a well-known traditional oriental medicine, have
been prescribed for the treatment of enteritis and infection. Recently, aqueous extracts of
Toona sinensis leaves (TSL-1) have demonstrated many biological effects both in vitro and
in vivo. In the central nervous system, microglial activation and their proinflammatory re-
sponses are considered an important therapeutic strategy for neuroinflammatory disorders
such as cerebral ischemia, Alzheimer’s disease, and Parkinson’s disease. The present study at-
tempted to validate the effect of TSL-1 on microglia-mediated neuroinflammation stimulated
by lipopolysaccharide (LPS). As inflammatory parameters, the production of nitric oxide (NO),
inducible NO synthase, and tumor necrosis factor-a were evaluated. Our results demonstrate
that TSL-1 suppresses LPS-induced NO production, tumor necrosis factor-a secretion, and
inducible NO synthase protein expression in a concentration-dependent manner, without
causing cytotoxicity. In addition, the inhibitory effects of TSL-1 in LPS-stimulated BV-2 micro-
glia were extended to post-treatment suggesting the therapeutic potential of TSL-1. There-
fore, this work provides the future evaluation of the role of TSL-1 in the treatment of
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neurodegenerative diseases by inhibition of inflammatory mediator production in activated mi-
croglia.
Copyright ª 2013, Kaohsiung Medical University. Published by Elsevier Taiwan LLC. All rights
reserved.
Introduction

Inflammation is known to play a key role in the progressive
damage process in a number of neurodegenerative disor-
ders including Alzheimer’s disease (AD) [1,2], Parkinson’s
disease (PD) [3], multiple sclerosis [4,5], and stroke [6,7].
Microglia act as the major immune cells in the central
nervous system. In response to brain injury or during
neurodegenerative processes, microglia are activated by
secreting growth factors, proinflammatory cytokines such
as tumor necrosis factor-a (TNF-a) and nitric oxide (NO),
and reactive oxygen species [3,8e11]. Although microglial
activation is necessary and important for host defense,
over-activation of microglia is neurotoxic. Studies have
shown that microglia activated after ischemic stroke will
produce cytokines to trigger neuronal death in response to
ischemic injury [6,12]. They also found that the inhibition
of inflammation would prevent the progressive brain loss
following a stroke. Thus, to develop the agents that reduce
microglial activation and their proinflammatory responses
is considered an important therapeutic strategy for neuro-
inflammatory disorders such as cerebral ischemia, AD,
and PD.

Toona sinensis (TS), a well-known Chinese herb, is
widely available in Asia. All parts of TS, including its root,
bark, petioles, leaves, fruits, and seeds, have been used for
medicinal purposes [13e15]. The leaves of TS are a popular
vegetable amongst vegetarians in Taiwan. It also serves as
an ingredient in some Chinese and Malaysian recipes. In the
field of traditional Chinese medicine, the leaves of TS have
been used for treating enteritis, dysentery, diabetes,
infection, and itch, with no irreversible side effects
observed after treatment [16]. Recent studies have also
revealed that the aqueous extracts of TS leaves (TSL-1)
have a variety of biological functions, including: (1) anti-
oxidant activities [17,18]; (2) the lowering of blood sugar
levels via mediating adipose glucose transporter [19,20];
(3) the alleviation of liver fibrosis via reducing tumor
growth factor-b1 and collagen [21]; (4) the inhibition of
coronavirus replication in severe acute respiratory syn-
drome [22]; (5) the decrease of steroidogenesis in mouse
Leydig cells [23]; and (6) the inhibition of vascular endo-
thelial growth factor (VEGF)-induced angiogenesis in
vascular endothelial cells [24]. In addition, TSL-1 has anti-
proliferative properties in human lung cancer cells [25e28],
oral squamous carcinoma cells [29], and human pre-
myelocytic leukemia cells [30] in vitro. Furthermore, there
was no acute lethal effect even at a maximal oral tested
dose of 5000 mg/kg of body weight in mice [31,32]. Inter-
estingly, one of these findings demonstrated that daily di-
etary supplement of TSL-1 in senescence-accelerated mice
(an AD model) improved brain degeneration caused by the
incidence of b amyloid plaques [17]. This points to the
possibility that TSL-1 may pass through the bloodebrain
barrier to affect the central nervous system. Recent studies
have also found that the appearance of amyloid plaques in
the brain coincides with a dramatic phenotypic activation
of the surrounding microglia, which release proin-
flammatory cytokines and neurotoxic substances, for dis-
ease progression [33,34]. Liao et al.’s findings [17]
indicated that TSL-1 supplement in aged mice had a po-
tential effect on neuroinflammation due to the recruitment
of activated microglia in amyloid plaques. Therefore, this
study aimed to examine whether TSL-1 would modulated
neuroinflammation-associated diseases such as AD through
microglia. At the same time, because the systemic admin-
istration of lipopolysaccharide (LPS, a heat-stable bacterial
cell wall component) in mouse brain, causing amyloid
protein accumulation and neuroinflammation, was being
used to study the underlying mechanisms of AD [35e37], we
tested the potential anti-inflammation effect of TSL-1 in
the in vitro model of LPS-induced microglial activation
system.

Materials and methods

Plant materials and preparation of TSL-1

TS leaves were obtained in Tuku (Yunlin County, Taiwan).
The leaves were picked and washed with water as
described by Chang et al. in 2002 [25]. Reverse osmosis
water was added to TS leaves at a proportion of 4 L of
reverse osmosis water to 1 kg of leaves. The mixture was
boiled for 30 minutes, after which the leaves were removed
and the remaining liquid concentrated over low heat and
filtered with a sieve (70 meshes). The filtered concentrate
was lyophilized with a Virtis apparatus (Gardiner, NY, USA)
to obtain a crude extract. The crude extracts were
centrifuged at 1400g for 12 minutes, and the supernatant-
labeled TSL-1 (an advanced bioactive fraction of TS) was
used for this study. The extracts were then concentrated in
a vacuum, freeze-dried to form a powder, and stored at
�20�C for subsequent analysis. Various doses of TSL-1, from
5 mg/mL to 50 mg/mL, were used in this study.

BV-2 microglial cell culture

A murine cell line (BV-2) was generated by infecting pri-
mary microglial cell cultures with a v-raf/v-myc oncogene
carrying retrovirus (J2), with most of the morphological,
phenotypical, and functional properties described for
freshly isolated microglial cells retained [38]. In the present
study, BV-2 microglial cell line was a gift from Professor
Hong, Jau-Shyong (Research Triangle Park, NIEH; NIH,
Bethesda, MA, USA). Cells (1 � 105 cells/mL) were cultured
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in Dulbecco’s modification of Eagle’s medium (DMEM;
GIBCO, Carlsbad, CA, USA) supplemented with 10% fetal
bovine serum (FBS, Hyclone, ThermoFisher Scientific, New
Zealand), 100 U/mL penicillinestreptomycin (GIBCO), and
4 mM L-glutamine (GIBCO) and were maintained in a 5%
carbon dioxide incubator. In all experiments except the
post-treatment scheme, cells were treated with TSL-1
(5 mg/mL, 10 mg/mL, or 50 mg/mL) 30 minutes prior to the
addition of lipopolysaccharide (LPS, 1 mg/mL, Escherichia
coli, Serotype 055:B5; Sigma-Aldrich, St Louis, MO, USA) in
DMEM with 2% FBS. Passages 3e8 of the BV-2 cell lines were
used in this study.

Cell viability assay

BV-2 microglial cells (1 � 105 cells/mL, 24-well plate) were
allowed to adhere and grow overnight. Cells were then
incubated in 2% FBS-containing medium with different
concentrations of TSL-1 for 6 hours and 24 hours. After in-
cubation, 2 mg/mL 3-(4,5-dimethylthiazol-2-yl)-2,5-
diphenyltetrazolium bromide (MTT; Sigma-Aldrich) re-
agent replaced the medium and was incubated in a 5%
carbon dioxide incubator at 37�C for an additional 4 hours.
The BV-2 cells were then harvested in 50 mL dimethyl
sulfoxide and transferred to 96-well plates. The absorbance
was measured at 540 nm using a microplate reader (Beck-
man Coulter Inc., Brea, CA, USA).

Measurement of TNF-a production by enzyme-
linked immunosorbent assay

BV-2 microglial cells were pretreated with medium or TSL-1
(50 mg/mL) for 30 minutes prior to incubation with LPS
(1 mg/mL) in 24-well plate. At different time points (6 hours
and 24 hours after treatment with LPS), the supernatants
were collected for TNF-a measurements by enzyme-linked
immunosorbent assay kits (Endogen mouse/rat TNF-a ELISA
kit; Thermo Fisher Scientific, Rockford, IL, USA). Each
sample was tested in duplicate.

NO analysis

NO was evaluated by measuring the amount of nitrite in the
cell culture supernatant, using Griess reagent (0.1% naph-
thylethylenediamine, 1% sulfanilamide in 2.5% H3PO4). BV-2
microglial cells were grown on 24-well plates and pre-
treated with medium or TSL-1 (5 mg/mL, 10 mg/mL, or
50 mg/mL) for 30 minutes prior to incubation with LPS (1 mg/
mL). For the post-treatment study, TSL-1 (50 mg/mL) was
added during, or 1 hour, 2 hours, 4 hours, or 6 hours after,
LPS (1 mg/mL) treatment in BV-2 microglial cell cultures.
The supernatant were collected 24 hours after LPS treat-
ment. The production of NO was determined basing on the
Griess reaction. In short, 50 mL of culture supernatant was
allowed to react with an equal volume of Griess reagent in
96-well plates for 10 minutes at room temperature in the
dark. The absorbance at 550 nm was determined using a
microplate reader (MRX ELISA reader; Dynex, Chantilly, VA,
USA). A standard nitrite curve was generated in the same
fashion using NaNO2.
Western blot analysis

BV-2 microglial cells were grown on 6-well plates and pre-
treated with medium or TSL-1 (5 mg/mL, 10 mg/mL, or
50 mg/mL) for 30 minutes prior to incubation with LPS (1 mg/
mL). For the post-treatment study, TSL-1 (50 mg/mL) was
added during, or 1 hour, 2 hours, 4 hours, or 6 hours after,
LPS (1 mg/mL) treatment in BV-2 microglial cell cultures.
After treatment, cell lysates were washed twice with
phosphate-buffered saline and harvested in Laemmli so-
dium dodecyl sulfate sample buffer. The protein concen-
tration in the supernatant was determined by Bradford
assay (Bio-Rad, Hercules, CA, USA). Equal amounts of whole
cell lysates were separated in 10% sodium dodecyl sulfa-
teepolyacrylamide gel and transferred to polyvinylidene
difluoride membranes (Amersham Pharmacia Biotech, Pis-
cataway, NJ, USA). The membranes were first incubated
with 5% nonfat milk in PBS for 1 hour at room temperature
to reduce nonspecific binding. The membranes were
washed with PBS containing 0.1% Tween-20, and then
incubated for 1 hour at room temperature with the indi-
cated antibodies including inducible NO synthase (iNOS;
1:1000; BD Biosciences, Franklin Lakes, NJ, USA), HO-1
(1:10,000; Santa Cruz Biotechnologies, Santa Cruz, CA,
USA), and b-actin (1:20,000, Sigma-Aldrich). This was fol-
lowed by the addition of horseradish peroxidase-
conjugated secondary antibody. After the final wash,
membranes were probed using enhanced chem-
iluminescence (Amersham Pharmacia Biotech) and auto-
radiographed. The optical density of the bands (integrated
area, arbitrary units) was measured by an Imaging Densi-
tometer (Bio-1D V.97; Vilber Lourmat, Torcy, France).
Statistical analysis

Data are expressed as mean � standard deviation for the
separate experiments. The differences among treatment
groups were determined by analysis of varience (ANOVA)
with post hoc compared Dunnett’s test with p < 0.05 as the
criterion of significance. The statistical analysis was
computed by SAS 9.20 (SAS Institute, Inc., Chicago, IL, USA).
Results

Effect of TSL-1 on the cell viability of BV-2
microglial cells

To test whether TSL-1 treatment would affect the cell
viability of BV-2 microglial cells, cells were incubated in
different concentrations of TSL-1 for 6 hours and 24 hours.
In the normal condition without TSL-1 treatment, there was
an increase in BV-2 microglial cell viability at 24 hours’
incubation when compared to 6 hours of incubation (Fig. 1).
Within our tested concentration range of TSL-1 (5e50 mg/
mL), the cell viability was comparable to those corre-
sponding controls at 6 hours’ and 24 hours’ incubation
(Fig. 1). At the same time, there was no cell death found
(data not shown). The TSL-1 treatment alone did not
change the cell viability of BV-2 microglial cells.



Figure 1. Effect of aqueous extract of Toona sinensis leaves
(TSL-1) on cell viability of BV-2 microglial cells. BV-2 microglial
cells were incubated with various concentrations of TSL-1 for
6 hours and 24 hours. MTT assay was performed to detect
viability of the cells and the results were expressed as the
absorbance at 570 nm. Six independent experiments were
performed at each time and dose points. Data are expressed as
mean � standard deviation.
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Effect of TSL-1 on BV-2 microglial cell morphology
after LPS stimulation

Traditionally, the microglial cells were classified into two
primary phenotypic states in vivo: “quiescent” or
Figure 2. Effect of aqueous extract of Toona sinensis leaves (T
were pretreated with medium or TSL-1 (50 mg/mL) for 30 minutes pr
additional 24 hours. The photomicrographs were taken directly f
contrast. Some cell fragments (arrows) were found in the group pre
an additional 24 hours (TSL-1 þ LPS). Control group: cell incubated
in 2% FBS medium including 50 mg/mL of TSL-1 for 24 hours. Three
“activated”. The transformation of “quiescent” microglia
with ramified morphology to the “activated” phenotype with
round or amoeboid shape was associated with inflammation
and disease [39]. LPS, as a potent activator of microglia, will
stimulate microglia to become activated and to undergo a
series of morphologic and phenotypic changes [40].

In this study, BV-2 microglial cell morphology was
observed by phase-contrast microscope. In the treatment
of LPS alone for 24 hours, BV-2 cell morphology transformed
from a predominantly rod cell morphology to a round or
oval shape (Fig. 2). Clustering of BV-2 cells was usually
observed in the LPS-alone plates. There were no compat-
ible morphologic changes between the control and TSL-1
alone plates. In the group of pretreatment with TSL-1
(50 mg/mL) for 30 minutes then incubated with LPS for an
additional 24 hours, although some cell debris was found,
the BV-2 cell morphology showed the same shapes as the
controls and TSL-1 alone ones.
TSL-1 inhibited LPS-induced TNF-a production in
BV-2 microglial cells

As demonstrated in Fig. 3, treatment of BV-2 cells with LPS
(1 mg/mL) caused a substantial increase in the production
of TNF-a, dependent on time. Pretreatment with TSL-1
(50 mg/mL) prior to incubation with LPS resulted in a sig-
nificant inhibition of the LPS-induced TNF-a production in
both the 6 hours and 24 hours treatment groups (p < 0.001
SL-1) on BV-2 microglial cell morphology. BV-2 microglial cells
ior to stimulation with lipopolysaccharide (LPS; 1 mg/mL) for an
rom culture plates by converted light microscopy with phase
treated with TSL-1 for 30 minutes then incubated with LPS for
in the 2% FBS medium for 24 hours. TSL-1 group: cells incubated
independent experiments were performed. Scale bar Z 20 mm.



Figure 3. Pretreatment with aqueous extract of Toona sinensis leaves (TSL-1) reduced the production of tumor necrosis
factor-a in lipopolysaccharide (LPS)-stimulated BV-2 microglial cells. BV-2 microglial cells were pretreated with TSL-1 (50 mg/mL)
for 30 minutes prior to incubation with LPS (1 mg/mL). At different time points (6 hours and 24 hours after treatment of
LPS), the supernatants from BV-2 cell cultures were collected for tumor necrosis factor-a measurements by enzyme-linked
immunosorbent assay (6 hours in A, 24 hours in B). Data are expressed as mean � standard deviation from five independent
experiments in triplicate. The significance of the differences among treatment groups were determined by ANOVA (***p < 0.001).

Anti-neuroinflammatory effect of TSL-1 77
for both). There was no effect on the TNF-a production in
BV-2 cells treated with TSL-1 alone for 6 hours and 24 hours.

Pretreatment with TSL-1 reduced the NO
production and iNOS protein expression in LPS
stimulated BV-2 microglial cells

Previous study has demonstrated that NO would be released
from microglia following exposure to LPS [41]. In this series
of experiments (Fig. 4A), treatment of BV-2 microglial cells
with LPS (1 mg/mL) for 24 hours caused a robust increment
of NO level (11.8 � 2.44mM). Pretreatment with TSL-1 prior
to incubation with LPS resulted in a concentration-
dependent inhibition of the LPS-induced NO production in
BV-2 cells (TSL-1 5 mg/mL þ LPS: 7.7 � 2.33, TSL-1 10 mg/
mL þ LPS: 7.5 � 1.96, TSL-1 50 mg/mL þ LPS: 3.8 � 1.5,
n Z 5). Moreover, the LPS treatment markedly increased
the protein level of iNOS in BV-2 microglial cell culture as
with as little as 6 hours’ incubation. This induction was
drastically inhibited by pretreatment with TSL-1 in a time-
and concentration-dependent manner (Fig. 4B,C).

Post-treatment effect of TSL-1 on NO production
and iNOS protein expression in LPS-stimulated BV-2
microglial cells

In addition to pretreatment, we also evaluated the effects
of post-treatment with TSL-1 on the LPS-induced microglial
activation. TSL-1 (50 mg/mL) was added during, or 1 hour,
2 hours, 4 hours, or 6 hours after LPS (1 mg/mL) treatment
in BV-2 cells. Supernatant and cell lysates were collected
after 24 hours of LPS incubation for the detection of NO
production. As shown in Fig. 5A, LPS treatment significantly
increased NO release from BV-2 microglial cells. Post-
treatment with TSL-1 up to 6 hours after LPS treatment
attenuated LPS-induced release of NO in BV-2 microglial
cells by 50% to 80%. A similar pattern was observed in the
group of post-treatment with TSL-1 on the LPS-induced
iNOS (Fig. 5B) production. When the iNOS production at
24 hours after LPS treatment was determined, the addition
of TSL-1 at 0 hours and 1 hour after LPS treatment still
exhibited an inhibitory effect on LPS-induced iNOS pro-
duction (0 hours: 47.5%; 1 hour: 50.18% of LPS alone).
However, the addition of TSL-1 at 2 hours after LPS treat-
ment showed no obvious inhibitory effect on iNOS
production.
Discussion

This is the first report to demonstrate that TSL-1 markedly
inhibited LPS-induced inflammatory responses in the mu-
rine microglial BV-2 cell line. NO production and iNOS
expression were significantly inhibited by TSL-1 in a
concentration-dependent manner in the microglial BV-2
cell line. This anti-inflammatory effect of TS was also evi-
denced by inhibiting TNF-a release. Moreover, the cell
viability assay showed that treatment with TSL-1 alone did
not have cytotoxic effects at concentrations of 5e50 mg/
mL, whereas TSL-1 significantly inhibited those inflamma-
tory factors stimulated by LPS. In this connection, we sug-
gest that TSL-1 might have a potent antineuroinflammatory
activity via the inhibition of LPS-stimulated production of
TNF-a, NO, as well as iNOS protein in microglia.

In the present study, we also used microglia BV-2 cell to
evaluate the potential therapeutic effect of TSL-1 after LPS
treatment. The results indicated that even post-treatment
with TSL-1 (50 mg/mL), later than LPS application, is
effective in the reduction of NO release and iNOS protein
level. Accumulating evidence indicates that iNOS is the
most important contributor to NO production in the brain
after inflammatory assault, compared with other isoforms
of NOS, namely eNOS and nNOS [42,43]. Furthermore, a
novel approach with NO-donating nonsteroidal anti-
inflammatory drugs develops a safe profile that strongly
reduces their untoward side effects without altering the
anti-inflammatory effectiveness [44e47]. These findings



Figure 4. Pretreatment with aqueous extract of Toona
sinensis leaves (TSL-1) reduced the NO production and iNOS
protein expression in lipopolysaccharide (LPS)-stimulated BV-2
microglial cells. Cells were pretreated with medium or TSL-1
(5 mg/mL, 10 mg/mL, and 50 mg/mL) for 30 minutes in the
presence of LPS (1 mg/mL) for an additional 6 hours and
24 hours, respectively. (A) The supernatant for NO analysis was
collected at 24 hours of LPS incubation. Nitrite levels in
cultured media were determined by Griess assay and were
reflected to NO levels. Sodium nitrite was used for preparation
of the standard curve. Results were presented as
means � standard deviation from five independent experi-
ments in quadruplicates. (B,C) For the analysis of iNOS activity,
equal amounts of cell lysates in each experiment were
collected at 6 hours and 24 hours of LPS incubation. The iNOS
expressions were examined by immunoblotting. Data are
expressed as a percentage of the values of LPS group. The bar
graph shows the densitometric analysis for five blots from four
independent experiments (mean � standard deviation). Beta-
actin was used as internal control.*p < 0.05 versus the LPS-
treated alone group.

Figure 5. Effects of aqueous extracts of Toona sinensis
leaves (TSL-1) post-treatment on NO production and iNOS
protein expression in lipopolysaccharide (LPS)-stimulated BV-2
microglial cells. TSL-1 (50 mg/mL) was added during or 1 hour,
2 hours, 4 hours, of 6 hours after LPS (1 mg/mL) treatment. (A)
The supernatant was collected after 24 hours of LPS treatment
for NO analysis. Nitrite levels in cultured media were deter-
mined by Griess assay and were reflected to NO levels. Sodium
nitrite was used for preparing the standard curve. (B) Total
cells lysates were obtained 24 hours after LPS (1 mg/mL)
treatment. Equal amounts of cell lysates were analyzed by
Western blotting using anti-inducible NO synthase-specific
antibody. Densitometric values indicate the relative ratio
of inducible NO synthase/b-actin. Data are expressed as a
percentage of the LPS alone values. Bars represent
means � standard deviation of six separate experiments.
*p < 0.05, *** p < 0.001 versus the LPS-treated alone group.
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correlate the important role of NO in the function of the
central nervous system. In the central nervous system,
activated microglia are the major cellular source of iNOS.
Therefore, the inhibitory effect that TSL-1 exerts on iNOS
might be beneficial not only in the protection of neurons
but also as therapy through microglia.

The neuroprotective potential of TSL-1 might be due to
the biological activities of compounds in the leaf extract.
More than eight compounds, including gallic acid, methyl
gallate, ethyl gallate, kaempferol, kaempferol-3-O-b-D-
glucoside, quercetin, quercitrin, quercetin-3-O-b-D-gluco-
side, and rutin, have been isolated from TSL-1, as previ-
ously described [30,48]. Of these compounds, gallic acid
isolated directly from TSL-1 has been demonstrated to
possess effective antioxidant activity against various
oxidative stress such as leukemia, atherogenesis, prostate
cancer, oral carcinoma, and angiogenesis in the liver, kid-
ney, and testis [18,24,29,30,49,50]. Quercetin purified from
TSL-1 specifically elevates the activities of antioxidant
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enzymes only in the testis [50]. In the central nervous
system, gallic acid and quercetin have also been found to
reduce neuronal damage by inhibiting microglia-mediated
NO release, TNF-a production, and oxidative stress
[51e55]. Therefore, it is reasonable to infer the potential
therapeutic effect of TSL-1 or its compounds, such as gallic
acid or quercetin, on the suppression of inflammatory-
related neuronal injury and oxidative stress in neurode-
generative diseases.

The application of traditional Chinese herbs for medic-
inal use has attracted attention in recent years. Increasing
evidence has suggested that Chinese herbs have thera-
peutic effects on neurodegenerative diseases such as PD
and AD through their anti-inflammatory features [56e58].
These traditional Chinese medicines, such as the extracts
of Tripterygium wilfordii Hook. f. and Anemarrhena
asphodeloides Bunge, or the more recently studied grape
seed extract, have been shown to promote neuronal sur-
vival and neurite growth, to facilitate functional recovery
after brain injury, and to act as inhibitors of neuro-
inflammatory toxicity of activated-microglia. However, it
has been proposed that an exacerbated inflammatory
response was responsible for causing the impairment in the
phagocytosis of amyloid protein deposits by microglia in the
AD brain. In this connection, the discovery of agents that
are capable of increasing amyloid protein uptake by
phagocytic cells is of potential therapeutic interest for AD.
In fact, with amyloid b treatment, the blockade of chloride
intracellular ion channel 1 will stimulate amyloid b phago-
cytosis in microglia while inhibiting iNOS induction and TNF-
a production [59,60]. In the present study, pretreatment
with TSL-1 has proved protective against LPS-induced
microglial activation. Treatment with TSL-1 at 0 hours and
1 hour post-LPS treatment also exhibited similar degrees of
antineuroinflammatory effect comparable to that observed
with pretreatment. Therefore, it is likely that the attenu-
ation of LPS-stimulated NO release and NO production are
at least partially responsible for neuroinflammation of TSL-
1. However, the potential effect of TSL-1 in modifying
microglial activation with enhancing amyloid b clearance
needs to be addressed.

In conclusion, our results indicate that TSL-1 possesses
effective anti-inflammatory features, including the sup-
pression of LPS-induced NO production, as well as the
synthesis of TNF-a and iNOS protein in BV-2 microglial cells.
Because therapeutic agents from herbal sources are usually
perceived as being natural and devoid of side effects. It is
reasonable to consider TSL-1 as another potential thera-
peutic agent that works by inhibiting the inflammatory
response of microglia in neurodegenerative diseases. To
confirm its effect, further studies in in vivo animal models
are necessary.
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