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Abstract
Background: Cerebellar ataxia, mental retardation, and dysequilibrium (CAMRQ) 
syndrome is a rare and early-onset neurodevelopmental disorder. Four subtypes of 
this syndrome have been identified, which are clinically and genetically different. To 
date, altogether 32 patients have been described with ATP8A2 mutations and phe-
notypic features assigned to CAMRQ type 4. Herein, three additional patients in an 
Iranian consanguineous family with non-progressive cerebellar ataxia, severe hypo-
tonia, intellectual disability, dysarthria, and cerebellar atrophy have been identified.
Methods: Following the thorough clinical examination, consecutive detections in-
cluding chromosome karyotyping, chromosomal microarray analysis, and whole 
exome	sequencing	 (WES)	were	performed	on	the	proband.	The	sequence	variants	
derived	from	WES	interpreted	by	a	standard	bioinformatics	pipeline.	Pathogenicity	
assessment of candidate variant was done by in silico analysis. The familial cosegre-
gation	of	the	WES	finding	was	carried	out	by	PCR-based	Sanger	sequencing.
Results: A novel homozygous missense variant (c.1339G > A, p.Gly447Arg) in 
the ATP8A2 gene was identified and completely segregated with the phenotype in 
the family. In silico analysis and structural modeling revealed that the p.G477R sub-
stitution is deleterious and induced undesired effects on the protein stability and 
residue distribution in the ligand-binding pocket. The novel sequence variant oc-
curred	within	an	extremely	conserved	subregion	of	the	ATP-binding	domain.
Conclusion: Our findings expand the spectrum of ATP8A2 mutations and confirm 
the reported genotype-phenotype correlation. These results could improve genetic 
counseling and prenatal diagnosis in families with clinical presentations related to 
CAMRQ4 syndrome.
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1  | INTRODUC TION

Cerebellar ataxia, mental retardation, and dysequilibrium 
(CAMRQ) syndrome is a heterogeneous genetic condition char-
acterized by non-progressive cerebellar ataxia, various severities 
of intellectual disability, and cerebellar atrophy.1 The other possi-
ble clinical features are severe hypotonia, retarded motor devel-
opment, dysarthria, seizures, optic atrophy, and short stature.2 
Besides, quadrupedal locomotion has been seen in a few patients 
with this syndrome.3 Indeed, CAMRQ is an extremely rare condi-
tion, and about 50 affected individuals have been described in the 
world literature. The pattern of inheritance in all of the possible 
phenotypes is autosomal recessive.4 Four subtypes of CAMRQ 
syndrome have been identified (CAMRQ1-CAMRQ4), which differ 
in both the clinical and genotypical spectrum.5 Mutations in four 
genes have been identified as the causes of these heterogeneous 
conditions: very low-density lipoprotein receptor (VLDLR) gene 
(CAMRQ1),	WD	repeat	domain	81	(WDR81) gene (CAMRQ2), car-
bonic anhydrase 8 (CA8)	 gene	 (CAMRQ4),	 and	ATPase	phospho-
lipid transporting 8A2 (ATP8A2) gene (CAMRQ4).6-10 Cerebellar 
ataxia, mental retardation, and dysequilibrium syndrome type 4 
(CAMRQ4,	OMIM	615	268)	is	suspected	in	patients	with	ataxia,	in-
tellectual disability, hypotonia, dysarthria, and global developmen-
tal delay, with or without brain abnormalities. The ATP8A2 (OMIM 
605	870)	gene	located	at	13q12.1	that	spans	653	878	bp	and	con-
tains	37	exons.	ATP8A2	encodes	a	member	of	the	P4	ATPase	sub-
family that effectively facilitates the phospholipid flipping across 
cellular membranes.11	 While	 14	 P4	 ATPases	 genes	 have	 been	
determined in the human genome, only some of them, including 
ATP8B1, ATP10A, ATP11A, and ATP8A2, have been reported in 
human diseases.12 Although the ATP8A2 gene is not expressed 
ubiquitously, it is strongly expressed in the brain, retina, and tes-
tis.	The	maximum	tissue	concentration	of	ATP8A2	is	 in	the	cere-
bellum.	There	is	evidence	about	the	significant	role	of	ATP8A2	in	
the evolution of the central nervous system.13 In the first study, a 
de novo balanced translocation t(10;13) interrupting the ATP8A2 
coding sequence was detected in a patient with major axial hypo-
tonia and moderate intellectual disability.14 The previous literature 
has described 32 patients from different ethnicities with ATP8A2 
mutations and phenotypic features assigned to CAMRQ4. Almost 
all of these mutations have been located in the cytoplasmic region 
that	includes	phosphorylation	(P),	nucleotide-binding	(N),	and	ac-
tuator (A) domains.15

Whole	 exome	 sequencing	 (WES)	 is	 thought	 to	 be	 a	 fast	 and	
cost-effective technique to identify probable disease-causing vari-
ations.	The	application	of	WES	in	a	Turkish	family	with	four	mem-
bers affected by intellectual disability, mild cerebral and cerebellar 
atrophy, dysarthria, and truncal ataxia revealed a missense variant 
p.I376M	in	the	ATP8A2 gene.16

In the current study, we reported a novel homozygous missense 
variant of ATP8A2 in an Iranian consanguineous family, of which 
three siblings showed non-progressive cerebellar ataxia, hypotonia, 
intellectual disability, dysarthria, and cerebellar atrophy.

2  | MATERIAL S AND METHODS

2.1 | Subjects

We	enrolled	a	consanguineous	Iranian	family	with	3	affected	and	5	
unaffected members in our study. The patients involved in this study 
were clinically examined and followed up by a pediatric neurologist. 
(Figure 1A). This study was conducted in accordance with the ethi-
cal guidelines of the Declaration of Helsinki. Informed consent was 
taken from all participants before the entrance to the study. Ethical 
approval code was acquired from Birjand University of Medical 
Sciences (Irbums.REC.1397.253).

2.2 | Clinical findings

The proband (Ⅳ. 4) was a 9-year-old girl from healthy and first-cousin 
parents with Arab descent (Figure 1A). Following an uncomplicated 
pregnancy, she was born with normal weight, height, and head cir-
cumference. The first noticeable clinical sign was severe neonatal 
hypotonia. Afterward, she demonstrated a lag in all psychomotor 
and developmental milestones. In the aspect of motor performance 
assessment, she was wheelchair-bound and could not walk, sit, or 
hold her head. She has been suffering from some feeding difficulties 
since infancy. Index case has five siblings: two healthy sisters (Ⅳ. 5, 
Ⅳ.	6),	one	healthy	brother	(Ⅳ. 3), one affected sister (Ⅳ. 2), and one 
affected brother (Ⅳ.	1).	Patients	Ⅳ. 1 and Ⅳ. 2 were 17 and 15 years 
old with phenotypical characteristics similar to those present in the 
proband. (Table 1). All 3 patients had limited intellectual functioning 
with IQ levels ranging from 20 to 40. Also, they had delayed speech 
and language as well as signs of dysarthria. Nevertheless, the hear-
ing examination of patients was not shown any significant impair-
ment. In these patients, deep tendon reflexes were absent. There 
was no record of similar diseases in the family. Also, metabolic inves-
tigations consist of plasma thyroid hormones, uric acid, lactic acid, 
plasma and urine amino acids, liver function test, ammonia, and uri-
nary organic acid profiles were in standard limits. The brain magnetic 
resonance imaging (MRI) significantly indicated cerebellar atrophy in 
all the patients.

2.3 | Chromosome karyotyping

Evaluation of possible chromosomal anomalies in the proband was 
performed by the G-banding chromosome karyotyping according to 
the routine laboratory procedure.17

2.4 | DNA extraction

Peripheral	blood	samples	were	collected	 from	all	 family	members,	
and genomic DNA (gDNA) was isolated using a DNA extraction 
kit (Sinaclon, Iran) according to the manufacturer's procedure. The 
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integrity of isolated gDNA was verified on agarose gel electropho-
resis. Quantity and purity of gDNA samples were considered by a 
nanodrop spectrophotometer (Nanodrop Technologies).

2.5 | Chromosomal microarray analysis

CMA was performed on the proband's DNA by Affymetrix CytoScan 
HD array platform following the manufacturer's protocol. Raw data 
were interpreted using the Chromosome Analysis Suite (ChAS) 
software.

2.6 | Whole exome sequencin

The gDNA sample of the proband (Ⅳ0.4)	was	exposed	to	WES	analy-
sis (Macrogene Company, South Korea). Following the library prepa-
ration and adaptor ligation, exome capture was performed by Agilent 
SureSelect	Human	 All	 Exome	 Kit	 V6	 (Agilent	 Technologies,	 Santa	
Clara, CA, USA). Next, the Illumina HiSeq 4000 instrument was used 
to paired-end sequencing based on the manufacturer's instructions. 
For secondary data analysis, FASTQ files imported to CLC Genomics 
Workbench	 12.0	 (https://www.qiage	nbioi	nform	atics.com).	 Briefly,	
raw reads were trimmed for length, adaptor sequence, and qual-
ity. High-quality reads were subsequently aligned to the human 

reference genome (hg19/GRCh37). After removing the duplicate 
reads, unique mapped reads were introduced to the basic variant 
caller	 in	CLC	Workbench	 software.	 For	 functional	 annotation	 and	
frequency analysis of variants, wANNOVAR online software (http://
wanno var.wglab.org) was used. In primary filtering, non-functional 
variants consist of all intronic variations were removed. Then, the 
only variants located in the exons and splicing sites were filtered 
against	 the	 accessible	 databases	 (dbSNP,1000	 Genomes	 Project,	
Exome	Sequencing	Project	 (ESP),	gnomAD,	and	ExAC).	Alterations	
with a minor allele frequency (MAF) lower than 0.01 were predicted 
to affect protein function. Classified variants, as benign and likely 
benign in the ClinVar (https://www.ncbi.nlm.nih.gov/clinvar), were 
also excluded. After that, variants were prioritized by functional, 
phenotypical, and expression data which previously reported in 
OMIM,	HPO,	Orphanet,	Genecards,	and	PubMed	databases.	Then,	
homozygous and compound heterozygous variants, compatible with 
autosomal recessive inheritance mode, were considered.

2.7 | Pathogenicity prediction of candidate variant

Pathogenicity	of	candidate	variants	was	estimated	by	in	silico	predic-
tor	programs:	PolyPhen-2	 (http://genet	ics.bwh.harva	rd.edu/pph2/)	
and	PROVEAN	(http://prove	an.jcvi.org/index.php)	tools	were	used	
to predict the potential impact of amino acid substitution on protein 

F I G U R E  1  A,	Pedigree	of	a	consanguineous	family	with	three	members	affected	by	CAMRQ4	syndrome.	Patients	are	marked	in	black,	
and	the	proband	is	indicated	by	an	arrow.	B,	Conservative	analysis	of	Glycine	447	in	human	ATP8A2	protein	by	multiple	sequence	alignment.	
C, The presence of c.1339G > A in a homozygous state in patients, D, heterozygous state in carriers, and E, wild type in the healthy sibling

https://www.qiagenbioinformatics.com
http://wannovar.wglab.org
http://wannovar.wglab.org
https://www.ncbi.nlm.nih.gov/clinvar
http://genetics.bwh.harvard.edu/pph2/
http://provean.jcvi.org/index.php
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function based on the evolutionary considerations and physical 
characteristics	of	amino	acids.	Besides,	Meta-SNP	(http://snps.biofo	
ld.org/meta-snp/index.html) analysis, a highly reliable predictor inte-
grating	the	outputs	of	PhD-SNP,	SIFT,	PANTHER,	and	SNAP	was	ap-
plied. MutationTaster (http://www.mutat ionta ster.org) web-based 
application was employed to estimate the impact of the candidate 
variants on the regulatory and splice sites, as well as gene product 
features. Finally, the IRANOME database (http://www.irano me.ir), a 
source	of	WES	data	belong	to	800	healthy	Iranian	individuals	from	
different ethnicities, was used to ensure that the candidate variant is 
not present in an ethnically matched normal population.

2.8 | Polymerase chain reaction and 
segregation analysis

The nucleotide sequence of the ATP8A2 gene (NG_042855.1) was 
taken from the National Center for Biotechnology Information 
(https://www.ncbi.nlm.nih.gov). Specific primers flanking the ex-
pected variation were designed using primer3 (http://prime r3.ut.
ee/).	PCR	was	performed	in	a	total	volume	of	25	μL, and agarose gel 
electrophoresis was run to verify the presence of an amplified se-
quence	with	the	correct	size.	The	accuracy	of	WES	analysis	was	con-
firmed by conventional automated Sanger sequencing on ABI- 3130 
Genetic Analyzer. In the same way, the presence of the candidate 
variant in other family members was also assessed.

2.9 | Homology modeling and structural analysis

As	no	PDB	model	of	the	human	ATP8A2	has	been	reported	so	far,	the	
amino	acid	 sequence	was	downloaded	 from	 the	UniProt	database	
with accession number Q9NTI2. Three-dimensional structures were 
predicted	for	the	wild	type	and	mutant	protein	(based	on	the	WES	
results)	 through	 a	 homology	 modeling-based	 online	 tool,	 Phrye2	
(Protein	Homology/analogY	Recognition	Engine	V	2.0).	The	refine-
ment of top-ranking predicted structures was performed by energy 
minimization of structures and elimination of residues located in dis-
allowed regions through ModRefiner (https://zhang lab.ccmb.med.
umich.edu/ModRe finer /) algorithm. For quality evaluation of mod-
eled protein structures through Ramachandran plot analysis, the re-
fined models (wild +	Mutated)	were	submitted	to	RAMPAGE	(http://
mordr ed.bioc.cam.ac.uk/~rappe r/rampa ge.php) server. Next, struc-
tural analysis was used to determine the pathogenicity mechanism. 
We	have	calculated	the	stability	of	 the	mutated	protein	compared	
to the normal type by measuring ΔΔG through the structure-based 
mode of I-Mutant 3.0 webserver (http://gpcr2.bioco mp.unibo.it/
cgi/predi	ctors	/I-Mutan	t3.0/I-Mutan	t3.0.cgi).	 Moreover,	 SNPeffect	
4.0 (http://snpef fect.switc hlab.org/) database was applied to variant 
phenotyping analysis by studying the effect of variant on aggrega-
tion	propensity	 (TANGO),	amyloid	propensity	 (WALTZ),	chaperone	
binding (LIMBO), and structural stability of the protein (FoldX). To 
investigate the variant's effect on potential ligand-binding sites, 
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the verified structures (wild type and mutant) were introduced to 
3DLigandSite (http://www.sbg.bio.ic.ac.uk/3dlig andsite).

3  | RESULTS

3.1 | Genetic analysis

Chromosomal	 analysis	 demonstrated	 a	 46,XY	 karyotype	 without	
any chromosomal abnormalities. Also, the CMA testing detected no 
pathogenic copy number variant (CNV) in the proband. A primary 
variant	calling	on	WES	data	of	the	proband	unveiled	80	863	variants,	
of which 30 027 variants located in coding regions. As the disease 
phenotype revealed autosomal recessive segregation; candidate var-
iants in either homozygous or compound heterozygous form were 
considered. After the stepwise variant-filtering strategy mentioned 
above, 81 homozygous variants and 2 compound heterozygous vari-
ants left (Supporting Information Table S1). By removing all tolerated 
or benign entries through the in silico prediction programs, only six 
variants left (Supporting Information Table S2). Among them, only 
one	 homozygous	 missense	 variant	 “NM_016529.6:c.1339G	 > A, 
NP_057613.4:(p.Gly447Arg)”	 in	 exon	 14	 of	 the	 ATP8A2 gene on 
13q12.1 was predicted as pathogenic (Table 2) and well-matched with 
the phenotype and inheritance mode. Based on the MutationTaster 
results for this variation, the phastCons conservation score equal to 
1 reflected a high probability of evolutionary conservation among 
46	different	species.	Moreover,	phyloP	presented	a	score	of	5.623	
(where	 the	 score	 of	 6	 is	 the	 highest	 probability	 of	 conservation).	
The multiple protein sequence alignment is shown in Figure 1B. This 
variant has not been reported in any public variant database. The 
Human Gene Mutation Database (http://www.bioba se-inter natio 
nal.com/produ ct/hgmd) was checked to support the novelty of the 
variant. The existence of the p.G447R variant was then confirmed 
through	PCR-Sanger	sequencing.	According	to	segregation	analysis,	
the sequence variant was homozygous in the affected individuals 
(Ⅳ0.1, Ⅳ0.2, Ⅳ0.4) (Figure 1C) and heterozygous in the parents 
(Ⅲ. 1, Ⅲ. 2), one healthy brother (Ⅳ. 3), and one healthy sister (Ⅳ. 5) 
(Figure 1D). The only healthy sibling Ⅳ0.6	was	wild	type	(Figure	1E).	
The identified novel variant was not found in 100 healthy and ethni-
cally matched controls.

According to the American College of Medical Genetics (ACMG) 
guideline,18 the sequence variant c.1339G > A in ATP8A2 clas-
sified	 as	 “likely	 pathogenic”	 due	 to	 belonging	 to	 PM2	 (pathogenic	

moderate:	absent	from	controls	in	Exome	Sequencing	Project,	1000	
Genomes	 or	 ExAC),	 PP1	 (pathogenic,	 supporting:	 cosegregation	
with the disease in multiple affected family members in a gene de-
finitively	known	to	cause	the	disease),	PP2	(pathogenic,	supporting:	
missense variant in a gene that has a low rate of benign missense 
variation and in which missense variants are a common mechanism 
of	 disease),	 PP3	 (pathogenic,	 supporting:	multiple	 lines	 of	 compu-
tational evidence support a deleterious effect on the gene or gene 
product),	and	PP4	 (pathogenic,	supporting:	patient's	phenotype	or	
family history is highly specific for a disease with a single genetic 
etiology).

3.2 | Structural analysis of the protein 
upon the mutation

In	3D	structures	made	by	the	Phyre2	server,	91%	of	the	sequence	
have	 been	modeled	with	 100.0%	 confidence.	 After	 high-resolu-
tion refinement, the reliability of refined structures was evaluated 
using Ramachandran plots. Depending on the percentage of resi-
dues	 located	 in	 favored	 (95.5%),	allowed	 (3.5%),	and	outlier	 (1%)	
conformations, the predicted models had high accuracy. The pre-
dicted	structures	were	visualized	by	PyMoL	software	(Figure	2A,	
and	B).	The	structural	stability	of	human	ATP8A2	protein	is	largely	
decreased upon the p.G477R variant. I-Mutant Suite 3.0 com-
puted	 free	 energy	 change	 (DDG)	 value	 equal	 to	 −1.04	 Kcal/mol	
with a reliability index (RI) of 8 for this variation. According to the 
SNPeffect	4.0	output,	dTANGO	equals	−8.50,	indicating	that	this	
mutation does not influence the aggregation tendency of our pro-
tein.	For	the	p.G447R	substitution,	dWALTZ	equals	−51.23,	which	
means that this substitution decreases the amyloid propensity of 
our protein. Besides, dLIMBO equals 0.00, which refers to that 
the mutation has no significant effect on the chaperone binding 
tendency. About the FoldX algorithm prediction, the substitu-
tion of Glycine to Arginine at position 447 results in a severely 
reduced protein stability with ddG of 7.94 kcal/mol. According to 
3DLigandSite output, the amino acid residue 447 is adjacent to 
the active site, and mutation p.G447R affected the ligand-binding 
pocket. Due to the mutation-induced protein restructuring, three 
extra	residues	consist	of	Phe	569,	Phe	1161,	and	Gln	1163	fall	into	
the active sites (Figure 2C, and D). It may dramatically decrease 
the ligand-binding affinity, ligand specificity, and the catalytic ac-
tivity	of	ATP8A2.

TA B L E  2   The interpreted values derived from in silico pathogenicity assessment tools

Tools PolyPhen-2 PROVEAN MutationTaster Meta-SNP CADD

Mutation

c.1339G > A; 
p.G447R

(ATP8A2)

0.999
Probably	damaging

-6.60
Deleterious

1
Disease-causing

0.842: RI: 7; Disease-causing 34

SIFT SNAP PANTHER PhD-SNP

0.010 0.755 0.895 0.905

Abbreviation: RI, Reliability Index.

http://www.sbg.bio.ic.ac.uk/3dligandsite
http://www.biobase-international.com/product/hgmd
http://www.biobase-international.com/product/hgmd


     |  7 of 9MOHAMADIAN et Al.

4  | DISCUSSION

In this study, we identified a novel homozygous missense variant 
c.1339G > A in ATP8A2 gene related to cerebellar ataxia, mental re-
tardation, and dysequilibrium 4 (CAMRQ4) syndrome in one Iranian 
family. The phenotypical features of our patients were comparable 
with previously reported cases with this syndrome. All available pub-
lished articles that describe the association of ATP8A2 mutations and 
CAMRQ4 are cited in Table 1. Taking into account of our patients, a 
total of 35 patients have been identified with CAMRQ4 syndrome 
thus far. The phenotypical spectrum of ATP8A2 mutations is broad. 
In most reports of CAMRQ4, encephalopathy, developmental delay, 
intellectual disability, hypotonia, and dysarthric speech have been 
described. Besides, more severe phenotypes with optic atrophy, 
absence of ambulation, unhealthy brain MRI, non-verbal or absent 
speech, and feeding difficulties have also been reported.19-21

Based on multiple in silico tools, the mutation p.G447R in 
ATP8A2	 is	 deleterious.	 In	 the	 protein	 structure	 of	 ATP8A2,	 a	 re-
placement of a hydrophobic, small, and buried residue (GLY) with 
a charged, bigger, and exposed residue (ARG) may alter the protein 
folding pathway and subsequently the protein stability. Folding free 
energy is a critical biophysical feature of proteins that determines 
the global stability of the 3D structure.22

The mapping of rare genetic variants on protein structures 
is a definitive approach to assess the functional effect of them.23 
Generally,	 about	 15%	 of	 disease-associated	 mutations	 have	 been	
reported in ligand-binding sites affecting the specificity and affinity 

of ligands and eventually, protein's function.24 According to the 
InterPro	 database	 (https://www.ebi.ac.uk/interpro),	 glycine	 447	 is	
located within an extremely conserved subregion of cytoplasmic 
domain	N,	known	as	ATP-binding	domain.	Altogether,	6	of	the	7	ho-
mozygous or compound heterozygous missense mutations known 
in ATP8A2	 located	 in	 this	 subregion	 (amino	 acids	 364-877)	 of	 the	
catalytic cytoplasmic domain. These mutations highly reduced the 
expression of ATP8A2 gene, probably due to significant misfold-
ing together with proteasomal degradation.15	 Protein	 misfolding	
may change the fundamental residues involved in protein interac-
tions. According to STRING, GeneMANIA, and literature review, 
CDC50A	(TMEM30A)	is	a	permanent	partner	of	ATP8A2.	CDC50A	
protein is essential for proper folding, persistent expression, and 
exit	 of	ATP8A2	 from	 the	 endoplasmic	 reticulum,	 as	well	 as	 active	
transport of phospholipids across the cell membranes.25 It means 
that	the	substitution	of	p.G447R	in	ATP8A2	could	make	changes	in	
folding,	expression,	and	flippase	activity	of	ATP8A2	by	disrupting	its	
interaction	with	CDC50A.	Moreover,	since	the	membrane	ATP8A2:	
TMEM30A complex enhances neurite outgrowth,13 p.G447R muta-
tion can be involved in the pathogenesis of neurodegenerative dis-
orders by interrupting the neuronal differentiation.

In	conclusion,	WES-based	approaches	could	be	diagnostic	pro-
cedures in rare diseases with heterogeneous clinical presentations, 
where an accurate diagnosis is difficult.26,27 Our findings expand 
the spectrum of known ATP8A2 mutations and may provide new 
approaches to preimplantation or prenatal genetic diagnosis in fam-
ilies	 with	 ATP8A2-related	 diseases.	 Carrier	 screening	 is	 crucial	 to	

F I G U R E  2   A, Visualization of wild 
type	ATP8A2	and	B,	mutant	ATP8A2	
by	PyMoL.	C,	Amino	acid	residues	in	
the ligand-binding site of the wild type 
predicted structure. D, Amino acid 
residues in the ligand-binding site of the 
predicted mutant structure

https://www.ebi.ac.uk/interpro
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prevent transmission risk of disease to the next generations and help 
the families to informed decision-making for future pregnancies. It 
is well known that disabling syndromes like CAMRQ4 enforced a 
heavy load of financial and psychological problems on the patients 
and their families, as well as on healthcare society. Therefore, early 
diagnosis of these patients is indispensable to apply the psycholog-
ical and medical interventions and subsequently modify the quality 
of life.
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