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Objective: Many studies have explored the neural mechanisms of cognitive

impairment in chronic obstructive pulmonary disease (COPD) patients using

the functional MRI. However, the dynamic properties of brain functional

networks are still unclear. The purpose of this study was to explore the

changes in dynamic functional network attributes and their relationship with

cognitive impairment in stable COPD patients.

Materials and methods: The resting-state functional MRI and cognitive

assessments were performed on 19 stable COPD patients and 19 age-,

sex-, and education-matched healthy controls (HC). We conducted the

independent component analysis (ICA) method on the resting-state fMRI

data, and obtained seven resting-state networks (RSNs). After that, the

static and dynamic functional network connectivity (sFNC and dFNC) were

respectively constructed, and the differences of functional connectivity (FC)

were compared between the COPD patients and the HC groups. In addition,

the correlation between the dynamic functional network attributes and

cognitive assessments was analyzed in COPD patients.

Results: Compared to HC, there were significant differences in sFNC

among COPD patients between and within networks. COPD patients showed

significantly longer mean dwell time and higher fractional windows in weaker

connected State I than that in HC. Besides, in comparison to HC, COPD

patients had more extensive abnormal FC in weaker connected State I and

State IV, and less abnormal FC in stronger connected State II and State III,

which were mainly located in the default mode network, executive control

network, and visual network. In addition, the dFNC properties including mean

dwell time and fractional windows, were significantly correlated with some

essential clinical indicators such as FEV1, FEV1/FVC, and c-reactive protein

(CRP) in COPD patients.
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Conclusion: These findings emphasized the differences in sFNC and dFNC

of COPD patients, which provided a new perspective for understanding the

cognitive neural mechanisms, and these indexes may serve as neuroimaging

biomarkers of cognitive performance in COPD patients.

KEYWORDS

chronic obstructive pulmonary disease, dynamic, functional connectivity, cognitive
impairment, independent component analysis

Introduction

Chronic obstructive pulmonary disease (COPD) is one
of the most common incurable pulmonary diseases which
is characterized by persistent airflow limitation and some
respiratory symptoms such as chronic cough, sputum, chest
tightness, and dyspnea upon exertion (Rabe and Watz, 2017).
According to a wide-ranged representative COPD epidemiology
research in 2018, the estimated overall prevalence of COPD
within adults aged 40 years or older in China was 13.6%, and
among them, 43.7% had reached moderate COPD (Level 2)
and above, which means that COPD has gradually become
a major public-health problem compared to before (Fang
et al., 2018). Studies have shown that COPD could cause a
lot of comorbidities on different organs and systems, such
as hypertension, osteoporosis, diabetes, brain dysfunction,
mental illness, and so on (Vestbo et al., 2013). Among these
comorbidities of COPD, cognitive impairment is recognized
as one of the most serious diseases and most overlooked
extra-pulmonary symptoms, for it would not only lead to
the decreased quality of life, moreover, it might have adverse
effects on the respiratory rhythm and frequency, which may
lead to the deterioration of disease condition, if preventive
measures couldn’t be taken timely (Yohannes et al., 2017).
Thus, illustrating the internal neural mechanisms between
COPD and cognitive impairment is of great importance.
Hypoxia/hypercarbia and cognitive dysfunction in COPD
patients are related to some extent, which might become one
of the possible pathophysiological mechanisms (Parekh et al.,
2005; Ortapamuk and Naldoken, 2006). However, the specific
pathogenesis between cognitive impairment and COPD is still a
problem to be researched and solved.

Due to successive airflow limitation of COPD, the brain
cannot receive sufficient oxygen to a certain degree, causing
inevitable changes in spontaneous brain activity which results
in a series of elaborate metabolic abnormalities (Zhang et al.,
2016). On account of this, the functional MRI, based on the
blood oxygenation, provides us with an effective platform to
study the relation between COPD and cognitive dysfunction
(Glover, 2011). And in particular, the resting-state fMRI, the
hotspot of neuroimaging and brain function research in recent

years, can become a convenient and advanced tool to explain
the pathogenesis of the relation without given stimulus or tasks
(Smitha et al., 2017). Many scholars have devoted themselves
to using fMRI to research the cognitive disorder before. For
instance, a previous study, using the seed-based functional
connectivity (FC) analyses, found decreased FC mainly in the
visual network and frontoparietal network, which was then
confirmed to be positively correlated with cognitive function
assessed with MoCA scale by precise correlational analyses
(Wang W. et al., 2020). Furthermore, another study about
spontaneous neural activity in COPD patients found decreased
local spontaneous activity in the left basal ganglia and novel
temporal dynamic brain local activity alteration in the bilateral
parahippocampal/hippocampal gyrus, more importantly, these
alterations were linked with semantic-memory impairments
which may be modulated by poor pulmonary function (Lv et al.,
2021). And our recent study with amplitude of low-frequency
fluctuation (ALFF) method have demonstrated that there were
exceptional low-frequency oscillations amplitudes related with
various brain physiological functions in some COPD patients’
given brain regions, and it would provide the neuroimaging with
a new direction of exploration (Yu et al., 2021). Nevertheless,
all the studies mentioned above just primarily focused on the
traditional classical frequency band (0.01–0.1 Hz) and assumed
that the functional network was static in the whole time, while
ignoring the time variability.

Independent component analysis (ICA) is a data processing
method suitable for resting-state fMRI, which could decompose
the resting-state fMRI data into multiple brain networks without
assuming in advance and further analyze these resting-state
networks (Hu et al., 2019; Seewoo et al., 2021; Li et al., 2022).
The ICA is an advanced data-driven approach, which evaluates
the whole brain data and then separate it into individual
components, enabling us to conduct in-depth observational
studies of brain connectivity (van den Heuvel et al., 2009; Vargas
et al., 2013). Some previous studies have already applied it to
some related diseases, such as acute thyrotoxic myopathy (Li
et al., 2022), attention deficit and hyperactivity disorder (Kumar
et al., 2021), juvenile absence epilepsy (Parsons et al., 2020),
high myopia (Ji et al., 2022), and so on. Our brains must
dynamically integrate, coordinate, and respond to all internal
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and external stimuli so that we could feel, remember, think,
and correlate with others (Hutchison et al., 2013). A growing
number of research also point out that our brain functional
network connections could be changeable with time going by
Hutchison et al. (2013), Meier et al. (2016). Some scholars have
proposed that the dFNC could reflect transient and recurrent
whole-brain temporal coupling patterns (Wens et al., 2019),
revealing the neural mechanism, and it already has been used
in a variety of neuropsychiatric diseases, such as Parkinson’s
disease (Fiorenzato et al., 2019), Major depressive disorder (Zhi
et al., 2018), Sleep deprivation (Li C. et al., 2020), and so
on. However, there is no report on using ICA approach to
research the cognitive impairment caused by COPD at present.
Therefore, through combining ICA and dynamic FC, it may
help us better study the interaction of COPD and cognitive
impairment.

To sum up, according to previous studies, we made the
hypothesis that there might be temporal variability in brain
network connectivity in COPD patients which is associated
with clinical assessments such as cognition and memory. With
regards to this, we used the ICA method to extract and
detect different resting-state networks firstly. Then, the dynamic
FC analysis was performed through a sliding-window time
approach and the k-means clustering algorithm (Oh et al., 2021).
At the same time, we compared the differences between the
COPD patients and the HC groups in the temporal variation
of dFNC. Eventually, we explored the relationship between the
temporal variability and cognitive function, as well as other
clinical assessments.

Materials and methods

Subjects

All 19 stable COPD patients and 19 age-, sex-, and
education-matched healthy controls (HC) in this research were
recruited in the Respiratory Department of the First Affiliated
Hospital of Nanchang University (Nanchang, China) from
December 2017 to May 2018. We determined the diagnostic
criteria and classification on the basis of the Global Initiative
for Chronic Obstructive Lung Disease (GOLD) guidelines
from 2017 (Vogelmeier et al., 2017). All the patients were
diagnosed with COPD and they were in stable state with
no exacerbations during the past 8 weeks or after therapy
by pulmonary function tests according to GOLD guideline
(Vogelmeier et al., 2017). All individuals underwent a rigorous
and detailed clinical history interview, a physical examination,
a blood gas analysis and a pulmonary function test. In
addition, to receive a more persuasive sample, we made a
series of exclusion criteria, including: (1) obstructive sleep apnea
syndrome or insomnia; (2) mental or neurological disorders like
epilepsy; (3) brain damage; (4) severe cardiovascular diseases;

(5) history of drugs and/or alcoholism; (6) comorbidities
such as diabetes, anemia, and other major diseases; (7)
the Montreal Cognitive Assessment (MoCA) and the Mini-
Mental State Examination (MMSE) evaluations could not be
completed; (8) participants with MRI contraindications were
also excluded, such as claustrophobia, metallic implants in the
body, and so on.

Arterial blood gas analysis

We used the Stat Profile Critical Care Xpress (Nova
Biomedical, Waltham, MA, USA) to detect some essential
parameters of arterial blood gas, including arterial partial
pressure of oxygen (PaO2), arterial partial pressure of carbon
dioxide (PaCO2), the oxyhemoglobin saturation (SaO2), and pH
(negative logarithm of hydrogen ion concentration in a standard
volume of arterial blood sample).

Pulmonary function test

The main indicators of lung function consisted of the
following components: the forced expiratory volume in
the first second (FEV1), the forced vital capacity (FVC),
and the FEV1/FVC. These indexes were tested with the
use of a dry spirometer device (Erich Jaeger GmbH,
Hoechberg, Germany) after inhaling an appropriate dose
of bronchodilator. Based on the GOLD (Vogelmeier et al.,
2017), in COPD patients, the FEV1/FVC is less than 0.7
after inhalation of bronchodilators, and then we classified
airflow limitation according to the magnitude of the drop
in FEV1: the FEV1 ≥ 80% predicted were classified as
mild COPD (Level 1), those with 50% ≤ FEV1 < 80%
predicted were classified as moderate COPD (Level 2),
those with 30 ≤ FEV1 < 50% predicted were classified
as severe COPD (Level 3), and those with FEV1 < 30%
predicted were classified as extremely severe COPD (Level 4)
(Vogelmeier et al., 2017).

Cognitive assessments

All participants conducted a series of cognitive assessments
including the MMSE (Folstein et al., 1975) and the MoCA
(Nasreddine et al., 2005). The MMSE and the MoCA were
mainly used to test the common brain cognitive functions
such as attention and naming, and the latter assessment
consists of the following eight aspects: visuospatial and executive
function, naming, memory, attention, language, abstraction, and
orientation (Nasreddine et al., 2005). An MMSE score ≤ 26 or
a total MoCA score < 26 indicates defective cognitive function
(Folstein et al., 1975; Nasreddine et al., 2005).
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MRI data acquisition

All the MRI data were collected on 3.0 Tesla MR scanners
(Siemens, Erlangen, Germany) with 8-channel head coils at
the Department of Radiology of the First Affiliated Hospital
of Nanchang University. All participants were asked to keep
still, and keep their eyes closed but not to fall asleep or
think about anything during the MRI scan. Foam pads
were used to reduce head movements, and earplugs were
used to decrease the noise. First, conventional axial T2-
weighted imaging [repetition time (TR) = 4000 ms, echo
time (TE) = 113 ms, thickness = 5 mm, gap = 1.5 mm,
FOV = 220 mm × 220 mm, slices = 19] and axial T1-weighted
imaging [TR = 250 ms, TE = 2.46 ms, thickness = 5 mm,
gap = 1.5 mm, field-of-view (FOV) = 220 mm × 220 mm,
slices = 19] were performed. Then, high-resolution three-
dimensional T1-weighted images were obtained using a
brain volume sequence (TR = 1900 ms, TE = 2.26 ms,
thickness = 1.0 mm, gap = 0.5 mm, FOV = 250 mm × 250 mm,
matrix = 256 × 256, flip angle = 9◦, 176 sagittal slices). Finally,
resting-state fMRI data were collected using an echo-planar
imaging sequence with the following parameters: TR = 2000 ms,
TE = 30 ms, flip angle = 90◦, FOV = 230 mm × 230 mm,
matrix = 64, thickness = 4 mm, gap = 1.2 mm. Each brain
volume consisted of 30 axial sections, and each functional run
comprised 240 volumes.

Functional MRI data preprocessing

All the images were checked using MRIcro software,1 and
then they were reviewed by two senior radiologists to check out,
in order to prevent any emergencies before data preprocessing,
for example, lacking of data. Based on MATLAB2018b
(Mathworks, Natick, MA, USA) software, Statistical Parametric
Mapping (SPM122) and Data Processing and Analysis for Brain
Imaging (DPABI3) were used for images preprocessing. The
main images preprocessing steps were as follows: first, converted
DICOM format to NII format; second, removed the first 10 time
points in order to reach a stable signal state and ensure that all
participants were fully acclimated to the scanning environment;
after that, for the remaining volumes, we conducted slice timing
and three-dimensional head motion correction to reduce the
influence of image acquisition time and head motion on the data
(The head motion correction standard: the maximum rotation
angle is less than 2◦ or the maximum displacement distance in
any direction is less than 2 mm); then, three-dimensional T1-
weighted images were segmented into white matter, gray matter,
and cerebrospinal fluid with the Diffeomorphic Anatomical

1 www.MRIcro.com

2 https://www.fil.ion.ucl.ac.uk/spm/software/spm12/

3 http://rfmri.org/dpabi

Registration Through Exponentiated Lie algebra (DARTEL);
later, the images were normalized to the standard Montreal
Neurological Institute (MNI) template and resampled to
3 mm × 3 mm × 3 mm voxels; finally, the images were
performed spatial smoothing with a Gaussian kernel of 6 mm
full width at half maximum. Besides, we used a linear
regression with the friston 24 parameter (6 head motion
parameters, 6 head motion parameters one time point before,
and the 12 corresponding squared items) (Friston et al.,
1996), cerebrospinal fluid signals and white matter signals as
interference variables from the rest of the data. See our previous
study for more details (Li H. et al., 2020; Yu et al., 2021).

Independent component analysis and
resting-state networks identification

After fMRI data processing, we used the GIFT software
to conduct the independent component analysis (ICA) with
the aim of turning the data into different brain functional
networks. The principal component analysis (PCA) was carried
out to achieve data-dimensionality reduction at the individual
level and we got 120 ICs totally. Then, the data were reduced
into 100 ICs with the help of expectation-maximization (EM)
algorithm (Do and Batzoglou, 2008). After that, the Infomax
ICA algorithm in ICASSO (Himberg et al., 2004; Kumar
et al., 2021) was conducted for 10 times and the aggregate
spatial maps were then formed. Eventually, we made group
ICA to back-reconstruct the time courses and spatial maps
of individual subjects (Wang C. et al., 2020). Among these
ICs, we also had to ensure whether the peak activation
coordinates were located in gray matter or not, and whether
the time courses were dominated by low frequency vibrations.
Based on previous studies (Shirer et al., 2012; Allen et al.,
2014; Damaraju et al., 2014), we identified 21 significant
components as RSNs and they were classified into seven RSNs
according to the spatial correlation values between ICs and
the template, including auditory network (AN), default mode
network (DMN), executive control network (ECN), language
network (LN), sensorimotor network (SMN), salience network
(SN), and visual network (VN). As shown in Table 1 and
Figure 1.

Static functional network connectivity
analysis

We used the Mancovan toolbox in GIFT to compute
the correlations between any two ICs time courses for each
participant after ICA analysis. Then, the sFNC was acquired by
computing the Pearson’s correlation coefficient between each
summary time course and every other summary time course,
thus generating a 21 × 20 matrix for each participant. Finally,
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TABLE 1 Peak coordinates of the ICs.

IC regions Tmax Peak coordinate

X Y Z

Auditory network

IC20 Bi Superior Temporal Gyrus 18.9 62.5 −18.5 8.5

Default mode network

IC23 Bi Cuneus 17.3 5.5 −98.5 14.5

IC26 Precuneus 23.7 −3.5 −80.5 45.5

IC40 Precuneus 23.1 −0.5 −69.5 9.5

IC44 Posterior Cingulate Cortex 25.8 0.5 −69.5 39.5

IC46 Medial Prefrontal Cortex 23.3 −0.5 56.5 9.5

Executive control network

IC6 L Lateral Occipital Cortex 24.2 −36.5 −71.5 47.5

IC14 Bi Middle Frontal Gyrus 18.0 62.5 −3.5 23.5

IC35 R Lateral Occipital Cortex 22.9 44.5 −57.5 53.5

IC41 Bi Lateral Occipital Cortex 25.6 41.5 −74.5 35.5

IC49 Bi Superior Parietal Lobule 20.3 21.5 −68.5 59.5

Language network

IC32 L Inferior Frontal Gyrus 21.5 −53.5 27.5 14.5

IC37 L Angular Gyrus 17.1 −56.5 −56.5 27.5

Sensorimotor network

IC8 L Pre-central/Post-central Gyrus 18.8 −36.5 −39.5 68.5

IC11 R Pre-central/Post-central Gyrus 16.4 45.5 −36.5 63.5

Salience network

IC43 Dorsal Anterior Cingulate Cortex 22.6 2.5 −12.5 74.5

IC45 Bi Insular 21.6 38.5 14.5 −23.5

Visual network

IC7 L Fusiform 12.8 −38.5 −83.5 −21.5

IC13 L Lingual 14.1 12.5 −93.5 −14.5

IC18 R Lingual 15.6 26.5 −90.5 −18.5

IC24 R Fusiform 15.4 50.5 −65.5 −21.5

ICs, independent components; L, left; R, right; Bi, bilateral.

we used a general linear model (GLM) (Poline and Brett, 2012),
with age and education as nuisance covariates to determine
the mean FNC of all subjects and which pair of FNCs was
significantly different between all COPD patients and HC. The
significance threshold was set at p < 0.01, false discovery rate
(FDR) correction.

Dynamic functional network
connectivity analysis

We used a sliding time window approach to capture the
dFNC. Since there was currently no formal consensus regarding
the window length, according to former studies (Díez-Cirarda
et al., 2017; Zhi et al., 2018), we made the window size set to 22
TRs and a Gaussian (σ = 3 TRs) and steps of 1 TR, and then
constructed a series of FNC matrices. After that, the k-means
clustering algorithm was performed on the FNC matrices and

we determined the optimal value of k (Malhi et al., 2019). Later,
the estimate clusters were computed in the standard dFNC
matrices using gap and silhouette statistic (resulting in four
states). Then the three dFNC indicators were calculated: (1)
fractional windows (the percentage of time spent in each state
out of the total time); (2) mean dwell time (the average length
of time the subjects spent in a certain state); and (3) number
of transitions (the number of times a subject switched between
different states).

Statistical analysis

The IBM SPSS 19.0 software was used to investigate the
differences in clinical information between the COPD patients
and HC. Chi-square tests were used in categorical variables,
while the independent two sample t-tests were used for
continuous variables and p < 0.05 was recognized statistically
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FIGURE 1

Spatial independent component analysis (ICA) method was used to identify independent components (n = 21). Divide the independent
component spatial maps into seven functional networks according to their anatomical and functional properties, namely, AN, DMN, ECN, LN,
SMN, SN, and VN. AN, auditory network; DMN, default mode network; ECN, executive control network; LN, language network; SMN,
sensorimotor network; SN, salience network; VN, visual network.

significant. For FNC, two sample t-tests were used to compare
the three temporal properties of dFNC in four states, and
p < 0.05 was recognized statistically significant. Moreover, the
two sample t-tests was used to compare connectivity strength in
each state between COPD and HC, with a significance threshold
of p < 0.01 (FDR corrected). The dFNC values were used
to evaluate correlations with clinical assessment scores using
Pearson’s correlation analysis, and p < 0.05 was recognized
statistically significant.

Results

Demographic and clinical data results

The demographic and neuropsychological characteristics of
both groups are summarized in Table 2. There were no obvious
differences between the COPD patients and HC in age, sex,
and education. Despite this, we still found decreased scores in
PaO2, SaO2, FVC, FEV1, FEV1/FVC, MMSE, and MoCA in
COPD patients by contrast with HC, while obviously higher
scores being exhibited for the PaCO2 and pack-years in COPD
group. Furthermore, the intracranial volume and respiratory
rates revealed no significant differences between the two groups.

Resting-state networks results

We grouped these individual components according to
their respective anatomical and functional characteristics,

thus identifying seven resting-state brain networks from the
fMRI data after ICA, namely, AN (IC20); DMN (IC23 26
40 44 46); ECN (IC6 14 35 41 49); LN (IC32 37); SMN
(IC8 11); SN (IC43 45); and VN (IC7 13 18 24). The
averaged sFNC matrix between 21 ICs in seven networks
of all subjects is shown in Figure 2A. Compared to HC,
COPD patients exhibited significantly abnormal sFNC between
DMN-ECN, DMN-LN, DMN-SMN, DMN-VN, ECN-SMN,
ECN-VN, ECN-SN, VN-LN, AN-VN, VN-SMN, and within
SN, VN. Detailed abnormal connection results are shown
in Figure 2B.

Dynamic functional network
connectivity results

According to the estimate results of cluster status, the dFNC
was clustered into four states by k-means clustering and the
centroids of the four states are presented in Figure 3 (k = 4).
It is important to note that the total number of subjects in
each state is different, as not all subjects have four states.
State I accounted for 40% (the largest occurrence frequency)
and it contained 16 COPD patients and 13 HC, which was
characterized by relatively much weaker connectivity among
all the networks. State II accounted for 16% and State III
accounted for 11% (the least occurrence frequency). The two
states exhibited relatively stronger connections within networks.
State IV occupied 32 percent, consisting of 12 COPD patients
and 19 HC, which owned highly positive connections in DMN
and VN, and relatively weaker or negative connections in other
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TABLE 2 Demographic and clinical characteristics of COPD and HC.

Characteristic COPD (N = 19) HC (N = 19) P-value

Age (years) 62.7 ± 5.9 62.3 ± 6.3 0.896

Male/Female (N) 14/5 14/5 1.000

Education (years) 5.5 ± 3.2 6.2 ± 2.7 0.453

Disease duration (years) 4.5 ± 5.6 / /

Pack-years 27.9 ± 20.5 8.3 ± 6.5 <0.001

SaO2 (%) 95.5 ± 2.6 98.2 ± 1.8 0.007

PaO2 (mm Hg) 82.6 ± 16.5 98.1 ± 19.6 <0.001

PaCO2 (mm Hg) 49.3 ± 8.0 38.5 ± 4.2 <0.001

Respiratory rate (times/min) 19.5 ± 0.6 18.3 ± 1.2 0.654

FVC (% predicted) 67.5 ± 19.9 96.7 ± 15.4 <0.001

FEV1 (% predicted) 46.1 ± 20.6 97.1 ± 16.6 <0.001

FEV1/FVC (%) 55.8 ± 16.3 81.2 ± 8.3 <0.001

MMSE 22.4 ± 3.6 27.3 ± 2.2 <0.001

MoCA 18.4 ± 4.3 26.6 ± 3.2 <0.001

Intracranial volume (cm3) 1540.20 ± 110.49 1541.79 ± 99.17 0.915

COPD, chronic obstructive pulmonary disease; HC, health controls; SaO2 , blood oxygen saturation; PaO2 , partial pressure of oxygen; PaCO2 , arterial partial pressure of carbon dioxide;
FVC, forced vital capacity; FEV1 , forced expiratory volume in the first second; MMSE, Mini-mental State Examination; MoCA, Montreal Cognitive Assessment; N, number.

FIGURE 2

The static functional network connectivity results. (A) The average static functional network connectivity matrices of all subjects between ICs
pairs were produced in entire resting state time courses. (B) The difference of static functional network connectivity between two groups in
seven networks (two sample t-tests) (p < 0.01, FDR). AN, auditory network; DMN, default mode network; ECN, executive control network; LN,
language network; SMN, sensorimotor network; SN, salience network; VN, visual network.

networks. Moreover, COPD patients showed significantly longer
mean dwell time and higher fractional windows in State I
(Tables 3, 4 and Figure 4), while no significant difference in
these two attributes in other three states. However, no significant
difference in number of transitions between two groups was
found (Table 5 and Figure 4).

We further compared the strength of connections between
the COPD and HC groups in four different states, and the results
are shown in Figure 5. In State I, compared to HC, COPD

patients showed stronger connections between ECN-DMN,
ECN-AN, ECN-VN, ECN-LN, DMN-SMN, DMN-VN, VN-LN,
and weaker connections between ECN-SMN, VN-SMN, DMN-
VN. In State II, 3 stronger connections and 1 lower connection
were found in COPD patients, including ECN-DMN, ECN-
VN, SMN-VN, and within VN. Additionally, in State III,
COPD patients exhibited 5 stronger connections and 1 lower
connection, which were primarily located in ECN-DMN, ECN-
AN, DMN-LN, and ECN-VN. Besides, abnormal connectivity
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FIGURE 3

Dynamic functional network connectivity centroids of four states, the number of subjects, and the percentage of occurrence in each state. AN,
auditory network; DMN, default mode network; ECN, executive control network; LN, language network; SMN, sensorimotor network; SN,
salience network; VN, visual network; COPD, chronic obstructive pulmonary disease; HC, health controls.

TABLE 3 Two sample t-tests of mean dwell time between the patients with COPD and HC.

State COPD (Mean ± SD) HC (Mean ± SD) t-value P-value

I 79.9 ± 83.1 22.8 ± 26.0 2.673 0.012

II 9.3 ± 17.6 17.7 ± 18.3 −1.553 0.13

III 6.4 ± 11.1 12.3 ± 15.5 −1.587 0.123

IV 21.3 ± 28.5 37.8 ± 46.4 −0.741 0.464

COPD, chronic obstructive pulmonary disease; HC, health controls; SD, standard deviation. The bold values indicate statistical significance.

TABLE 4 Two sample t-tests of fractional windows between the patients with COPD and HC.

State COPD (Mean ± SD) HC (Mean ± SD) t-value P-value

I 0.55 ± 0.38 0.26 ± 0.27 2.859 0.007

II 0.10 ± 0.18 0.22 ± 0.26 −1.437 0.159

III 0.07 ± 0.15 0.16 ± 0.23 −1.355 0.184

IV 0.28 ± 0.34 0.36 ± 0.30 −1.318 0.196

COPD, chronic obstructive pulmonary disease; HC, health controls; SD, standard deviation. The bold values indicate statistical significance.
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FIGURE 4

The relative proportion of the three dynamic functional network connectivity indicators (fractional windows, mean dwell time, number of
transitions) in the two groups. COPD, chronic obstructive pulmonary disease; HC, health controls.

TABLE 5 Two sample t-tests of number of transitions between the COPD and HC.

COPD (Mean ± SD) HC (Mean ± SD) t-value P-value

Number of transitions 4.4 ± 3.7 6.7 ± 3.6 −1.946 0.06

COPD, chronic obstructive pulmonary disease; HC, health controls; SD, standard deviation.

between ECN, DMN, SMN, SN, and VN were also found in
State IV. Overall, these abnormal functional connections mainly
occurred in DMN, ECN, and VN.

Correlation results

The correlation between the dFNC indicators and clinical
performance in the COPD group was further analyzed. We
found that the mean dwell time and fractional windows in
some states were correlated with the clinical characteristics,
especially FEV1, FEV1/FVC, PaCO2, and c-reactive protein
(CRP). Detailed information is listed in the Table 6.

Discussion

So far as we know, this is the first study to combine
ICA and FNC to explore the changes in brain networks
in COPD patients. In this study, the results have shown
that both sFNC and dFNC of the COPD patients’ brain
networks were altered. The COPD patients had longer
fractional windows and longer mean dwell time in State
I. And the changes of dFNC properties were linked to
cognitive deterioration. In summary, these results could support
the hypothesis that there is temporal variability in brain
network connectivity and the abnormal sFNC and dFNC
might have something to do with cognitive impairment in
patients with COPD.

Compared to HC, significantly abnormal sFNC among
all these resting-state networks in COPD patients could
be seen. The ECN is responsible for initiation, planning,
organization, and decision-making (Tuchscherer et al., 2010).
The DMN, which is mainly responsible for social cognition,
working memory, decision-making, and awareness (Buckner
and DiNicola, 2019), consists of the discrete, bilateral and
symmetrical cortical areas in the medial prefrontal cortex,
posterior cingulate cortex, and precuneus (Raichle, 2015). In
previous researches on neurological or psychiatric diseases like
temporal lobe epilepsy and normal aging, the changes of ECN
and DMN have been confirmed to be related to cognitive
impairment to a certain extent (Chand et al., 2017; Zhang
et al., 2020). Our results showed that the decreased sFNC of
COPD patients were mainly concentrated on SMN, DMN, SN,
and ECN. Simultaneously, the COPD group exhibited increased
sFNC between DMN, ECN, SMN, and within VN. In addition,
we also found that there are basically abnormal functional
connections between the various networks, and the overall
situation is in a messy state. All findings may represent that
cognitive impairment in COPD patients is not only manifested
in the impairment of lower-level perceptual brain networks, but
also in various higher-level cognitive functions, especially those
responsible for the DMN and ECN.

The loose and weak connections in State I, the meaning of
inefficient functional integration and less flexible interaction,
indicates that all kinds of advanced cognitive functions that
should have been completed through the interaction between
various brain regions cannot be performed well. And another
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FIGURE 5

The visualization of dynamic functional network connection intensity differences in each state. Red line indicates higher functional connection
strength in COPD compared to HC group, while the blue line represents reduction. AN, auditory network; DMN, default mode network; ECN,
executive control network; LN, language network; SMN, sensorimotor network; SN, salience network; VN, visual network.

point to note is that the fractional windows and mean dwell
time increased significantly in State I. We speculated that it is the
weak connectivity and the long mean dwell time in State I that
leads to the poor connection and sparse interaction of related
brain regions, which may be one of the pathogenesis of cognitive
impairment in COPD patients. The incidence of the segregated
State I was observed more frequently in COPD patients,
which confirms our hypothesis further that the temporal
characteristics are related to cognitive impairment indeed.
Coincidentally, a study of cirrhosis and hepatic encephalopathy
showed that patients spent significantly longer mean dwell time
and fractional windows in State IV (the weakest FNC of all
networks), and there was a significant correlation between these
two properties and psychometric hepatic encephalopathy score,
which is mainly related to cognitive function (Jiang et al., 2020).
This is somewhat similar to what we have found. The common
feature of State II and State III was that the FC between ECN
and DMN is strong, while the results found patients had the
least fractional windows and the shortest mean dwell time in
these two states. We believed that it is this short stay that is not

conducive to the communication and further causes cognitive
impairment.

We compared the differences in the strength of dFNC
across states and found that aberrant interactions were mainly
manifested in these networks, DMN, ECN, and VN included.
The activated brain regions in the DMN of COPD patients,
were found to develop significantly different FC values, and
the FC values were less than that of normal controls, in
the meanwhile, the mutation of FC values was correlated
well with cognitive function and pulmonary function (Hu
et al., 2018). The ECN covers several medial-frontal areas,
including anterior cingulate and paracingulate, and these brain
areas correspond to several cognition paradigms, as well as
action-inhibition, emotion, and perception-somesthesis-pain
(Smith et al., 2009). Previous studies have pointed out that
the ECN is prone to be active during cognitive tasks, and
dysregulation of this network is thought to affect perception
and corresponding sensory cortical activity, but during this
period, the DMN is deactivated (Brewer et al., 2011; Hemington
et al., 2016; Zou et al., 2021). That is to say, the relationship
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TABLE 6 Correlations between temporal properties of dFNC and clinical characteristics in COPD patients.

MoCA MMSE ESS FEV1 FVC FEV1/FVC PaO2 PaCO2 SaO2 pH CRP

Fractional windows in State I r −0.072 0.039 0.106 −0.455 −0.256 −0.368 −0.233 0.383 −0.386 −0.507* 0.545*

p 0.769 0.875 0.667 0.050 0.290 0.121 0.337 0.105 0.103 0.027 0.016

Fractional windows in State II r 0.316 0.156 −0.029 0.725** 0.260 0.559* 0.291 −0.609** 0.440 0.496* −0.104

p 0.187 0.523 0.907 0.000 0.283 0.013 0.227 0.006 0.059 0.031 0.673

Fractional windows in State III r 0.170 0.016 0.034 0.672** 0.057 0.491* 0.030 −0.368 0.309 0.445 −0.064

p 0.487 0.948 0.889 0.002 0.815 0.033 0.904 0.121 0.198 0.056 0.795

Fractional windows in State IV r −0.091 −0.189 −0.242 0.135 0.216 0.264 0.027 −0.214 0.132 0.399 −0.392

p 0.710 0.438 0.319 0.582 0.375 0.274 0.913 0.379 0.589 0.091 0.097

Mean dwell time in State I r 0.087 0.168 0.239 −0.558* −0.302 −0.556* −0.323 0.405 −0.447 −0.514* 0.491*

p 0.723 0.492 0.325 0.013 0.209 0.013 0.177 0.086 0.055 0.024 0.033

Mean dwell time in State II r 0.331 0.166 −0.036 0.705** 0.258 0.545* 0.279 −0.637** 0.415 0.491* −0.051

p 0.167 0.497 0.885 0.001 0.287 0.016 0.247 0.003 0.077 0.033 0.836

Mean dwell time in State III r 0.226 0.028 0.092 0.638** 0.026 0.466* −0.011 −0.413 0.283 0.488* −0.043

p 0.353 0.910 0.707 0.003 0.917 0.044 0.966 0.079 0.240 0.034 0.863

Mean dwell time in State IV r −0.076 −0.151 −0.274 0.137 0.243 0.255 0.047 −0.212 0.154 0.409 −0.360

p 0.757 0.536 0.257 0.577 0.316 0.291 0.849 0.383 0.529 0.082 0.130

Number of transitions r 0.041 −0.114 −0.116 0.672** 0.267 0.729** 0.191 −0.600** 0.390 0.599** −0.230

p 0.868 0.641 0.636 0.002 0.269 0.000 0.434 0.007 0.098 0.007 0.344

dFNC, dynamic functional network connectivity; COPD, chronic obstructive pulmonary disease; HC, health controls; MoCA, Montreal Cognitive Assessment; MMSE, Mini-mental State
Examination; FEV1 , forced expiratory volume in the first second; FVC, forced vital capacity; PaO2 , partial pressure of oxygen; PaCO2 , arterial partial pressure of carbon dioxide; SaO2 ,
blood oxygen saturation; pH, negative logarithm of hydrogen ion concentration in a standard volume of arterial blood sample; CRP, c-reactive protein.
*p < 0.05, **p < 0.01.

between DMN and ECN is considered to be mutually inhibiting
(Zou et al., 2021). Our results exhibited an increase of the
sFNC and dFNC between DMN and ECN, suggesting that
it may be due to the abnormality of the SN, that leads to
functional crosstalk between them. Therefore, the unbalanced
state may let the internal stimulation tasks get disordered, and
brain activities cannot be performed in a normal functional
isolation state, resulting in a significant increase in the FC
between them. Increased FC between ECN and DMN also has
been found in many other cognition-related diseases, such as
co-occurrence of schizotypy and obsessive-compulsive traits
(Wang Y. M. et al., 2020) and Lennox-Gastaut syndrome
(Warren et al., 2017).

Changes in visual information processing can cause
cognitive impairment (Yener et al., 2014). Previous research
also found that COPD patients showed decreased FC within
the VN and it was positively correlated with the MoCA,
language-domain score and attention-domain score (Wang
W. et al., 2020). We observed a decrease in dFNC within
the VN, the symbol of functional segregation, may become
the reason why decreased visual resources could lead to
cognitive impairment. We speculated that it may be due
to the change in the volume of gray matter in the VN-
related brain regions, resulting in a decrease in the interaction
between VN and other networks, which further causes
visual information to fully stimulate the corresponding
higher-level networks in failure, thereby causing cognitive
impairment. In our study, we found reduced FC between

VN and ECN, DMN, and the results are consistent with our
speculation.

The SN, consisting of the anterior insula and the
anterior cingulate cortex, functions to segregate the most
relevant among internal and external stimuli in order to
guide behavior (Menon and Uddin, 2010). If we compare
the brain networks to plenty of railways, the SN is the
console on the railway, distinguishing the various stimuli, and
then controlling the “trains” to reach different destinations
through different railways. Our research showed that COPD
patients are more prone to exhibit increased dFNC between
SN and other networks, and decreased dFNC within VN.
This would lead to a chaos in the interaction between
SN and other networks, so that various internal stimuli
can randomly activate the different brain networks in an
unselective manner. Abnormal connectivity about SN also
has previously been shown to be related with cognitive
impairment, which is consistent with our results (Song et al.,
2021). Thence, the misallocation and unequal allocation
of corresponding cognitive resources could also be an
explanation for why COPD patients suffer from cognitive
impairment. In addition, the abnormal connections between
several other networks were also found, including AN,
LN, and SMN. Compared with the higher-level cognitive
networks mentioned above, these are all lower-level cognitive
networks. Many scholars have studied their association with
cognitive impairment before and they are also more or less
involved in the pathogenesis of cognitive impairment. For
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example, the dysexecutive factor in Parkinson’s disease was
independently related to decreased connectivity in the SMN
(Lang et al., 2019).

Furthermore, in our study, the correlation analysis
on dFNC temporal properties and clinical characteristics
in COPD patients showed that fractional windows, mean
dwell time in States II and III were positively associated
with FEV1 and FEV1/FVC, meaning that longer time
spent in these states was related with lower lung COPD
severity. On the contrary, we discovered negative correlation
between the dFNC temporal characteristics in State I
and some clinical indicators such as FEV1, FEV1/FVC
and pH. Considering the high percentage on fractional
windows and long mean dwell time in State I of COPD
patients, this may be the reason why many COPD patients
have poor lung function. And in State I, we also found
positive correlation about CRP. High level of CRP, the
early indicator of infectious or inflammatory conditions,
could increase the risk of death in stable COPD patients
(Clyne and Olshaker, 1999; Fermont et al., 2019). And a
study found that chronic inflammation may contribute to
neurodegenerative brain changes that underlie differences
in cognitive ability in later life (Conole et al., 2021).
Therefore, we have reasons to believe that increased CRP
level is closely related to cognitive impairment in COPD
patients.

Our study also has certain limitations and defects in some
aspects. First, it was relatively limited just in 38 samples
although this meets the requirements of statistics. Subsequent
studies suggest a larger sample size based on our study.
Second, the research was just based on ICA method and
other measures like seed-based FC analysis and ALFF were
not taken into account, and we only studied the resting-
state networks extracted by ICA without considering the
influence of other brain networks. Thus, the advantages and
disadvantages of it and other methods in studying brain
networks still need to be further explored. In addition, although
all the participants were told not to think about anything
and keep relatively still during the MRI scan, we still could
not be sure if they actually made it and how much it would
affect the results.

Conclusion

On the whole, our study showed that both sFNC and
dFNC of COPD patients have undergone significant changes
which are associated with cognitive impairment. And there is
temporal variability in brain network connectivity in COPD
patients. These findings help us understand the underlying
neural mechanisms of cognitive impairment in COPD patients,
and the dFNC with its attributes might be used as biomarkers
for assessment of cognitive impairment in COPD patients.
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