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Abstract 

Purpose: to propose a two-step non-local principal component analysis (PCA) method 

and demonstrate its utility for denoising diffusion tensor MRI (DTI) with a few 

diffusion directions. 

 

Methods: A two-step denoising pipeline was implemented to ensure accurate patch 

selection even with high noise levels and was coupled with data preprocessing for g-

factor normalization and phase stabilization before data denoising with a non-local PCA 

algorithm. At the heart of our proposed pipeline was the use of a data-driven optimal 

shrinkage algorithm to manipulate the singular values in a way that would optimally 

estimate the noise-free signal. Our approach’s denoising performances were evaluated 

using simulation and in-vivo human data experiments. The results were compared to 

those obtained with existing local-PCA-based methods. 

 

Results: In both simulation and human data experiments, our approach substantially 

enhanced image quality relative to the noisy counterpart, yielding improved 

performances for estimation of relevant DTI metrics. It also outperformed existing 

local-PCA-based methods in reducing noise while preserving anatomic details. It also 

led to improved whole-brain tractography relative to the noisy counterpart. 

 

Conclusion: The proposed denoising method has the utility for improving image 

quality for DTI with reduced diffusion directions and is believed to benefit many 

applications especially those aiming to achieve quality parametric mapping using only 

a few image volumes. 
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Introduction   

Diffusion MRI (dMRI) provides a noninvasive way to detect tissue microstructure information 

by probing the Brownian motion of water molecules [1-2]. It is widely used in clinical diagnosis 

and neuroscience studies to measure the changes in diffusive properties of tissue micro-environment 

and connective features of the neural fibers [3-6]. However, one major challenge for dMRI is its 

intrinsically low signal-to-noise ratio (SNR) which hinders data acquisition with high resolution 

and/or high diffusion weighting [7-8]. It is shown that the low SNR resulting from pushing the 

resolution and/or diffusion weighting can reduce the accuracy of estimation of crossing fibers [9]. 

One way to maintain sufficient SNR is to acquire multiple scans for averaging. However, this will 

increase the scan time, which is undesirable for human studies. Thus, it is important to develop a 

postprocessing method (such as denoising) to improve SNR for dMRI without increasing the scan 

time. 

Over the past decades, researchers have proposed various image denoising methods for 

filtering dMRI data before downstream diffusion analysis. This includes non-linear smoothing[10-

12], non-local means[13], wavelet-domain filtering[14], principal component analysis (PCA) based 

approaches[15-16], among many others . A comprehensive review on denoising methods suitable 

for dMRI can be found in Ma et al[17]. Most notably, image denoising methods based on local 

PCA[15-20] (L-PCA) has been drawing increasing attention in recent years due in large to their 

demonstrated effectiveness in improving image quality for dMRI data.  

L-PCA methods aim to denoise 4D dMRI series (3D space + 1D diffusion direction) by 

manipulating singular values obtained from the singular value decomposition (SVD) of local data 

patches. Local data patches for individual image voxels of interest can be obtained by sliding a 

kernel in space across the image field of view (FOV) and considering local data across all diffusion 

direction volumes. For each image voxel in space, this results in a local 4D data patch centered on 

the image voxel under consideration. The local 4D data patch is then used to form a Casorati matrix 

with which to estimate the underlying noise-free signal for every voxel within the 4D data patch. 

The estimation of underlying noise-free signal can be fulfilled using optimal singular value 

thresholding or shrinkage, assuming that the associated Casorati matrix is of low rank. As a result, 

multiple estimates of underlying noise-free signals are obtained for every image voxel, which can 

be aggregated (e.g., using weighted averaging) on a voxel-by-voxel basis when using a patch-based 
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approach to form the final denoised 4D diffusion volumes.  

The usefulness of L-PCA methods has been demonstrated for denoising both magnitude[15-

19] and complex-valued[20-21] dMRI data. Although meant to remove Gaussian noise, L-PCA 

methods are shown effective for denoising magnitude data with Rician noise especially when SNR 

is relatively high[18]. However, when SNR becomes low (e.g., under ~5), directly using L-PCA 

methods in the magnitude domain (i.e., to denoise magnitude data) would not work as well because 

the Rician distribution starting to substantially deviate from the Gaussian counterpart. In this case, 

it is shown[17] that converting the Rician data into Gaussian-like data via variance stabilizing 

transformation (VST)[22] can help improve the denoising performances. For data with further 

reduced SNR (e.g., when pushing the resolution to the limit), it is best practice to denoise in the 

complex domain (i.e., to denoise complex-valued data which are usually Gaussian distributed) to 

leverage the L-PCA methods and maximize their denoising performances. Previous studies]17,20] 

have shown that denoising in the complex domain outperformed that in the magnitude domain with 

or without VST.   

We note that the efficacy of L-PCA methods heavily rely on sufficient data redundancy 

available in the diffusion dimension to ensure the low rankness of individual Casorati matrices when 

formed using local data patches. This is usually the case when acquiring dMRI with many image 

volumes or diffusion encoding directions such as in high angular resolution diffusion imaging 

(HARDI)[23]. However, when acquiring dMRI with few diffusion encoding directions such as in 

diffusion tensor imaging (DTI)[24], using L-PCA methods is likely to lead to sub-optimal denoising 

performances, due in large part to the lack of data redundancy in the diffusion direction dimension. 

In this case, a better choice would be to use a non-local PCA (NL-PCA) approach[25-27] where 

similar non-local data patches are identified and used to form the Casorati matrix to promote its low 

rankness by including the data similarity available in space.   

A key procedure involved in NL-PCA approaches is patch selection or patch matching based 

on image self-similarity. In patch selection, non-local patches that have similar image content to the 

reference patch (i.e., the local 4D data patch of the image voxel under consideration) are identified 

in a predefined searching zone (e.g., across the entire image FOV). The similarities of non-local 

patches to the reference patch can be evaluated by calculating their Euclidian distances to the 

reference patch. The efficacy of Euclidian distances in determining similar non-local patches has 
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been demonstrated for existing denoising methods[25-26] aiming to capitalize on grouping similar 

non-local patches. However, when denoising images with low SNR, the calculation of Euclidian 

distances may be inaccurate due in large to high noise levels, degrading the patch selection. In this 

case, it is shown[27] that patch selection can be effectively improved by basing the calculation of 

Euclidian distances on pre-denoised “guide” images.    

Here, we propose an improved NL-PCA approach for denoising complex-valued 4D timeseries 

with a few image volumes and demonstrate its effectiveness in improving image quality for DTI. 

Preliminary results are reported in the format of conference abstracts[28-29]. Our improved NL-

PCA approach is devised to have two steps, with step 1 aiming to provide the pre-denoised images 

that are used to guide the patch selection for step 2 to fulfill the task of NL-PCA denoising. We 

evaluated the efficacy of our NL-PCA approach using both simulation at 3 Tesla (3T) and in-vivo 

human data experiments at 7T. The human brain data were collected using a commercially available 

32-channel receive RF head coil (Nova 1Tx/32Rx). In both simulation and in-vivo human data 

experiments, our results showed that our improved NL-PCA approach largely improved the image 

quality for DTI with nine image volumes when compared to the noisy counterpart, outperforming 

existing L-PCA methods. 

 

Method  
We implemented the proposed non-local PCA denoising method in MATLAB (The Mathworks 

Inc., Natick, MA). The source code will be made publicly available at 

https://github.com/ye135246/Non_local_denoise. To demonstrate the efficacy of our proposed 

method, both simulation and in-vivo human data experiments were carried out where the 

proposed method was applied to DTI data. The results were compared to those obtained without 

denoising, as well as those using two L-PCA approaches: MPPCA[18] (applied to magnitude 

images as originally proposed) and NOise reduction with DIstribution Corrected (NORDIC) 

PCA[20]. For both simulation and in-vivo data experiments, MPPCA denoising was performed 

by using the implementation in the MRtrix3 package [30], whereas NORDIC was implemented 

based on the code shared at https://github.com/SteenMoeller/NORDIC_Raw. 
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Two-step non-local PCA denoising 

We performed image denoising in the complex domain (i.e., to denoise complex-valued 

images) by devising a two-step non-local PCA method (Fig. 1). Our proposed two-step method 

started with data preprocessing where the input noisy complex-valued images underwent phase 

stabilization (i.e., to remove background phases and direction-dependent phases) and g-factor 

normalization (i.e., to account for spatial variations due to g-factor). Phase stabilization was 

performed using the same way as in NORDIC. G-factor normalization was achieved by 

dividing the phase stabilized data by an estimated g-factor map. The g-factor map was estimated 

by applying the MPPCA approach [18] (with a sliding spatial kernel of size 5×5×5) only to the 

real part of the phase stabilized noisy data.  

The preprocessed complex-valued noisy images were then fed into a two-step denoising 

pipeline. In step 1, only the real part of the input images was considered and denoised with 

MPPCA, creating intermediate images with improved quality to facilitate patch selection. For 

each spatial location in the 3D space, a 4D patch (i.e., 3D space + 1D diffusion direction) was 

extracted and its similarity to every other non-local patch inside a prescribed neighborhood in 

space was evaluated by calculating the Euclidian distance. In step 2, the preprocessed complex-

valued noisy images were denoised with a non-local PCA algorithm, for which patch selection 

was guided by the calculation of Euclidian distances conducted in step 1. Specifically, each 

noisy patch was grouped with Q similar non-local patches (i.e., the first Q non-local patches 

with the smallest Euclidian distances to the patch) to form the Casorati matrix. The value Q 

was adaptively updated. Here, we defined the similar patches as those whose distance was 

smaller than 1.25 × 𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚, where 𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚 is the smallest distance between all other patches with 

the selected patch. The Casorati matrix’s low-rank components were estimated using optimal 

singular value shrinkage [31] given its demonstrated denoising efficacy identified in our 

previous study[17]. Patch averaging similar to Ma et al. [17] was used to form the output images 

of step 2, which in turn were further postprocessed to form the final denoised complex-valued 

images by multiplying with g-factors and restoring the smooth phases that had been removed 

in phase stabilization. In both steps, 4D patches were formed by sliding a spatial kernel of size 

5×5×5 across the image FOV with a step size of 2.  
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Simulation experiment 

We started with a simulation experiment to demonstrate the efficacy of our proposed 

denoising method for DTI. Synthetic data were generated as follows. Noise-free magnitude 

data were simulated based on part of a single subject’s 3T Human-Connectome-Project (HCP) 

preprocessed dMRI data [32]. Specifically, a total of 108 images (including 18 b=0 and 90 

b=1000 s/mm2 images) obtained at 1.25-mm resolutions was used to fit a tensor model with 

fsl’s dtifit routine. The obtained tensor in turn was used in a DTI signal model [33] to synthesize 

noise-free magnitude data comprising a total of nine images (including one b=0 and eight 

b=1000 s/mm2 images). Then noise-free magnitude data were manipulated with second-order 

smooth phase variations to synthesize the noise-free complex-valued data.  

Noise-corrupted DTI data with different noise levels were synthesized by adding 3D 

spatially-varying Gaussian noise to noise-free complex-valued data (serving as a gold standard). 

Specifically, spatially-varying Gaussian noise was added to both real and imaginary parts of 

noise-free data. The noise level was defined by the ratio of the maximum standard deviation 

(std) of the underlying Gaussian noise and the maximum signal intensity of the noise-free b0 

image. Noisy data with noise levels ranging from 1% to 10% in steps of 1% were created. 

For each noise level, the denoising performance of our proposed method was evaluated by 

comparing the final denoised images to the gold standard images in the magnitude domain. This 

was done by calculating two image quality assessment metrics: Peak SNR (PSNR) and 

Structure Similarity (SSIM) [34]. Both PSNR and SSIM values were calculated by considering 

all images including the b0 image.  

Furthermore, diffusion analysis was conducted to investigate how our proposed denoising 

method would improve DTI. For this, diffusion tensor model was fit for the denoised magnitude 

images using FSL’s dtifit routine to obtain DTI metrics including fractional anisotropy (FA) and 

mean diffusivity (MD). For each DTI metric, the normalized root mean square error (nRMSE) 

was evaluated to measure the deviation from the gold standard which was obtained by fitting 

the diffusion tensor model to the noise-free images. In all cases, the results were compared to 

those obtained from the noisy counterparts, and those from the denoised images using MPPCA 

and NORDIC (both with a sliding kernel of size 5×5×5).  
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In vivo data experiment 

We also performed in-vivo human data experiment to evaluate the denoising performances of 

our proposed method. For this, brain dMRI data were collected with higher spatial resolutions 

on a 7T Siemens Terra scanner (Siemens, Erlangen, Germany) equipped with a body gradient 

(capable of 80 mT/m maximum gradient strength and 200 T/m/s maximum slew rate). One 

healthy adult who signed a consent form approved by the local Institutional Review Board was 

scanned using the commercial Nova 32-channel receive coil. Multiband-accelerated whole-

brain DTI data were acquired at 0.9-mm isotropic resolutions using single-shell q-space 

sampling (b=1500 s/mm2) as in the 7T HCP protocol [35]. Other relevant imaging parameters 

were: 2-fold multiband acceleration, 3-fold in-plane acceleration, and TR/TE=7000/70 ms. The 

dataset comprised 20 averages in total, each with nine image volumes (corresponding to one b0 

and eight diffusion directions). Each average consisted of two runs with opposed phase encodes: 

One with Anterior-Posterior (AP) and the other PA phase encodes to allow for correction of 

geometric distortions in the subsequent diffusion image preprocessing.   

All original dMRI data were reconstructed offline in MATLAB using a custom 

reconstruction program. Multi-channel images of individual receive channels were first 

reconstructed using an improved 3D GRAPPA algorithm (involving a new 2-stage N/2 ghost 

correction and the GRE single-band reference for improved reconstruction) [36], and were then 

combined via adaptive coil combination [37] to form the final noisy complex-valued diffusion 

images. 

We randomly chose a single average for denoising. The denoising was done at the run level, 

i.e., the two runs (of nine images each) were denoised separately as in Ma et al[17]. The 

background voxels were excluded in the denoising processes for improved computation 

efficiency.  

The denoised single average images were then preprocessed in the magnitude domain 

following the HCP pipeline [38] to correct for head motion and EPI distortion. This was done 

by using FSL's topup and eddy routines[39-40]. Further, the corrected images were registered 

to the volunteer’s native structural volume space defined by T1-weighted (T1w) and T2w 

images at 0.7-mm isotropic resolutions as in our previous studies[17,41-42].  

Finally, we performed diffusion analysis using the denoised single average images to 
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derive DTI metrics including FA and MD as in the simulation experiment. The results were 

compared to those derived from the dataset with 20 averages (serving as a reference). Note that 

all preprocessed images of the 20 averages were treated as independent volumes with no prior 

averaging in the image domain when used to fit a diffusion tensor model. DTI analysis results 

for the same single average without denoising, denoised using MPPCA and denoised using 

NORDIC were also obtained for comparison.   

 

To investigate how our proposed denoising method would improve fiber tracking, we 

created whole-brain tractography using the DTI analysis results for the denoised single average 

images. This was done in the DSI studio (https://dsi-studio.labsolver.org/) using a deterministic 

fiber tracking algorithm [43] with augmented tracking strategies [44] for improved 

reproducibility. The anisotropy threshold was randomly selected. The angular threshold was 

randomly selected from 15 to 90 degrees. The step size was set to voxel size. Tracks with a 

length shorter than 30 or longer than 200 mm were discarded. A total of one million seeds were 

placed. The resultant whole-brain tractography was compared to that obtained using the same 

single average but without denoising.   

 

Results  

Simulation 

Our proposed method substantially improved the image quality relative to the noisy 

counterparts across all noise levels under testing (Fig. 2), increasing both PSNR and SSIM 

values. Quantitatively, PSNR increased by 10.8% (~53 vs ~48) at 1%, by 15.9% (~49 vs ~42) 

at 2%, by ~19.6% (~46 vs ~38) at 3%, by 22.4% (~44 vs ~36) at 4%, by ~24.7% (~42 vs ~34) 

at 5%, and by 26.6% (~41 vs ~32) at 6% noise level, by 28.1% (~40 vs ~31) at 7%, by ~29.3% 

(~39 vs ~30) at 8%, and by 30.4% (~38 vs ~29) at 9%, by 31.3% (~37 vs ~28) at 10% noise 

level whereas SSIM increased by 0.6% (~0.99 vs ~0.99) at 1%, by 2.6% (~0.99 vs ~0.97) at 

2%, by ~5.9% (~0.99 vs ~0.93) at 3%, by 10.2% (~0.98 vs ~0.89) at 4%, by ~15.1% (~0.97 vs 

~0.85) at 5%, and by 20.3% (~0.96 vs ~0.80) at 6%, by 25.7% (~0.95 vs ~0.76) at 7%, by ~30.8% 

(~0.94 vs ~0.72) at 8%, and by 35.8% (~0.92 vs ~0.68) at 9%, by 40.3% (~0.91 vs ~0.65) at 
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10% noise level. Our proposed method also outperformed both MPPCA and NORDIC in 

improving image quality especially at higher noise levels, increasing PSNR by up to ~16.7% 

(~37 vs ~31) relative to MPPCA and by up to ~12.8% (~39 vs ~34) relative to NORDIC while 

increasing SSIM by up to ~9.5% (~0.91 vs ~0.83) relative to MPPCA and by up to ~9.9% 

(~0.91 vs ~0.83) relative to NORDIC.    

The improvement in image quality with our proposed method was further confirmed by 

examining the diffusion weighted images at two representative noise levels of 4% and 6% (Fig. 

3). Our proposed method substantially reduced the noise compared to the noisy counterpart, 

restoring fine brain structure across the brain. It also reduced the noise more effectively than 

both MPPCA and NORDIC, bringing the image quality closer to that of the gold standard 

especially at a higher noise level.  

The improvement in image quality with our proposed method relative to the noisy images 

translated into increased performances for estimation of DTI metrics at all noise levels under 

consideration (Fig. 4), reducing nRMSE values for both FA and MD. Quantitatively, nRMSE 

decreased by 31.9% (~5.7% vs ~8.4%) at 1%, by 42.8% (~8.9% vs ~15.6%) at 2%, by ~50.8% 

(~11.4% vs ~23.1%) at 3%, by 55.8% (~13.2% vs ~29.8%) at 4%, by ~59.4% (~14.4% vs 

~35.4%) at 5%, and by 61.5% (~15.4% vs ~40.0%) at 6%, by 62.4% (~16.4% vs ~8.69%) at 

7%, by 62.2% (~17.6% vs ~46.5%) at 8%, by ~61.3% (~18.9% vs 48.8%) at 9%, by 59.5% 

(~20.5% vs ~50.6%) at 10% noise level for FA, whereas by 22.2% (~3.0% vs ~3.9%) at 1%, 

by 33.1% (~5.1% vs ~7.6%) at 2%, by 41.1% (~6.7% vs ~11.4%) at 3%, by 46.2% (~8.1% vs 

~15.0%) at 4%, by ~49.3% (~9.3% vs ~18.4%) at 5%, and by 50.4% (~10.6% vs ~21.5%) at 

6%, by 50.3% (12.0% vs ~24.2%) at 7%, by 49.8% (~13.3% vs ~26.6%) at 8%, by ~48.8% 

(~14.7% vs ~28.8%) at 9%, and by 47.4% (~16.2% vs ~20.4%) at 10% noise level for MD. Our 

proposed method also outperformed both MPPCA and NORDIC in improving estimation 

performances, reducing nRMSE for FA by up to ~33.9% (~17.6% vs ~26.6%) relative to 

MPPCA at 8% noise level and by up to ~33.6% (~17.6% vs ~26.5%) relative to NORDIC at 8% 

noise level while reducing nRMSE for MD by up to ~36.5% (~10.7% vs ~16.8%) relative to 

MPPCA at 6% noise level and by up to ~36.3% (~10.7% vs ~16.7%) relative to NORDIC at 8% 

noise level. 
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The improvement in the estimation of DTI metrics using our proposed method, relative to 

the noisy images, was further confirmed by comparing FA and MD maps at two representative 

noise levels of 4% and 6% (Fig. 5). Our proposed method significantly enhanced both FA and 

MD maps, enabling visualization of fine brain structures. It also reduced the noise more 

effectively than MPPCA or NORDIC, bringing both FA and MD maps closer to those of the 

gold standard with less noise presented especially around the center of the brain.  

 

In vivo experiments 

 Likewise, our proposed method largely improved the image quality for the in vivo dMRI 

at 0.9-mm isotropic resolutions (Fig. 6), enabling fine brain structures to be visualized across 

the whole brain when compared to the noisy counterpart. Visually, our method outperformed 

both MPPCA and NORDIC, improving noise reduction in general. Similar results to the 

simulation experiments were observed when comparing the DTI metrics (Fig. 7). Our proposed 

method outperformed both MPPCA and NORDIC, leading to FA values visually closer to the 

20 averages while providing less underestimated MD values, especially in CSF as indicated by 

arrows. The improvement in performances for estimation of DTI analysis with our proposed 

method relative to the noisy counterpart was found to translate into an improvement in whole-

brain fiber tracking (Fig. 8). The use of our proposed method effectively removed most of the 

spurious fibers observed for the noisy data, visualizing more clearly major fiber tracts (such as 

corpus callosum) and other short-range fibers across the entire brain.  

 

Discussion 

We proposed an improved non-local PCA approach suitable for denoising complex-valued 

dMRI images with a few diffusion directions. The efficacy of our proposed denoising approach 

was demonstrated for improving image quality of DTI using 3T synthetic and 7T in-vivo human 

data experiments. Critical to the effectiveness of our proposed approach was the 

implementation of a two-step denoising pipeline to ensure accurate patch selection even with 

high noise levels. Our proposed two-step denoising pipeline is coupled with data preprocessing 

in which original noisy data undergo g-factor normalization and phase stabilization before 
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being denoised with a non-local PCA algorithm. At the heart of our proposed denoising pipeline 

is the use of a data-driven optimal shrinkage algorithm to manipulate the singular values in a 

way that would optimally estimate the noise-free signal. We validated our proposed denoising 

pipeline by conducting a simulation study where synthetic DTI data with nine image volumes 

were created based on a single subject’s data randomly chosen from the 3T HCP diffusion 

database. Our simulation results (Figs. 2-5) show that our proposed two-step non-local PCA 

approach can substantially improve image quality while enhancing the estimation of DTI 

metrics relative to the original noisy images especially at higher noise levels and that it can 

provide better denoising performances than existing local PCA methods. We also showcased 

the usefulness of our proposed denoising pipeline by collecting 7T whole-brain DTI at 0.9 mm 

isotropic resolutions with nine image volumes. Likewise, our in-vivo results (Figs. 6-8) show 

that our proposed approach can largely enhance image quality and down-stream diffusion 

analyses when compared to the original noisy counterpart, outperforming existing local PCA 

methods.  

Our proposed denoising method is devised to start with data preprocessing in which the 

input noisy complex-valued dMRI data are preprocessed with phase stabilization and g-factor 

normalization. Phase stabilization is meant to eliminate volume to volume phase variations, 

thereby improving the low rankness in the subsequently created Casorati matrices. G-factor 

normalization is meant to remove the effect of spatially varying noises (due in large to the use 

of parallel imaging) so that the subsequently created Casorati matrices (based on the normalized 

data) are compatible with the employed optimal singular value shrinkage, a nonlinear singular 

value manipulation function derived assuming a natural data model[17,31] with zero-mean and 

unity-variance Gaussian noise. As in NORDIC[20], the image preprocessing is found to play a 

pivotal role in ensuring the denoising performances of our proposed two-step nonlocal PCA 

method. Indeed, our results (Fig. S1) from a pilot study show that including the image 

preprocessing would largely improve the denoising performances of our two-step denoising 

pipeline, increasing PSNR by up to ~8% (36.6 vs 33.8 for when excluding the image 

preprocessing at a noise level of 7%) and eliminating the artifacts that would otherwise be 

observed especially at higher noise levels.   

In the data preprocessing of our proposed denoising method, g-factor normalization is 
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performed after phase stabilization. This is to capitalize on the improved low rankness of the 

subsequent Casorati matrices when formed using the phase-stabilized data. Moreover, the noise 

estimation necessary for g-factor normalization is implemented by applying MPPCA only to 

the real part of the phase-stabilized data to avoid the potential contamination from the imaginary 

part (which is considered to have little signal in it). Indeed, our results (Fig. S2) from a pilot 

study aiming to optimize noise estimation with MPPCA given the phase-stabilized data show 

that applying MPPCA to the real part would result in much more accurate noise estimation than 

applying MPPCA to the complex-valued data across the noise levels and kernel sizes under 

consideration. Our results (Fig. S2) also show that using a sliding kernel of size 5×5×5 (as 

chosen in the current study) would lead to best noise estimation performances especially at 

higher noise levels (≥ ~4%) when compared to use of smaller or larger kernel sizes.      

In the current implementation of our proposed two-step denoising method, we used 

MPPCA for two tasks: 1) to estimate noise in data preprocessing for g-factor normalization and 

2) to denoise the preprocessed data in step 1 for creating the initial denoised images. However, 

these two tasks can also be fulfilled using alternative methods. For example, noise estimation 

in data preprocessing may be accomplished using a noise estimator tailored for Gaussian data, 

such as the one described in Gavish and Donoho[46] that works based on the median singular 

value of noise-corrupted data and the median of the Marcenko-Pastur distribution. The initial 

denoised images in step 1 may be obtained using other denoising approaches such as adaptive 

non-local means filtering[13]. Part of our future work is to investigate how the integration of 

alternative noise estimation and denoising methods in place of MPPCA would affect the 

denoising performances of our two-step denoising pipeline. 

The results from our simulation experiments (Fig. 2) suggest that the use of our proposed 

two-step denoising method can effectively remove the negative impact of thermal noise, 

improving the image quality of a single average noisy data. To find out how many averages this 

improvement in image quality would be comparable with, we performed additional simulation 

study where the image quality of a single average denoised using our proposed method was 

compared to those obtained by averaging. Our results (Fig. S3) comparing PSNR and SSIM at 

various noise levels show that the use of our proposed method to denoise a single average would 

improve image quality to a level comparable to what is attainable with 10-15 averages 
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especially at noise levels greater than ~2%.       

In this study, we demonstrated the utility of our proposed two-step non-local PCA 

denoising method for improving DTI image quality by considering data acquisition with nine 

image volumes. When denoising in the complex domain, the results (Figs. 2 and 3) from our 

simulation experiment show that our proposed method can outperform a local PCA alternative 

such as NORDIC, increasing both PSNR and SSIM values over a wide range of noise levels. 

This improvement in denoising performances is believed to stem from the ability of our 

proposed method to enhance the low rankness of the Casorati matrices by aggregating similar 

non-local data patches. However, the advantage of our proposed method over a local PCA 

approach is expected to reduce when denoising data acquisition with increased image volumes 

due in large to the increase in information redundancy in the time/diffusion direction becoming 

a dominant contributor to the low rankness of the Casorati matrices. To investigate how 

denoising performances would change with increasing image volumes when denoising in the 

complex domain, we performed additional simulation experiments where noisy complex data 

created with different image volumes were denoised using our proposed non-local PCA method 

and the results were compared to those obtained using NORDIC. Our data (Fig. S4) show that 

although the denoising performances of both methods appeared to increase with increasing 

image volumes, the improvement in denoising performances with our proposed method relative 

to NORDIC was found to decrease as image volumes increased, the increase in PSNR reducing 

from ~10% (38.4 vs. 34.7 for 9 volumes) to ~5% (42 vs. 39 for 27 volumes) and the increase 

in SSIM reducing from ~5% (0.97 vs. 0.92 for 9 volumes) to ~1% (0.98 vs. 0.97 for 27 volumes) 

when going from 9 to 27 image volumes.   

One limitation of this study is that our proposed two-step non-local PCA denoising method 

in its current implementation has limited computation efficiency. This can lead to a long 

computation time due in large to the distance calculation needed for patch selection in step 1 

and singular value decomposition of large-scale Casorati matrices needed for low rank 

approximation in step 2. Part of our future work is to investigate how the computation efficiency 

may be improved using a more powerful computer or a GPU or both.  

Although tested and evaluated here using data acquisition in healthy volunteers, our proposed 

non-local PCA denoising method should have a utility for clinical applications. For example, in a 
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recent study, we managed to demonstrate how our proposed non-local PCA method can be used to 

enable a 1-minute high resolution whole brain diffusion MRI in a clinical setup at 7T[47]. Part of 

our future work is to study how our proposed non-local PCA denoising method would help improve 

diagnosis of neurological diseases by considering more patients and various pathologies. 

Conclusion  

We have proposed an improved 2-step non-local PCA approach for denoising complex-

valued diffusion data and demonstrated its utility for enhancing image quality of DTI with a 

few diffusion directions. The efficacy of our proposed denoising approach was illustrated using 

both simulation and in-vivo human-data experiments. Our results show that our proposed 

approach can largely improve image quality and estimation performances for DTI metrics 

(including FA and MD), when compared to the original noisy counterpart. Our results also show 

that our approach can reduce noise more effectively than existing local PCA methods, thanks 

to its ability to promote low rankness by integrating non-local similar patches. We believe that 

our proposed method will benefit many applications especially those aiming to achieve quality 

parametric mapping using only a few image volumes. 
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Figures  

 
Fig. 1. Flowchart of our proposed 2-step non-local PCA denoising method. Original noisy 
complex-valued diffusion MRI (dMRI) data are preprocessed with phase stabilization (i.e., to 
remove smooth phases) and g-factor normalization (i.e., to divide by g-factors) before being 
fed into a 2-step denoising pipeline. In step 1, Marchenko-Pastur PCA (MPPCA) is used to 
denoise noisy images for improved patch selection. In step 2, similar non-local patches are 
selected (per the distance calculation from step 1 to form a Casorati matrix with which to 
estimate low rank components using optimal singular value shrinkage (a PCA-based algorithm) 
for improved denoising. The red box refers to an example patch of interest and the blue boxes 
the selected similar patches. The output images of step 2 are further manipulated by multiplying 
with g-factors and restoring the smooth phases removed in phase stabilization, to produce the 
final denoised images.  
 

 
Fig. 2. Simulation experiment: comparing denoising performances of our proposed 2-step non-local 
PCA (Proposed) vs existing local PCA approaches including MPPCA (applied in the magnitude 
domain as originally proposed) and NOise Reduction with DIstribution Corrected PCA (NORDIC) 
(g-factor normalization + phase stabilization + MPPCA), in terms of overall peak SNR (PSNR) in 
dB and structural similarity index measure (SSIM) as a function of the noise level (%). PSNR and 
SSIM values for noisy images are also shown for comparison. In all cases, both overall PSNR and 
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SSIM values were calculated by considering b0 and diffusion weighted images. Synthetic noise-
free data (including one b0 and 8 b=1000 s/mm2 images) serving as a gold standard were created 
based on one subject’s 3T dMRI data from the original young adult Human Connectome Project 
(HCP) and the noisy data were created by adding spatially varying Gaussian noise to the noise-free 
data. Note that the use of the proposed denoising method outperformed all the local PCA approaches 
under consideration, substantially improving the image quality (especially for higher noise levels). 
 

 
Fig. 3. Simulation experiment: comparing denoised diffusion weighted images at two 
representative noise levels (4% and 6%) obtained using MPPCA, NORDIC, and our proposed 
method, alongside the corresponding gold standard and noisy images. In each case, shown are 
diffusion weighted images of one representative diffusion direction in the axial view. The 
numbers reported are respective PSNR (in dB) and SSIM values calculated relative to the gold 
standard. Note that the use of our proposed method outperformed both MPPCA and NORDIC 
in improving image quality, yielding highest PSNR and SSIM values at either noise level. 
  

 
Fig. 4. Simulation experiment: comparing denoising performances of our proposed 2-step non-
local PCA (Proposed) vs existing local PCA approaches including MPPCA and NORDIC, in 
terms of normalized root mean squared error (nRMSE) for fractional anisotropy (FA) and mean 
diffusivity (MD) as a function of the noise level. The nRMSE values for noisy data are also 
shown for comparison. In all cases, FA and MD values were estimated by fitting a diffusion 
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tensor model to the same data as for Fig. 2. All nRMSE values were calculated relative to what 
was obtained with the noise-free images serving as a gold standard. Note that the use of the 
proposed denoising method outperformed all the local PCA approaches under consideration, 
improving the performances for estimation of diffusion tensor metrics (especially for MD at 
higher noise levels).   
  

 
Fig. 5. Simulation experiment: comparing estimation performances for fractional anisotropy 
(top panel) and mean diffusivity (bottom panel) maps at two representative noise levels (4% 
and 6%), obtained using MPPCA, NORDIC, and our proposed method, alongside what was 
obtained with corresponding gold standard and noisy images. Diffusion tensor metrics were 
obtained by fitting a diffusion tensor model to the same data as for Fig. 3. The numbers reported 
are respective normalized RMSE (nRMSE) values calculated relative to the gold standard. Note 
how the use of the proposed method outperformed both MPPCA and NORDIC, improving the 
estimation of fractional anisotropy and mean diffusivity maps with reduced noise at either noise 
level. 
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Fig. 6. Human data experiment: comparing denoised diffusion weighted images at 0.9-mm 
isotropic resolution obtained using MPPCA (applied in the magnitude domain), NORDIC, and 
our proposed method, alongside the original noisy images for reference. In each case, shown 
are diffusion weighted images of one representative diffusion direction in the three orthogonal 
views. The original noisy images (including one b0 and 8 b=1500 s/mm2 images) were acquired 
with 2-fold slice acceleration, 3-fold in-plane acceleration, and TR/TE=7000/70 ms. Note how the 
use of our proposed method led to best image quality with least residual noise. 
 

 
Fig. 7. In-vivo human data experiment: comparing estimation performances for fractional 
anisotropy (FA) (top) and mean diffusivity (MD) (bottom), obtained using MPPCA, NORDIC, 
and our proposed method, alongside what was obtained with corresponding single average 
noisy images. In each case, diffusion tensor metrics were obtained by fitting a diffusion tensor 
model to the same single average data as for Fig. 6. The results for noisy data with 20 averages 
are also shown for reference. Note that the use of the proposed method outperformed both 
MPPCA and NORDIC, leading to FA values visually closer to 20 averages while providing less 
underestimated MD values, e.g., in CSF as indicated by arrows. 
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Fig. 8. In-vivo human data experiment: demonstrating the utility of our proposed method for 
improving whole brain tractography in comparison to noisy images. In each case, shown is the 
color-coded tractography in the axial view. The tractography was obtained using a deterministic 
fiber tracking algorithm based on the same single average diffusion tensor analysis as for Fig. 
7. Note how the use of the proposed method substantially improved the quality of whole brain 
tractography.  
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Supporting Figures  

 
Fig. S1. Simulation experiment: demonstrating the importance of data preprocessing (i.e., phase 
stabilization and g-factor normalization) in our proposed two-step non-local PCA denoising 
method. Shown are denoised images in a representative axial slice at three noise levels obtained 
using our proposed denoising method (Proposed) vs. those obtained using the same denoising 
pipeline but without data preprocessing (w/o pre-processing) vs. the original noisy counterparts, 
all in reference to the same gold standard as in Fig. 2. For quantitative analysis, PSNR values 
(in dB) are also reported. Note how including data preprocessing substantially improved the 
denoising performances especially at higher noise levels.    
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Fig. S2. Simulation experiment: optimizing the noise estimation with MPPCA for g-factor 
normalization based on phase-stabilized complex-valued data. Shown are noise estimation 
performances (measured by PSNR) as a function of noise levels when applying MPPCA to the 
complex-valued data (left) vs. when applying MPPCA only to the real part of the complex-
valued data (right). In both cases, noise estimation performances as a function of MPPCA kernel 
size (ks) are also shown at each noise level. PSNR values (in dB) at each noise level were 
calculated relative to the respective ground truth g-factor/noise map. The noise free dMRI data 
used to create the original noisy complex-valued data were the same as in Fig. 2. Note how 
applying MPPCA only to the real part of the phase-stabilized complex data with a 5x5x5 sliding 
kernel size led to best noise estimation performances especially at noise levels higher than ~4%.   
 

 
Fig. S3. Simulation experiment: comparing our proposed denoising method with data averaging. 
Shown are PSNR (left) and SSIM (right) values as a function of noise levels for a denoised 
single average obtained with our proposed method (Proposed) vs. data averaging in the complex 
domain with different numbers of signal averages (NSA) and without denoising. Noisy complex 
data with 20 averages (NSA20) were created by drawing spatially varying Gaussian noise 20 
times (from the same distribution) and adding them to the same noise-free complex data to 
mimic 20 scans. The noise-free complex-valued data used were the same as in Fig. 2. Note that 
denoising with our proposed non-local PCA method appeared comparable to data averaging 
with 10-15 averages, especially at noise levels greater than ~2%.  
 

 
Fig. S4. Simulation experiment: investigating how denoising performances would change with 
increasing image volumes/diffusion directions when denoising in the complex domain. Shown 
are PSNR (left) and SSIM (right) values as a function of the number, N, of image volumes (N 
ranging from 6 to 27 in steps of 3) when denoising with our proposed method (Proposed) vs 
with NORDIC at the noise level of 5%. Given N, synthetic noise-free data (including one b0 
and N-1 b=1000 s/mm2 images) were created based on one subject’s 3T dMRI data from the 
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original young adult Human Connectome Project (HCP) and the noisy data were created by 
adding spatially varying Gaussian noise to the noise-free data. Although the denoising 
performances of both our proposed method and NORDIC appeared to increase with increasing 
image volumes, note how the improvement in denoising performances with our proposed 
method relative to NORDIC decreased as image volumes increased especially when comparing 
SSIM values.  
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