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Working memory function is severely limited. One key limitation that constrains the ability
to maintain multiple items in working memory simultaneously is so-called swap errors.
These errors occur when an inaccurate response is in fact accurate relative to a non-
target stimulus, reflecting the failure to maintain the appropriate association or “binding”
between the features that define one object (e.g., color and location). The mechanisms
underlying feature binding in working memory remain unknown. Here, we tested the
hypothesis that features are bound in memory through synchrony across feature-specific
neural assemblies. We built a biophysical neural network model composed of two
one-dimensional attractor networks – one for color and one for location – simulating
feature storage in different cortical areas. Within each area, gamma oscillations were
induced during bump attractor activity through the interplay of fast recurrent excitation
and slower feedback inhibition. As a result, different memorized items were held at
different phases of the network’s oscillation. These two areas were then reciprocally
connected via weak cortico-cortical excitation, accomplishing binding between color
and location through the synchronization of pairs of bumps across the two areas.
Encoding and decoding of color-location associations was accomplished through
rate coding, overcoming a long-standing limitation of binding through synchrony. In
some simulations, swap errors arose: “color bumps” abruptly changed their phase
relationship with “location bumps.” This model, which leverages the explanatory power
of similar attractor models, specifies a plausible mechanism for feature binding and
makes specific predictions about swap errors that are testable at behavioral and
neurophysiological levels.

Keywords: working memory, binding, oscillations, multi-area, attractor network

INTRODUCTION

Working memory, our ability to hold information in mind for short time periods, is a hallmark of
cognition but is severely limited on several fronts (Ma et al., 2014). Some of its limitations, such as its
capacity, precision, or specific quantitative biases have been successfully accounted for by a family
of biophysically-constrained models, mostly on the basis of a ring attractor network that maintains
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memoranda through sustained reverberatory neural activity
(activity bumps) (Compte et al., 2000; Edin et al., 2009; Wei et al.,
2012; Wimmer et al., 2014; Almeida et al., 2015; Papadimitriou
et al., 2015; Nassar et al., 2018; Bouchacourt and Buschman,
2019; Qi et al., 2019; Barbosa et al., 2020). A feature of working
memory that constrains the simultaneous storage of several
items is the presence of swap errors (Schneegans and Bays,
2019). These errors occur when an inaccurate response to the
target item is in fact accurate relative to a non-target item,
reflecting the failure to maintain the appropriate association or
“binding” between the separate features that define each item
(e.g., color and location). The neural mechanisms supporting
feature binding remain unclear, with different computational
models implementing two alternative hypotheses (Raffone and
Wolters, 2001; Swan and Wyble, 2014; Matthey et al., 2015;
Schneegans et al., 2016; Pina et al., 2018; Schneegans and Bays,
2019).

The first type of models are based on selective synchronization
(Raffone and Wolters, 2001; Pina et al., 2018). In these models,
different neuronal populations selective to each feature that
define an object are bound together through synchronized
oscillatory activity. This would answer the longstanding question
of how independently encoded features could be flexibly encoded
as a single concept (Singer, 1999). Thanks to this flexibility, at
least conceptually, these models do not suffer from combinatorial
explosion as an increasing number of feature combinations
are considered. There are, however, important questions about
the biological plausibility of this hypothesis. Crucially, such a
framework would need a temporal encoder that tags bound
features by a “temporal code” and a temporal decoder that is
able to distinguish which features are associated by detecting
ensembles oscillating in precise synchrony. Both the encoder and
decoder would thus depend on undefined biological mechanisms
for spike coincidence detection (Shadlen and Movshon, 1999),
which would struggle with the known high variability of neural
spiking in sustained activity (Compte et al., 2003; Shafi et al.,
2007). However, there is ample evidence for oscillatory dynamics
during working memory. For instance, oscillatory activity in
the gamma band (roughly defined between 30 and 100 Hz)
increases during the mnemonic periods, both locally (Pesaran
et al., 2002; Wimmer et al., 2016) and across sites (Lutzenberger
et al., 2002; Kaiser et al., 2003; Palva et al., 2011; Kornblith et al.,
2016), and further increases with memory load (Howard et al.,
2003; van Vugt et al., 2010; Kornblith et al., 2016; Lundqvist
et al., 2016). Importantly, gamma-band activity seems to play
a functional role, as working memory binding performance is
increased when transcranial stimulation at gamma frequency
(40 Hz) is applied at two different sites (left temporal and
parietal), but only when in anti-phase (Tseng et al., 2016) in line
with monkey electrophysiology showing that different items are
stored in different oscillatory phases (Siegel et al., 2009) and the
more general framework of phase-coding in working memory
(Fell and Axmacher, 2011).

Another class of models achieve feature binding through
“conjunction neurons” – neurons that are selective to all features
being bound. Since neurons with mixed selectivity are ubiquitous
in the brain (Rigotti et al., 2013; Fusi et al., 2016), these

models seem more biologically plausible than those relying
on unrealistically precise spike synchronization. Nevertheless,
they suffer from some important limitations. First, the number
of possible combinations explode quickly with an increasing
number of features (Matthey et al., 2015; Schneegans et al., 2016;
Schneegans and Bays, 2017, 2019; but see Swan and Wyble,
2014). Second, these models do not have independent storage
systems for each feature that define an object, to which there
is converging evidence (Olson and Jiang, 2002; Wheeler and
Treisman, 2002; Xu, 2002; Delvenne and Bruyer, 2004; Bays et al.,
2011b; Fougnie and Alvarez, 2011; Parra et al., 2011). See Ma
et al. (2014) and Schneegans and Bays (2019) for recent reviews
on the experimental evidence that should constrain multi-item
working memory models, in particular those aiming to explain
feature binding.

Here, we propose a hybrid model that overcomes several
limitations from both types of models. We connected two ring
attractor networks – one ring representing and memorizing
colors and another ring storing locations – via weak excitation.
This is an explicit implementation of the independent storage
of individual features, where each feature might be represented
in different cortical areas (e.g., color in inferior temporal
cortex and location in posterior parietal cortex). Within each
area, oscillatory mnemonic activity occured naturally through
the interplay between fast recurrent excitation and slower
inhibitory feedback. Feature binding was accomplished through
the selective synchronization of pairs of bumps across the two
networks. Furthermore, encoding and decoding of specific color-
location associations was accomplished through rate coding. Our
hybrid model of rate/temporal coding shares the rich explanatory
power of classical ring-attractor models of working memory
(Edin et al., 2009; Wei et al., 2012; Wimmer et al., 2014;
Almeida et al., 2015; Papadimitriou et al., 2015; Nassar et al.,
2018; Bouchacourt and Buschman, 2019; Qi et al., 2019; Barbosa
et al., 2020) and derives new predictions that can be tested on
multiple levels.

MATERIALS AND METHODS

Neural Network Model
We extended a previously proposed computational model
(Compte et al., 2000). In particular, we connected two one-
dimensional ring networks via weak, cortico-cortical excitatory
synapses governed by AMPAR-dynamics. Each network consists
of 2,048 excitatory and 512 inhibitory leaky integrate-and-
fire neurons fully connected through AMPAR-, NMDAR-,
and GABAAR-mediated synaptic transmission as in Compte
et al. (2000). Moreover, excitatory and inhibitory neurons were
spatially distributed on a ring so that nearby neurons encoded
nearby spatial locations. All connections were all-to-all and
spatially tuned, so that nearby neurons with similar preferred
directions had stronger than average connections, while distant
neurons had weaker connections. Inhibitory-to-inhibitory and
across-network connectivity was untuned. Intrinsic parameters
for both cell types and all the connectivity parameters were taken
from Compte et al. (2000), except the following for networks
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holding up to two stimuli or capacity-2 networks (notation
consistent with Compte et al., 2000):

GEE, AMPA = 0.09 nS, GEI, AMPA = 0.256 nS,

GEE, NMDA = 0.24 nS, GEI, NMDA = 0.11 nS,

GII, GABA = 2 nS, GIE, GABA = 3 nS,

gext, I = 2.74 nS, gext, E = 3.5 nS,

J+EE = 10, σEE = 9, J+EI = J+IE = 2.4, σEI = σIE = 18.

For networks holding up to three stimuli (capacity-3
networks),

GEE, AMPA = 0.126 nS, GEI, AMPA = 0.256 nS,

GEE, NMDA = 0.2 nS, GEI, NMDA = 0.11 nS,

GII, GABA = 2 nS, GIE, GABA = 3 nS,

gext, I = 2.8 nS, gext, E = 3.58 nS,

J+EE = 11, σEE = 9, J+EI = J+IE = 2.6, σEI = σIE = 30.

Connectivity across networks was determined by the following
conductances (for unconnected simulations, these conductances
were set to zero):

GEE, AMPA, across = 0.45 nS, GEI, AMPA, across = 0.18 nS,

GEE, NMDA, across = GEI, NMDA, across = 0 nS.

These parameters were adjusted to have within-network
oscillations, which was accomplished by increasing the ratio
between fast and slow excitation, supported, respectively, by
AMPAR and NMDAR channels, as previously shown (Compte
et al., 2000). The main dynamics described in this study were
robust to a broad range of parameter values (Figures 1–4).

Cross-Correlations
For the cross-correlation analyses, we computed spike counts
in bins of 5 ms, collapsing all neurons around the stimulus
presentation location (here called a bump, ±340 neurons).
Moreover, we computed within- and across-network correlations
by, respectively, considering neurons in bumps from the same or
different circuits. For the cross-frequency correlation plots (e.g.,
Figure 2B), we further computed the power spectrum of the
resulting cross-correlation functions, averaged across all possible
(only within- or only across-) pairs of bumps.

Conversion of Spikes Into Local Field
Potentials
For the conversion of simulated spike trains into local field
potentials, we convolved the aggregated spike times (ts) of all the
neurons engaged in a bump (or in the network, depending on the
analysis) with an alpha-function synaptic kernel:

LFP(t) =
∑

ts

2(t − ts)
t − ts

τ
exp

(
−

t − ts

τ

)
with2(t) being the Heaviside theta function, and τ = 5 ms.

Phase-Preservation Index
To measure how an oscillating activity bump kept its oscillatory
phase over multiple trials (k = 1,. . .,N) of our simulation, we
first converted spike times into local-field potentials (see above).
Through wavelet analysis, we determined the phase φk(f0, t) of
the LFP at f0 = 30 Hz (the approximate frequency of oscillations
in the network) at all time points t of the simulation, and then
we used the phase-preservation index (PPI), a method originally
developed by Mazaheri and Jensen (2006) for EEG data.

The PPI is defined by taking a reference time point (in
our case tref = stimulus offset), and then computing the average
consistency of the phases at the specific frequency of interest
f0with the rest of the time points:

PPI(f0, t) =
1
N

∣∣∣∣∣
N∑

k=1

eiφk(f0,tref )−iφk(f0,t)

∣∣∣∣∣
Phase-preservation index values thus vary between 0 and 1, with
1 indicating perfect phase consistency.

Extracting Behavioral Output With a
Mixture of Gaussians
The final behavioral output, for simplicity, was extracted by fitting
a mixture of two gaussians to the late-delay average activity of the
color network. We then selected the central value (color) of the
gaussian component with larger amplitude, or stronger mixture
component. We fit the mixture of gaussians using the Python
function sklearn.mixture.GMM. This algorithmic read-out could
be replaced by a biologically plausible downstream network
connected to the color circuit, and tuned to be in a winner-take-
all regime – i.e., only able to maintain one bump at a time.

RESULTS

Working Memory Load Modulates
Oscillation Power and Frequency
We built a computational network model of a local neocortical
circuit, with excitatory and inhibitory spiking neurons (leaky
integrate-and-fire neuron model) connected reciprocally via
excitatory AMPAR-mediated and NMDAR-mediated synapses
and inhibitory GABAAR-mediated synapses (see “Materials and
Methods”). The ring-attractor network model was adjusted to
support bump attractor dynamics with up to three simultaneous
bumps (Edin et al., 2009), and further adjustment of the
relative weights of AMPAR- and NMDAR-mediated currents
was performed to set active reverberant neurons in the
oscillatory regime (Wang, 1999). Using this computational
model we started by investigating the dynamics that originated
within each network.

In our model, multiple bumps showed anti-correlated
oscillatory activity (Figure 1). As we stored more bumps in
the network, lateral inhibition originating from simultaneous
memories established anti-phase oscillatory dynamics during the
memory period. These oscillatory dynamics were irregular, as
illustrated in quickly dampened correlation functions (Figure 1A,
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FIGURE 1 | Multiple bumps are spontaneously anti-correlated. (A) Raster plots of three sample simulations of load 1–3 (top) and delay-period zooms (middle) show
clear bump oscillatory activity, confirmed by correlation functions (bottom). Notably, irregular activity coexists with oscillatory dynamics. (B–D) Anti-correlated
oscillatory dynamics as excitation is manipulated in the network (AMPAR conductance for excitatory to inhibitory connections, Y-axis, and for excitatory to excitatory
connections, X-axis) in simulations with load 2 for the capacity-2 network used in Figures 3, 4 (to facilitate comparisons). (B) Anti-phase dynamics as measured by
zero-lag cross-correlation between bumps. (C) Dominant frequency of the auto-correlation function computed independently for each bump (computed with Fourier
analysis). (D) Dominant frequency of the cross-correlation between the two bumps. Red stars mark the parameter values of model simulations used throughout the
study. Plots in panels (B–D) summarize the dynamics of ∼10,000 simulations (total) of 100 different networks.

bottom). Moreover, we found that the anti-phase behavior was
robust in a wide range of values for AMPAR conductances
(Figure 1B), consistently in the gamma range of frequencies
(Figures 1C,D). Having seen these anti-phase dynamics between
simultaneous bumps, we sought to contrast two opposite
scenarios as we increased the number of stored memories
(memory load). Under one alternative, bumps may oscillate
at a fixed frequency irrespectively of load, so that the global
network oscillation (adding up the activity of fixed-frequency

out-of-phase bumps) would have a frequency that should
increase linearly with memory load (scenario 1, dashed line
Figure 2C). Alternatively, the network global oscillation could
have a fixed frequency for different loads, and simultaneous
bumps would take turns to fire in the available active periods.
This would lead to halving each bump’s oscillation frequency
as we double the memory load (scenario 2, dashed line in
Figure 2D). We tested our model simulations to identify if
our biophysical model adhered to one of these scenarios. To
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FIGURE 2 | Load-modulation of network and bump oscillatory dynamics.
Power spectrum of LFPs computed from simulations with increasing load
(1–3), using the activity of the whole network (A) or of each bump’s activity
(B). (C,D) Peak-frequency fk computed from simulations with increasing load
k, normalized to frequency f1 from simulations with a single bump and
computed from LFPs of the whole network activity (C) and from LFPs of each
individual bump’s activity (D).

this end, we ran multiple simulations with three different
loads (presenting 1–3 separate bumps during the encoding
cue period) and we computed power spectra from either the
aggregate activity of the whole network (network power) or
from separate populations centered around each presented target
(bump power). We then extracted the frequency of the peak
network and bump power to study their dependency with load.
We found signatures of both scenarios (Figures 2A,B). As we
increased the memory load, the overall network activity oscillated
at slightly increasing frequencies (Figures 2A,C). In contrast,
each bump, corresponding to different memories, oscillated at
markedly slower frequencies as load increased (Figures 2B,D).
We quantified which were the dominant dynamics by plotting
both the network’s and each bump’s oscillating frequency
against memory load. For better comparison, we normalized
the frequency associated with different loads to the one of load
1. Moreover, we compared the effect of memory load against
scenario 1 and 2 (dashed lines in Figures 2C,D). Qualitatively,
we found that our network dynamics was more consistent
with the latter.

We therefore conclude that our biophysical network
maintains a relatively constant global oscillation as more items
are loaded into memory, and individual memory oscillations
instead start skipping cycles to sustain out-of-phase dynamics
with other memories. Thus, the interplay between recurrent
(fast) excitation and (slower) feedback inhibition acting locally
is the basis of the oscillatory bump behavior. Moreover, we now
show that anti-phase dynamics of simultaneous bumps occurs
due to bump competition, accomplished by lateral inhibition.
This competition increases with memory load, leading to longer

periods of silence during the delay-activity of each bump. These
dynamics generalize previous findings in simplified rate models
(Pina et al., 2018), and extend them to biologically realistic ring
attractor networks.

Uniform Coupling Achieves Feature
Binding
The binding between color and location is accomplished through
the spontaneous synchronization of pairs of bumps across
two networks connected via weak cortico-cortical excitation
(Figure 3). In particular, we connected two ring-attractors in
the regime described above with all-to-all, untuned excitatory
connectivity. This connectivity was weak and it was mediated
exclusively by AMPARs (Figure 3A), acting on all excitatory and
inhibitory neurons. Interestingly, anti-phase dynamics within
each network (as described above) was maintained robustly for
a wide range of connectivity strength values (Figures 3E,F).
Across networks, each bump’s activity was in phase with one
bump in the other network (Figures 3B,C, black) but out of
phase with the other (Figures 3B,C, red). On the majority of
the simulations, this selective synchronization was maintained
through the whole delay period (see Figures 3C,D for an example
simulation). This set of dynamics is an interesting possible
mechanism that binds and maintains the information of each
presented stimulus. To this end, however, there are several aspects
to resolve in relation to the encoding and decoding of this
bound information.

On the one hand, synchronization selection was noise-
induced in our simulations, resulting in across-networks
associations between random pairs of bumps for different
simulations. To control this association at the time of stimulus
encoding, we stimulated strongly (7.5 times the intensity of
sensory stimuli) and simultaneously one bump in each network
for a brief period of 50 ms (Figures 3B, 4A, green period),
forcing these two bumps (one in each network) to engage in
correlated activity during the delay period. Nevertheless, this
phase-locked dynamics could be broken by noisy fluctuations,
leading to possible misbinding of memorized features and swap
trials (Figures 4A,B).

On the other hand, our model raised the question of
how this binding of information could reasonably be decoded
without resorting to complex mechanisms for spike coincidence
detection. In our task, the “behavioral” output consisted in
answering which “color” was initially associated with a particular
“location,” and this was accomplished by evaluating which bump
of the color network maintained in-phase synchronization with
the bump of the probed location at the end of the delay. We
found that this did not require complex coincidence detection,
but could instead be simulated in a rate formalism as follows.
For each trial, we probed one location by stimulating weakly
( 1

4 of stimulus intensity) corresponding neurons in the location
network at the end of the delay. This simulated the visual
presentation of a location probe at the end of the delay.
This increased the firing rate of the corresponding location
bump, and we found that it also resulted in an increase of
activity of the associated, in-phase color bump. Finally, we
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FIGURE 3 | Feature-binding through weak, uniform coupling of 2 ring attractors. (A) Left, schematics of within-network excitatory (black) and inhibitory (blue)
connectivity to excitatory (solid) and inhibitory (dashed) neurons. Neurons with similar selectivity were strongly connected as illustrated by the line width. Right,
schematics of the 2-network architecture, consisting of 2 ring-attractors with all-to-all, uniform connectivity. Each ring is able to store memories from one feature
space (e.g., color or location) as activity bumps (Figure 1). (B) One example simulation for the two networks. The pink-shaded area marks the period in which we
read out the activity of the entire color network, while injecting current at one specific location in the location network (right gray-shaded area in the location
rastergram, see main text for details about encoding/decoding). (C) Cross-correlation computed between 2 pairs of bumps across networks [as marked with dashed
red and black lines in panel (B)]. Across networks, oscillating bumps synchronize in phase (black, positive zero-lag cross-correlation) or out of phase (red, negative
zero-lag cross-correlation). (D) Spike count correlation (in count bins of 5 ms and correlation windows of 100 ms) of both associations through the memory delay is
stable for this simulation. (E,F) Similar to Figures 1B,D, but manipulating AMPAR conductances across networks. (E) Robustness of anti-phase dynamics within
each network as measured by spike count correlation between bumps (Figure 1B). (F) Dominant frequency of cross-correlation between the two bumps within
each network (Figure 1D). (G) Bump strength measured as standard deviation of spike-counts across model neurons at the end of the delay. (E–G) summarize the
dynamics of 22,000 simulations (total) of 100 × 2 networks. Stars indicate parameters and dynamical regime of network simulations shown in panels (B–D).

extracted the behavioral output by fitting a mixture of gaussians
(“Materials and Methods”) applied to the mean firing rate activity
across the color network during the location-probing period
(0.5 s). Figure 4B shows color readouts from 1,000 of such
simulated trials. Applying our encoding/decoding method to
our simulations, resulted in 30% of trials wrongly associated
with the non-target color (swap trials, Figure 4B). We then
separated swap trials from on-target trials and computed the
spike-count correlation in windows of 5 ms through the whole

trial period (Figure 4D), and confirmed that on-target trials
were in fact characterized by stable phase-locked activity, while
the correlation between bumps in swap trials progressively
approached the opposite dynamics (in-phase/anti-phase for
the bound/unbound items, Figure 4D). Importantly, networks
maintained synchronized in-phase dynamics for bound features
robustly over a broad range of inter-network connectivity
parameter values (Figures 4E,F). Additionally, we identified
three sources of swap errors in our simulations, classified as
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FIGURE 4 | Encoding and decoding without temporal precision. (A) Spike-count correlation (in count bins of 5 ms and correlation windows of 100 ms) during the
delay for 20 sample simulations. During the encoding period (green), immediately after the stimulus presentation, we bound two bumps, one from each network, by
simultaneously stimulating them strongly. This ensured those two bumps were correlated through the trial more often than chance (black lines in the figures), and the
other cross-network association synchronized mostly out-of-phase (red lines). On some trials (only one in a), noisy fluctuations reversed these correlations suddenly
(swap trials). During the decoding period (light gray, on the right) we simulated the probe period of a working memory task, by stimulating the cued location (0.5 s) of
one network, while decoding mean firing rates from the color network. (B) Color readout histogram in 1,000 simulations. Bumps bound during encoding (target,
centered at neuron 520 out of 2,048) were more likely to be read-out than unbound bumps (non-target, centered at 1,480). (C) Three types of swaps: memory
swaps (top), attentional swaps (middle), or decoding swaps (bottom). (D) Same as panel (A), averaging across all trials separately for swap and on-target trials, as
defined by the decoder, shown in panel (B). (E,F) summary of the dynamics of 22,000 simulations (total) of 100 connected (×2) networks as a function of
inter-network connectivity. (E) Binding stability measured as the average spike-count correlation between initially bound bump pairs during the delay (black, in
figures). (F) Dominant frequency of the cross-correlation between bound bump pairs. Red stars mark the parameter values of the model used for sample
simulations. (G) Swap errors increase with delay duration and (H) simulations (3 s delay) where target (T) and non-target (NT) bumps are stored close-by (varying

(Continued)
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FIGURE 4 | (Continued)
distance) increase swap error probability, relative to when they are further apart. (I) Swap-error trials (red, n = 3,000), compared with on-target trials (green,
n = 3,000) in the model are associated with a lower phase consistency of oscillatory activity in the delay period, as measured with phase-preservation index (PPI,
“Materials and Methods”) using early delay as the reference time point. Error-bars are bootstrapped standard errors (n = 500).

memory swaps if the correct association based on in-phase bump
synchronization changed abruptly during the delay (51% of
the swap trials), attentional swaps if the wrong association was
encoded during the encoding period (22%) or decoding swaps if
the correct association was encoded and maintained during the
memory period, but the decoding failed (27%). See Figure 4C for
example simulations.

Together, our biologically-constrained simulations
demonstrate that feature-binding can be robustly accomplished
through selective synchronization. Crucially, encoding/decoding
location-color associations was done without a temporally
precise code, a long-standing limitation in the binding by
synchrony framework (Shadlen and Movshon, 1999). Moreover,
we identified three sources of swap errors. Based on these
computational findings, we investigated model predictions
that could be compared with existing data or could generate
hypotheses for new experimental studies.

Swap Errors Increase With Delay and
Item Competition
In our model, swap errors are induced by noisy fluctuations.
This results in two behavioral predictions, congruent with
previous findings (Emrich and Ferber, 2012; Pertzov et al., 2017;
Schneegans and Bays, 2017). First, longer memory delays should
increase the probability of a noisy fluctuation that is sufficiently
large to induce a swap (Figure 4G). Second, Figure 4H shows
how swap errors decrease with target to non-target distances.
For very close locations, feedback inhibition is strongest, leading
to strong competition between nearby bumps, explaining an
increase of swap errors for such distances. This is similar to
previous studies (Wei et al., 2012; Almeida et al., 2015; Nassar
et al., 2018), in which simultaneous bumps interfere (repulsively
and through their phase relationship, which is in this case less
stable through the delay). Experimentally, these two regimes
correspond to different scenarios. In the first case, one color
is forgotten, while in the second scenario, there is an actual
swap error. This prediction could be tested experimentally by
probing the subject’s memory on all items, instead of just one
(Adam et al., 2017).

In sum, our model is able to describe a previously found
dependence of swap errors with delay duration and with target
to non-target distance, and it offers mechanistic explanations for
such dependencies.

Neural Prediction: Swap Trials Show
Less Phase Preservation Through the
Delay
Finally, abrupt changes in the phase relationship between
oscillating bumps is the central mechanism of swap errors in
our model (Figures 4A,B). Therefore, it is worth deriving a

testable neurophysiological prediction from this mechanism.
Additionally, because these changes in phase relationships are
abrupt, they require experiments using techniques with high
temporal resolution such as MEG or EEG. Intuitively, swap
errors in our model simulations are characterized by inconsistent
phase relationships between brain signals when comparing the
beginning and the end of the delay period. We therefore
considered applying an analysis that has been proposed to test
phase consistency in EEG/MEG: the phase-preservation index
(PPI, Mazaheri and Jensen, 2006). We first derived LFP signals
from our network’s spiking activity (“Materials and Methods”).
We then calculated the phase-preservation index (PPI, see
Mazaheri and Jensen, 2006 and “Materials and Methods”) at the
end of the delay, relative to the beginning of the delay, and
separately for on-target and swap trials defined “behaviorally”
(Figure 4B). As we expected based on our model simulations
(Figure 4), this analysis applied to our simulated data showed
that trials containing swap errors had a lower PPI, compared to
on-target trials (Figure 4I). This prediction can be tested with
MEG/EEG data recorded from humans performing this task,
based on an analysis of behavioral responses able to discriminate
swap and correct error trials (Bays et al., 2009).

DISCUSSION

Aiming to account for swap-errors, a prominent source of multi-
item working memory interference (Schneegans and Bays, 2019),
we extended the ring-attractor model (Compte et al., 2000).
Our biologically-constrained model offers a plausible mechanism
for feature-binding. Briefly, the encoding and decoding of
associations is accomplished through rate-coding, while their
maintenance is accomplished through selective synchronization
of oscillatory mnemonic activity. Oscillatory dynamics emerges
naturally from bump competition, which increases with memory
load and is in line with previous EEG experiments in humans
(Roux et al., 2012) and LFP recordings from monkey PFC
(Lundqvist et al., 2018). Finally, our model reveals different
origins of swap errors (Mitchell et al., 2018; Pratte, 2019), how
they depend on delay duration and inter-item distances (Emrich
and Ferber, 2012; Pertzov et al., 2017; Schneegans and Bays,
2017), and predicts that phase-locked oscillatory activity during
the memory periods should reflect swap errors.

Other Multi-Area Models for Working
Memory
Our multi-area model adds to a large body of computational
work (Ardid et al., 2007, 2010; Edin et al., 2009; Engel and
Wang, 2011; Murray et al., 2017; Bouchacourt and Buschman,
2019; Mejias and Wang, 2019; Froudist-Walsh et al., 2020;
Min et al., 2020; Novikov et al., 2021) attempting to account for
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the distributed nature of working memory (Christophel et al.,
2017). While several of these models have implemented across-
area interactions through oscillatory dynamics (Ardid et al., 2010;
Novikov et al., 2021), they did not attribute a clear mechanistic
role to inter-area synchronization dynamics. This is in contrast
to our model, where feature-binding in working memory is
accomplished through selective synchronization of oscillatory
activity in different brain areas.

Comparison With Previous Binding
Models
Previously proposed models by Pina et al. (2018) and Raffone and
Wolters (2001) as well as our model are explicit implementations
of the synchronization mechanism for feature binding in working
memory. While similar in the approach, there are important
differences. As argued by Schneegans and Bays (2019), a major
difficulty with previous synchronization models was that they
were unable to show their capacity of reproducing the rich
phenomenology of working memory behavior that other models
can explain. Our model, on the basis of its architecture with
ring attractor models of spiking neural networks, overcomes the
limitation of earlier discrete population models (Raffone and
Wolters, 2001; Pina et al., 2018) and keeps all the demonstrated
explanatory power that is characteristic of these attractor models,
such as explaining several behavioral working memory biases in
humans (Almeida et al., 2015; Kiyonaga et al., 2017; Barbosa and
Compte, 2018; Kilpatrick, 2018; Nassar et al., 2018; Stein et al.,
2020) and monkeys (Papadimitriou et al., 2015; Barbosa et al.,
2020); as well as explaining key neurophysiological dynamics
during working memory maintenance periods (see Barbosa, 2017
for a short review) in humans (Edin et al., 2009; Kamiński et al.,
2017) and monkeys (Wimmer et al., 2014; Sajad et al., 2016). Our
model also goes beyond previous synchronization models in that
(1) by virtue of its 2-ring architecture, it explicitly implements
the storage of different features in independent systems or brain
areas, as shown experimentally (Schneegans and Bays, 2019), and
that (2) it provides a plausible rate-based readout mechanism
of working memory associations without resorting to complex
synchrony detection processes, a major difficulty for this sort
of models (Shadlen and Movshon, 1999). Indeed, we show
that our proposed mechanisms is robust to the noise inherent
in spiking networks, which together with the need of precise
spike coincidence detectors were major concerns of the binding
through synchronized activity hypothesis in general (Shadlen
and Movshon, 1999) and previous implementations in particular
(Raffone and Wolters, 2001; Pina et al., 2018).

Thus, our model now brings back synchronization-based
feature binding in working memory as a plausible alternative
to recent conjunction binding proposals, such as the binding
pool (Swan and Wyble, 2014) and the conjunctive coding model
(Matthey et al., 2015; Schneegans and Bays, 2017). These models
implement binding mechanisms that are fundamentally different
from ours. In these models, binding of separated features is
accomplished through conjunction neurons, which are neurons
selective to mixtures of those features. While there is evidence
for such neurons in the cortex (Rigotti et al., 2013; Fusi

et al., 2016), their role in feature-binding is not clear, given
the consistent evidence for separate feature storage underlying
working memory binding (Olson and Jiang, 2002; Wheeler and
Treisman, 2002; Xu, 2002; Delvenne and Bruyer, 2004; Bays
et al., 2011b; Fougnie and Alvarez, 2011; Parra et al., 2011).
Importantly, such a mechanism scales exponentially with the
number of feature combinations, thus seemingly inconsistent
with our ability to flexibly bind never seen combinations
(Schneegans and Bays, 2019). However, it is to be noted that some
conjunction models have mitigated this scaling problem through
the construction of random conjunctions in an interposed
network (Swan and Wyble, 2014; Bouchacourt and Buschman,
2019).

Encoding With Rate Code
In our hybrid model, only the maintenance of associations is
accomplished through correlated oscillatory activity or, in other
words, relies on a temporal code. Instead, encoding and decoding
of associations is achieved through a rate code. Encoding and
decoding is accomplished by delivering flat pulses (i.e., without
the need to be temporally precise) to both the to-be-bound
features exclusively (encoding) or just to one of them (decoding).

Encoding the association between two different features
through a pulse delivered simultaneously to each corresponding
bump resembles the sequential encoding hypothesis in working
memory (Wolfe, 1994; Bays et al., 2011a). Moreover, there
is evidence that a mechanism combining sequential and
parallel encoding is implemented in the brain when solving
multi-item working memory tasks (Bays et al., 2011a). Our
model implements such a combination. First, information
about independent features arrives simultaneously to memory-
encoding areas from upstream sensory areas. Then, the correct
associations are sequentially encoded by brief excitatory pulses,
possibly as a result of overt selective attention to each
stimulus sequentially (Schoenfeld et al., 2014). Speaking to
this, humans take longer to encode combined features than
they take to encode the same amount of independent features
(Schneegans and Bays, 2019).

Decoding With Rate Code
Works modelling multi-item working memory though the
storage of several bumps in a network (Wei et al., 2012;
Krishnan et al., 2018; Nassar et al., 2018) including our own
(Edin et al., 2009; Almeida et al., 2015) often used approaches
that are biologically implausible to extract the location of
one bump, while ignoring other simultaneously maintained
bumps. Our approach, however, matches closely the “cueing”
period of a multi-item working memory task, which consists of
stimulating the “cued” locations while reading out from the whole
color network population. Moreover, our encoding/decoding
mechanism proposes that swap errors can be of different
origins (attention, memory, or decoding; Figure 4C). Indeed,
experimental designs that require subjects to rate their confidence
on a trial-by-trial basis show that swap errors occur both in high-
and low-confidence trials, suggesting different origins (Mitchell
et al., 2018; Pratte, 2019).
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Future Work: Toward Biological
Plausibility of Binding Through Dynamics
We found anti-phase dynamics within each network and phase-
locking across networks, the central mechanisms for feature-
binding in our model, to occur naturally in a broad range
of parameters, indicating that the mechanisms proposed here
do not require fine-tuning. Because our model is to some
degree biologically constrained, it is a proof of concept that
working memory binding through synchronized activity is at
least possible to occur in the brain. In fact, we simulated
noisy integrate-and-fire neurons, supporting that the central
mechanism implemented in our model has some degree of
robustness to noise.

Our model is, however, limited in several ways that could
be addressed in future studies. First, we did not simulate trials
demanding binding of load 3 or higher. We expect that the main
challenges associated with that improvement will be the encoding
of more associations. We also did not explore conditions
with asymmetric number of bumps (e.g., two colors/locations
at/with one location/color), as this would lead to different
experimental paradigms. Second, we did not investigate how
feature-binding is impacted by incoming distractors. Previous
work has shown that oscillatory activity on different bands
can play a role in filtering distractors (Dipoppa and Gutkin,
2013). Future work combining these models is necessary. Third,
as a proof of concept, we only simulated two connected
networks, while humans can encode and decode the association
of many more features (Schneegans and Bays, 2019). Relatedly,
our two-dimensional network architecture should be taken as
a proof of concept, rather than being a literal anatomical
representation of a specific brain structure. Finally, the oscillatory
regime in which our model is operating, in which neurons are
strongly synchronized with the population rhythm (Figure 4C),
however, derived from biologically constrained neuronal models,
is arguably not biological itself. While there is abundant evidence
that neuronal populations show strong oscillatory dynamics
in working memory (e.g., Pesaran et al., 2002), single neuron
dynamics approaches a Poisson process (Softky and Koch,
1993; Compte et al., 2003) therefore not oscillatory at this

scale (but see Lundqvist et al., 2016). Early theoretical work
(Brunel and Hakim, 1999; Brunel, 2000; Brunel and Wang,
2003) has demonstrated that such oscillatory dynamics at the
population level can coexist with noisy, unsynchronized neurons
when randomly connected. Future work that connects randomly
connected networks that store multiple stable bump-attractors
(Hansel and Mato, 2013), but operating in anti-correlated
oscillatory activity such as in our simulations could be an
appropriate avenue for the future work attempting to overcome
these limitations.
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