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ABSTRACT

We present a new coarse grained method for the sim-
ulation of duplex DNA. The algorithm uses a gen-
eralized multi-harmonic model that can represent
any multi-normal distribution of helical parameters,
thus avoiding caveats of current mesoscopic mod-
els for DNA simulation and representing a break-
through in the field. The method has been parame-
terized from accurate parmbsc1 atomistic molecular
dynamics simulations of all unique tetranucleotide
sequences of DNA embedded in long duplexes and
takes advantage of the correlation between helical
states and backbone configurations to derive atom-
istic representations of DNA. The algorithm, which is
implemented in a simple web interface and in a stan-
dalone package reproduces with high computational
efficiency the structural landscape of long segments
of DNA untreatable by atomistic molecular dynamics
simulations.

INTRODUCTION

Under physiological conditions DNA behaves like a poly-
meric entity whose properties are dependent on the under-
lying sequence. Experimental approaches to the determina-
tion of sequence-dependent physical properties of DNA are
impaired by their inability to deal with long and flexible
polymers, which has fueled the development of theoretical
simulation techniques (1), among them atomistic molecu-
lar dynamics (MD), a method that after recent improve-
ments in force-fields (2,3) has shown extreme accuracy in
describing the structural and dynamic properties of a vari-
ety of DNA structures (4–10). Unfortunately, the computa-
tional cost of MD simulation scales (roughly) with the third
power of the length of the duplex, and a simple 100 bp du-
plex would require a simulation box containing more than

107 water molecules, a system for which reaching reasonable
simulation times is nearly impossible.

Coarse grained (CG) methods are a cost-effective alter-
native to simulate very long segments of DNA, approaching
the chromatin scale. In summary, two families of CG meth-
ods have been developed (1,11–14): the first ones (Cartesian
CG) are based on reducing the atomistic representation of
the nucleotides to a few beads whose interactions are de-
fined by empirical potentials and whose movements are fol-
lowed by means of (typically) Langevin-Brownian MD al-
gorithms (15–17). The second family of methods (helical
CG) reduces the degrees of freedom in DNA by considering
the nucleobases or the base pairs (bp) as rigid planes whose
movements are defined by three rotations and three trans-
lations. In this second family of methods the sampling is
typically obtained by means of Monte Carlo (MC) simula-
tion techniques. While the Cartesian CG methods have the
advantage of universality, for physiological DNAs, helical
CG methods are probably more efficient as helical coordi-
nates are better suited to describe the essential movements
of DNA (12,13).

Three crucial choices must be taken in defining a helical
CG model. The first one is the level of resolution: nucle-
obases or base pairs. In nucleobase-resolution scheme the
CG model should account for the movement of each nu-
cleobase with respect to three neighbors in a simple base
pair step (bps) (the paired one, one located at the 3′, and
one at 5′ in the opposite strand), which sums up to 63 de-
grees of freedom per nucleobase. By combining nucleobase
(intra base pair) and base pair step (inter base pair) helical
coordinates the number of degrees of freedom can be signif-
icantly reduced (18–20). Simpler and more popular (21,22)
are helical-CG methods that represent the DNA at the base
pair level. In this case, movements at the base pair step level
are limited to three translations and three rotations (shift,
slide, rise, tilt, roll, twist), which at the expense of some loss
of resolution, drastically simplifies the calculation and the
parameterization of the model.
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The second important choice in building a helical CG
model is the nature of the Hamiltonian (energy function)
used to describe the dependence between the energy of the
system and the change in helical coordinates. Most CG
models rely on the use of a harmonic Hamiltonian (1,12–
13,18–22), which assumes that under normal conditions the
distributions of helical coordinates (at either nucleobase or
base pair level) are Gaussian. Within this assumption the
energy of the DNA can be easily described by means of a
stiffness matrix and a deformation vector indicating the de-
viation of a helical coordinate from its equilibrium value
(21). For the most common base pair resolution model this
means that the energy is computed as shown in equation (1):

E (X) =
N∑

j=1

1
2

Kj�X2
j (1)

where E is the energy, N is the number of bps, Kj is the 6
× 6 stiffness matrix for bps j, and �Xj is the 6-dimension
deformation vector � Xj = (Xj − X0

j ), with Xj and X0
j being

the current conformation vector of bps j at a given point of
the ensemble and the equilibrium vector respectively.

The last choice in the definition of a helical CG model is
the origin of the parameters (stiffness matrix and the equi-
librium vector X0

j used to compute the deformation vec-
tor) defining the energy function. Original models devel-
oped by Olson & Zhurkin (21) extracted the parameters
from the ten unique bps derived by inspection of the helical
geometries of bps found in databases of crystal structures
of DNA–protein complexes. Further refinements used MD
simulation of different DNA duplexes containing the ten-
unique bps as source of parameters (22,23). More recently,
as the shortcomings of the bps scheme became evident, new
nearest-neighbor harmonic models (NN) relying on inter
base pair parameters adapted to all the different tetranu-
cleotides emerged (1,6,24), with the corresponding param-
eters being fitted from atomistic MD simulations. These
models showed a good ability to reproduce the conforma-
tional space of DNA duplexes, but were limited by two fun-
damental problems: (i) they were parameterized from the
parmbsc0 force-field (2) which showed caveats in the repre-
sentation of certain characteristics of the helix and (ii) they
were based on the harmonic approximation, which is unable
to reproduce multimodality shown both experimentally and
theoretically in the distribution of inter base pair coordi-
nates of certain bps (4,6–7,25–26).

We present here an evolution of the helical CG model
which assumes a novel multi-normal model which accounts
for the non-Gaussian nature of some inter base pair defor-
mations and considers a flexible extended nearest neighbor
model (eNN model), which reproduces very well the impact
of remote neighbors in the definition of the deformability of
bps. Parameters (stiffness and equilibrium values per state
and shifting values between states) were derived from atom-
istic MD simulations using parmbsc1 force-field and state-
of-the-art simulation procedures. Sampling is obtained by
means of a highly efficient Metropolis Monte Carlo algo-
rithm. The method has been implemented in a server (http:
//mmb.irbbarcelona.org/MCDNAlite/) which incorporates
tools that, taking advantage of correlations between heli-

cal states and backbone conformation (25,27) allows the
atomistic-level reconstitution of the DNA at the nucleobase
and backbone level. The method produces MC ensembles
that are difficult to distinguish from atomistic MD trajecto-
ries with a fraction of computational cost and reproduces
well known experimental structures.

MATERIALS AND METHODS

Hamiltonian definition

A recent analysis of the dynamics of the 136 unique tetranu-
cleotides of B-DNA performed by the ABC consortium
(25) revealed that 80% of the 816 (136 × 6) unique inter
base pair distributions cannot be correctly described using
a single normal distribution (http://mmb.irbbarcelona.org/
miniABC/ (25)). As described elsewhere (4) in many cases
the peaks of the fitted normal distributions are close, and
a single unimodal function can reasonably describe the real
distribution. However, in 4% of the cases at least a bimodal
distribution must be used to obtain a reasonable fit to the
real distribution. Bimodality can be seen in slide (several
tetranucleotides containing the central d(GpG) step), shift
(typically in a few tetranucleotides containing d(YR) cen-
tral step), and twist (very often in tetranucleotides contain-
ing central d(CG) or d(AG) steps). Certain tetranucleotides,
such as d(CpTpApG) show especially complex distribu-
tions (26) impossible to describe by a single Gaussian. In
summary, the normality assumption on which the harmonic
model is based should be revisited for more realistic repre-
sentations of DNA flexibility.

We propose here a new Hamiltonian inspired by empiri-
cal valence bond theory (28), where we assume that the dis-
tribution of inter base pair parameters (shift, slide, rise, tilt,
roll, twist) underlies a Boltzmann-averaged combination of
Gaussian distributions. The Hamiltonian leading to such a
distribution can be derived as shown in equation (2):

E (X) = −kBT
N∑

j=1

ln
n∑

i=1

e− 1
kBT ( 1

2 Kij�Xij
2+Eij) (2)

where kB is the Boltzmann constant, T is the temperature, N
is the number of bps, n is the number of states in which the
distribution of inter base pair parameters of a given bps (in
its sequence environment) can be decomposed (see below),
K is the stiffness matrix associated to the state i in step j;
�X is the deformation vector (with equilibrium values de-
pendent on step j and state i) and Eij is the relative energy
of state i at bps j (shifting values between states). Note that
for a single unimodal distribution equation (2) leads to the
classical harmonic model shown in equation (1). Also note
that due to sequence end effects single state dimer stiffness
parameters are used for the first and last bps.

Definition of the states

Equation (2) implies that the energy is computed from a
set of stiffness matrices and deformation vectors which are
not only dependent on the step, but also on the state. In
principle, if there are m states for each inter base pair dis-
tribution, we should expect m6 states at the bps level (i.e.

http://mmb.irbbarcelona.org/MCDNAlite/
http://mmb.irbbarcelona.org/miniABC/
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Figure 1. Workflow of the MC-eNN model. The model is parameterized by MD simulations of a sequence set of all unique 136 tetramers (see Table 1
for sequences). MC sampling in the inter base pair parameter space based on the new Hamiltonian (see equation (2)) of a structure with N+1 base pairs
yields a set of 6 x N x T inter base pair coordinates (T is the number of structures sampled). For a single structure, atomistic coordinates of the nucleobases
are derived using the SCHNArP algorithm (31) and the position of the phosphates relative to the helical axis using Lavery’s rules (30) are determined.
Using correlations of inter base pair parameters and backbone torsions the backbone states are classified to either BI or BII. For each central bps of a
tetranucleotide the inter base pair coordinate showing the highest correlation with the backbone state is used as a classifier of the backbone state (see
Supplementary Table S1 and ‘Materials and Methods’ section for more details). Average BI and BII backbone conformations for each of the 16 dimers
were fit to the nucleobase position defined by the inter base pair coordinates. A short restrained steepest descent optimization relaxes mismatched local
geometries resulting in the final structure (for more details see ‘Materials and Methods’ section).

Table 1. DNA sequences containing all 136 unique tetranucleotides used
to parameterize the coarse grained model (miniABC library)

Seq. number Watson strand (5′-3′ direction)

1 GCAACGTGCTATGGAAGC
2 GCAATAAGTACCAGGAGC
3 GCAGAAACAGCTCTGCGC
4 GCAGGCGCAAGACTGAGC
5 GCATTGGGGACACTACGC
6 GCGAACTCAAAGGTTGGC
7 GCGACCGAATGTAATTGC
8 GCGGAGGGCCGGGTGGGC
9 GCGTTAGATTAAAATTGC
10 GCTACGCGGATCGAGAGC
11 GCTGATATACGATGCAGC
12 GCTGGCATGAAGCGACGC
13 GCTTGTGACGGCTAGGGC

for bimodality m = 2 we could expect 64 different stiff-
ness matrices and equilibrium vectors for each bps). For-
tunately, the number of unique helical states is smaller as
some inter base pair parameters are correlated and others
show a purely uninormal-unimodal distribution. To assign
in a systematic manner the number of states to describe
a given bps we process �s-long parmbsc1 MD simulation
of a large number of duplexes (see Table 1) containing the
136 unique tetranucleotides (data can be downloaded from
http://mmb.irbbarcelona.org/BigNASim/ (29)). To this end,

we transform the original inter base pair coordinates of the
central bps of each tetranucleotide in a new set of dimen-
sionless parameters using Lankaš transformation (30); see
equation (3):

γ ∗
i = δγi + (1 − δ) 10.6γi (3)

where γ and γ ∗ are normal and dimensionless inter base
pair parameters and δ is a Heaviside step function equal to
1 if γ is a translational parameter (measured in Å) and is
equal to 0 when it is a rotational parameter (measured in
degree).

Principal component analysis (PCA) is then performed
to reduce the coordinate space where a certain number of
components (those explaining at least 80% of variance) are
kept (usually 3). Original trajectories projected in this re-
duced space are subjected to clustering following a Gaus-
sian finite mixture model (31). The MD ensemble is then
divided into several sub-ensembles for which the equilib-
rium vector (X0) is determined. The covariance matrix in
the original inter base pair parameter space is defined and
inverted (22) to obtain the stiffness matrix specific for a
given state of a bps in a certain tetranucleotide environ-
ment. Finally, all the harmonic models defining the global
energetics of the tetranucleotide are combined by using
equation (2).

http://mmb.irbbarcelona.org/BigNASim/
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Figure 2. Examples of the four different scenarios of bi-dimensional inter base pair parameter distributions found in the BigNASim database. (A) Two
uncorrelated and uninormal distributions show Gaussian behaviour (tetramer AATT in MD simulation with BigNASim ID ‘DDD 800ns’). (B) Uni-
modal distributions which are correlated show elipsoidal shaped pattern (tetramer AAGC in MD simulation with BigNASim ID ‘miniabc K 12’). (C)
Two hotspots appear when at least one of the two parameters contains two separate peaks (third appearance of tetramer CTAG in MD simulation with
BigNASim ID ‘AGCT’). (D) A complex multi-peaked bi-dimensional map is obtained when both inter base pair parameters are multimodal and correlated
(tetramer TCGA in MD simulation with BigNASim ID ‘miniabc K 10’). The four isodensity lines equal to 100, 75, 50 and 25% of the maximum density
and the corresponding values are shown in each plot.

Monte Carlo simulations

Simulation of the movements of the DNA at the CG level
were performed using equation (2) (or for comparison equa-
tion (1)) implemented in a MC sampling algorithm, where
movements in the inter base pair parameter space are at-
tempted and accepted or not based on the Metropolis al-
gorithm. For each MC move one to four inter base pair pa-
rameters are randomly selected to be modified. The strength
of the change is determined by two values: a scaling fac-
tor which is dependent on the diagonal entry of the stiff-
ness matrix of the inter base pair parameter and which is
scaled to guarantee ∼40% acceptance rate. The output of
an MC run is a long file of 6×N×T (N number of bps, T
number of snapshots) inter base pair coordinates, which can
be partially or totally transformed into Cartesian coordi-
nates as described below. The sampling algorithm is imple-
mented in a simple web interface (http://mmb.irbbarcelona.
org/MCDNAlite) and ready to download as a stand-alone
version via the web interface (http://mmb.irbbarcelona.org/
MCDNAlite/standalone).

Atomic detail reconstitution

The inter base pair coordinates collected from the MC algo-
rithm above were transformed to derive Cartesian represen-

tations of the DNA (Figure 1), as in many cases this is the
level of detail required to understand DNA functionality.
For a given set of inter base pair coordinates the positions of
the phosphates were derived from helical axis by using Lav-
ery’s rules (see Figure 1 (32)). Atomistic coordinates of the
nucleobases were derived using the SCHNArP algorithm
(33), and backbone torsions were reconstituted using the
correlations between inter base pair coordinates and back-
bone states (BI or BII) found in a recent ABC study (25).
Thus, for each tetranucleotide the inter base pair coordinate
showing the highest correlation with the backbone state is
used as a classifier of the backbone state (typically shift; see
Supplementary Table S1). The accuracy of the backbone
state prediction is typically in the range of 80–90% (see Sup-
plementary Figure S1). Average BI and BII backbone con-
formations for each of the 16 dimers were extracted from
the meta-trajectory of all the occurrences of the dimers in
a recent ABC simulation set (see Table 1) and fit to the nu-
cleobase position defined by the inter base pair coordinates
(see Figure 1). A short restrained steepest descent optimiza-
tion relaxes mismatched local geometries without altering
state definition. The mesoscopic MC-eNN ensemble using
full atomistic reconstruction can be analyzed with any com-
mon MD analysis tool (links to NaFlex (34) are included in
the web interface), which highly increases the usability of
the model.

http://mmb.irbbarcelona.org/MCDNAlite
http://mmb.irbbarcelona.org/MCDNAlite/standalone
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Figure 3. Histogram of the number of clusters to represent the six-dimensional inter base pair parameter space of the 136 unique tetramers (middle).
Examples for the division of inter base pair parameter distributions into multiple states for the most common number of clusters are shown for Shift (top)
and Twist (bottom) for the tetramers CTAG (3 clusters), TAAG (4 clusters) and ACGA (5 clusters). The inter base pair parameter distributions (gray) are
clustered into several distributions shown in green, blue and red for 3 clusters; green, blue, red and orange for 4 clusters and green, blue, red, orange and
purple for 5 clusters.

Data and analysis tools

Original trajectories were obtained in previous works us-
ing parmbsc1 force-field (3) and standard simulation pro-
tocols used by the ABC consortium (6) (individual sim-
ulation times at least 1 �s; data deposited at BigNASim
(29) database; ID ‘miniABC K’). DNA inter base pair pa-
rameters, groove widths and backbone torsion angles were
measured and analyzed with the Curves+ and Canal pro-
grams (32,35). PCA in Cartesian space was done using
pcasuite (http://mmb.pcb.ub.es/software/pcasuite/pcasuite.
html). Essential dynamics of simulated trajectories were
obtained using the Boltzmann’s averaged absolute similar-
ity index (36). BIC (Bayesian Information Criterion) was
used to determine the normal (one Gaussian) or multi-
peaked nature of the distributions of inter base pair param-
eters (see Supplementary Methods and references (37,38)).
For multi-peaked distributions we used an extension of
the Helguerro’s theorem (39,40) to distinguish those cases
where the Gaussians are very close (unimodal) from those
where they are significantly separated. Clustering was done

using the mclust library (41) in R 3.1.2. The same software
package was used to perform all the statistic studies and
graphics in this work.

RESULTS AND DISCUSSION

The inter base pair parameter space from MD simulations

All of the 136 tetranucleotides and 80% of the 136 × 6 in-
ter base pair distributions can be classified as multi-peaked,
but only 20% of the tetranucleotides and 4% of individ-
ual inter base pair distributions are multi-modal based on
Helguerro’s theorem. However, these numbers mask the
complexity of the coupling between inter base pair coor-
dinates. This is illustrated by inspection of normalized bi-
dimensional distributions (Figure 2 for examples), which
show the existence of four major scenarios: (i) the inter base
pair parameters are uncorrelated and show uninormal dis-
tributions leading to clear 2D Gaussian distributions, (ii)
the two parameters show unimodal distributions, but are
correlated leading to ellipsoidal shaped distributions, (iii)

http://mmb.pcb.ub.es/software/pcasuite/pcasuite.html
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Figure 4. Equilibration and convergence of the MC-eNN simulation. (A) Number of MC moves needed for fiber equilibration obtained by investigating
end-to-end distance (left) and number of helical turns (right) of 10 individual simulations of a fiber of random sequence of 50 bp (top) and 600 bp (bottom)
in length. The 10 individual simulations are shown in different colors and a black line illustrates the average of the 10 simulations. Equilibration is obtained
when the number of MC moves equals the length of the oligomer multiplied by 200 (see main text). (B) Convergence rules were achieved by comparing the
length of the ensemble needed to obtain converged distributions. Distributions of end-to-end distance (left) and number of helical turns (right) of 2000–50
000 configurations of a fiber of random sequence of 50 bp (top) and 600 bp (bottom) in length show that a small number of configurations is sufficient for
good sampling of sensitive global fiber parameters. Note: the maximum of the scale of the axis of end-to-end distance is calculated as 4 Å × fiber length
(in base pair).

at least one of the two parameters is double-peaked re-
sulting in two hotspots in the bi-dimensional map and fi-
nally, (iv) multiple peaks in two inter base pair parame-
ters and correlation between them lead to a complex bi-
dimensional probability distribution. Certainly, by moving
to higher dimensions more complex probability distribu-
tions impossible to represent by combining 1D distribu-
tions would be encountered. To define unambiguously the
number of states required to define the preferentially sam-
pled regions we performed a clustering algorithm (see ‘Ma-
terials and Methods’ section), finding that most tetranu-
cleotides can be represented by 3–5 clusters (Figure 3). The
need to use more than five clusters is found in >10% of
the cases (Figure 3), but those tetranucleotides where a sin-
gle state is enough to represent the sampling are even less
common.

As expected from previous studies (6,25–26), shift and
twist are the main drivers for the multiplicity of states (see
Supplementary Table S2). Note that no assumption on uni-
modality is made for the derivation of the different states,
which means that an inter base pair parameter distribution
of an individual state may be classified as multimodal. How-
ever, when Bayes–Helguerro’s analysis is done at the state
level, in only 0.8% of the clustered distributions (3192 in to-
tal) unimodality is not satisfied and overall multi-normality
decreases from 80 to 20%. This means that the dimen-
sion reduction and clustering process outlined here reduces
dramatically the problem of multi-normality and multi-

modality (see examples in Figure 3 and Supplementary Fig-
ure S2) and produces a robust protocol to define the number
of states where a harmonic behavior is granted, the basic as-
sumption required to use equation (2). A possibility to en-
hance the robust protocol would be to limit the maximum
number of states in the clustering procedure to a lower num-
ber such as 3. On one side, this procedure would allow to
produce similar quality results using less states per tetranu-
cleotide (see Supplementary Figure S3), however ∼10% (13
out of 136) of the tetranucleotides experience multimodal
behavior in at least one of the clustered inter base pair dis-
tributions (see Supplementary Figure S4) and consequently
applying equation (2) would lead to a less accurate param-
eterization for those tetranucleotides (see Supplementary
Figure S5). In any case it is very encouraging that the num-
ber or required states is much smaller than 26 that could be
expected if bimodality was independently and universally
found for all the helical coordinates.

Equilibration and convergence of Monte Carlo simulations

Before analyzing the performance of the eNN method we
evaluate the expected length of the simulation required to
obtain reasonably converged ensembles. To this end we per-
formed several MC simulations (room temperature) of du-
plexes of random sequence and lengths ranging from 10 to
1000 bp using Arnott’s fiber data to generate the starting
structures. As Arnott’s parameters are known to overesti-
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Figure 5. Bi-dimensional inter base pair parameter maps of Twist-Shift of three tetramers CTAG (top), GCGG (middle) and TCGA (bottom) of MD
simulations of the parmbsc1-ABC dataset (left) and MC-eNN simulations (right) of the same sequences (see Table 1). For each tetramer there is a different
color legend. The four isodensity lines equal to 100, 75, 50 and 25% of the maximum density and the corresponding isodensity values are shown in the
bottom right of each plot. The bi-dimensional inter base pair parameter distributions of MD and MC-eNN simulations are indistinguishable even when
correlated in a highly non-linear manner which is impossible to capture by a standard harmonic model.

mate twist by 1–2 degrees (42) we can evaluate the perfor-
mance of the MC method to relax and equilibrate an in-
correct structure. Results in Figure 4A (and Supplementary
Figure S6) indicate that for the most sensitive parameter
(the number of helical turns) equilibration is achieved when
the number of collected configurations equals the length of
the oligomer multiplied by 200 (for other parameters such
as end-to-end distance convergence is faster, i.e. around 100
× length). Thus, for the largest oligomer considered here
(1000 bp) equilibration is achieved after 100 000–200 000
MC steps. For oligomers of a size compatible with atom-
istic MD simulations (∼50 bp) equilibration is so fast that
it is not visible in the plots (Supplementary Figure S6).

Once the rules for the equilibration time were clear we
evaluated the length of the ensemble required to obtain con-
verged distributions of local and global DNA properties.
Results in Figure 4B (and Supplementary Figure S7) show

that in general good sampling for sensitive global param-
eters such as the helical turns is obtained after a reason-
ably small number of configurations selected after equili-
bration (around 10 000–20 000 configurations). Irrespec-
tively of the length of the duplex convergence in local geom-
etry takes from 10 000 to 40 000 configurations depending
on the complexity of the tetrad accessible inter base pair
parameter space (see examples in Supplementary Figures
S8 and 9). When comparison is possible, MC-convergence
is faster than that obtained from MD simulations (see Sup-
plementary Figure S9 and discussion below).

MC-eNN calculations reproduce well atomistic MD trajec-
tories

We compare ensembles obtained for several medium-sized
DNA duplexes (Supplementary Table S3) using our MC-
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Figure 6. Comparison of MC-eNN (black) and MD simulations (red) of the longest naked DNA duplex in the BigNASim database (56 bp in length,
sequence see Supplementary Table S5). (A) Roll distribution in degrees, (B) Twist distribution in degrees and (C) Shift distribution in Angstrom of the
central 53 bps. (D) Difference in BI Percentage of backbone states of MC-eNN–MD in Watson (green) and Crick (brown) strand of the central 54 bp.
The green and brown dashed line show the average difference in BI percentage in the Watson (2.2%) and Crick (0.1%) strand, the gray horizontal dashed
lines illustrate the 10% margin corresponding to the accuracy of determining the backbone state in NMR experiments and blue horizontal dashed lines
represent 20% difference in BI population similar to the average discrepancy of backbone state population estimations of MD simulations compared to
NMR experiments. (E) Major (top, in bold) and minor (bottom, transparent) groove width. (F) Histogram of the population of South pucker (Phase angle
of 120–210◦) of all the South/North (Phase angle of 340–40◦) pucker conformations of the central 54 bp. All the error bars of Figure 6A–D represent the
standard deviation.

eNN protocol and 0.5–2 �s long atomistic MD simulations
(using parmbsc1 force-field). Supplementary Figure S10
shows that MC and MD trajectories for the same sequence
are nearly indistinguishable. Auto-similarity indexes (diag-
onal in Supplementary Figure S10) are always larger than
cross-similarity index (for a common set of equal atoms)
which indicates that the MC-eNN method reproduces very
well the sequence-specific details of the deformability of
DNA. Interestingly, global similarity of the standard har-
monic model is only slightly lower than for MC-eNN (see
Supplementary Table S4) suggesting that the influence of
the accurate parameterization of MC-eNN is mostly at the
local level. Indeed, local (Figure 5) inter base pair distribu-
tions obtained from MC-eNN calculations are impossible
to differentiate from those derived from atomistic MD sim-
ulations, even in those cases where the inter base pair prob-
ability distributions are correlated in a highly non-linear
manner, impossible to capture by a standard harmonic
model (see Supplementary Figure S11). To test the limit of
the method we compared MC-eNN and MD ensembles for
the longest naked DNA duplex in the BigNASim database
(56 bp in length, see Supplementary Table S5). The essential
dynamics obtained from MC and MD samplings are nearly
indistinguishable (absolute similarity index of 0.88; see Sup-
plementary Figure S12) and the same level of agreement is
found when looking to sequence-dependent inter base pair
properties (Figure 6A–C and Supplementary Figure S13).
In addition, even local and fine details, such as compen-
satory changes in neighboring steps, or the inter base pair

distributions at highly structural polymorphic sites are well
captured by the MC-eNN model.

The reconstitution protocol provides reasonable back-
bone conformations, leading to ‘atomistic’ reconstitutions
that are hard to distinguish from the atomistic MD simu-
lations. For example, for the 56-mer duplex the RMSd (us-
ing all heavy atoms as reference) of the ensemble versus the
MD-averaged structure is around 0.09 Å × bp, while the
RMSd increases to only 0.11 Å × bp when the MC-eNN
ensemble is compared with the MD-averaged structure.
Groove dimensions and many other subtle structural de-
tails such as the distribution of BI/BII states or the pucker-
ing of the sugar are well reproduced by the method (Figure
6D–F) reflected by an average difference in groove widths
between MC-eNN and MD of 0.28 Å ± 0.68 and a linear
correlation coefficient of 0.85 of BI population along the
sequence of MC-eNN versus MD, significantly higher than
when older force-fields (parmbsc0ε�OLI and CHARMM36)
were compared with nuclear magnetic resonance (NMR)
experiments (43) (0.45 in average). The difference in back-
bone populations of MC-eNN and MD 1.1% ± 10.8 lies
within the experimental accuracy of backbone state deter-
mination (43) (10%) in more than 70% of the cases, com-
pared to 53% when older atomistic force-fields and experi-
ments are compared (43). Both MC-eNN and MD experi-
ence a South versus North pucker population of 0.95–1.00
in over 90% of the cases with overall mean Phase angle of
P = 161◦ ± 19 for MC-eNN compared to P = 149◦ ± 30
in MD. The accuracy of the ‘atomistic’ structures derived
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Figure 7. Comparison of the experimental structures in PDB with the reconstructed structures of MC-eNN simulations. The reconstructed MC-eNN
structure (left) with the lowest RMSD to the first model of the experimental structure (middle) and the overlay of both structures (right). Only the heavy
atoms without flanking base pairs are shown for better visualization. (A) 1ILC (resolved by X-ray; lowest RMSD to MC-eNN 0.34 Å/bp). (B) 424D
(resolved by X-ray; lowest RMSD to MC-eNN 0.34 Å/bp). See Supplementary Table S6 for more details on the experimental structures.

from MC-eNN calculations seems to be good enough as to
be used to discuss specific protein-binding to the DNA. An
example of a bps where the nearest neighbor parameteri-
zation might need to be extended is CG in the GCGC con-
text (as it appears in the 56-mer oligomer studied herein, see
Figure 6). It is known that YR steps are very flexible and
that especially CG experiences highly polymorphic behav-
ior (7). In all the appearances of GCGC at bps 26, 28 and
30, the low and high twist state have different populations
(see Supplementary Figure S14) probably arising from dif-
ferent hexamer contexts, a phenomenon already observed
for other YR steps (26).

MC-eNN calculations reproduce well experimental struc-
tures

We performed an exhaustive comparison of MC-eNN en-
sembles with experimental (X-Ray or NMR) structures in
PDB (Figures 7 and 8; Supplementary Figures S15-16 and
Table S6). Our structures at T = 300 K show average RMSd
around 0.3 Å × bp (using all heavy atoms as reference; see
Figure 7 for examples) from the known experimental struc-
ture, a value that is close to those found in atomistic MD

trajectories performed at the same temperature (see Supple-
mentary Table S6) and not far from the RMSd generated
by thermal noise (around 0.1 Å × bp, see previous section).
The performance of the MC-eNN calculations is such that
we can detect regions where experimental structures might
need to be revisited. For example, large compensatory twist
oscillations likely originated from the refinement protocol
(1DN9, 1HQ7 in Supplementary Figure S16D and E), or
regions where anomalous inter base pair parameter values
(low Roll in last bps and very high twist in bps 4 for PDB id
2JYK in Figure 8B) occur.

MC-eNN performs well compared to other coarse grained
models

When comparing the performance of MC-eNN with the
standard harmonic approach and other coarse-grain mod-
els such as cgDNA we find good agreement in the average
properties of inter base pair parameter distributions among
the methods (see Supplementary Figures S17–19), however
complex local features are only captured by MC-eNN (see
Supplementary Figures S11 and 20). Another global mea-
sure of DNA flexibility is the persistence length. Using the
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Figure 8. Comparison of the rotational inter base pair parameter distributions Tilt (left), Roll (middle) and Twist (right) of MC-eNN simulations (black)
with experimental structures in PDB (red). Error bars represent the standard deviation of the MC-eNN simulation or the different models of the experiment,
respectively. (A) PDB ID: 1ILC (12 bp, resolved by X-ray). (B) PDB ID: 2JYK (21 bp, resolved by NMR). The translational inter base pair parameter
distributions are compared in Supplementary Figure S9 and more examples are depicted in Supplementary Figure S10 (see Supplementary Table S6 for
more details on the experimental structures).

well-established procedure of calculating dynamic and ap-
parent persistence length (Equations 6 and 9 in (44)), MC-
eNN captured the same sequence-dependent persistence
length pattern reported with cgDNA simulations (see Sup-
plementary Figure S21 and Table S7), although with lower
absolute values most likely due to the different definition of
the tangent (see Supplementary Data).

Computational performance

The MC-eNN method is very efficient from a computa-
tional point of view. To obtain converged complex inter base
pair distributions (see Figure 4B; Supplementary Figures S6
and 8) atomistic MD simulation of a 56-mer duplex (∼550
000 atoms) would require more than 500 days in one of
our 64-core cluster (400 ns of trajectory), while to obtain
equivalent sampling (as determined from the convergence
rate) would require only 12 min in the same machine us-
ing the MC-eNN method outperforming MD by a factor
of ∼105 (see Supplementary Figure S22). The difference in
computer performance between MD and MC-eNN calcula-
tions increases for larger duplexes, as the cost of MD simu-
lations scales with the third power of the length of the DNA,
while MC-eNN simulation time increases only linearly with
the length of the duplex. Furthermore, contrary to atomistic
MD, MC-eNN scales perfectly with the number of proces-
sors, which facilitates its use in supercomputers.

The MC-eNN web server

The MC-eNN simulation method is distributed as a stand-
alone executable version for MacOS and Linux systems
(see Supplementary Information; source code is available

upon request), but it is also accessible as a web server http:
//mmb.irbbarcelona.org/MCDNAlite/ (the stand-alone ver-
sion can be downloaded via the web server http://mmb.
irbbarcelona.org/MCDNAlite/standalone) which requires
just the sequence of the duplex as input and provides as out-
put a limited number of alternative conformations, selected
to capture the most probable configurations according to
the states at tetranucleotide level. All results can be viewed
directly in the web interface and downloaded for further lo-
cal analysis. A direct link in the webserver to our NAFlex
tool (34) constitutes a user-friendly way for deeper online
analysis of the DNA structures.

CONCLUSION

We present a new mesoscopic model for the representation
of the structure and dynamics of naked DNA structures,
which integrates all the information acquired from the anal-
ysis of B-DNA dynamics from the latest efforts published
by the ABC consortium. The method maintains the sim-
ple bps model, but tackles rigorously the multi-modality of
inter base pair distributions and their dependence on near-
est neighbors, allowing an accurate representation of com-
plex polymorphisms in DNA. The mesoscopic ensembles
provided by our algorithm can be transformed to atomistic
models of DNA with a high accuracy even in local details,
something beyond the expectations of a mesoscopic model.
The method is extremely efficient, making it possible to sim-
ulate long fibers of DNA that will be unreachable for atom-
istic MD simulation in the next decades. It is implemented
in simple tools that can be used by non-experts aiming to
obtain a more complete picture of DNA than that derived
from the inspection of canonical average structures.

http://mmb.irbbarcelona.org/MCDNAlite/
http://mmb.irbbarcelona.org/MCDNAlite/standalone
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Supplementary Data are available at NAR Online.
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11. Dršata,T. and Lankaš,F. (2015) Multiscale modelling of DNA
mechanics. J. Phys. Condens. Matter, 27, 323102.
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22. Lankaš,F., Šponer,J., Langowski,J. and Cheatham,T.E. (2003) DNA
Basepair step deformability inferred from molecular dynamics
simulations. Biophys. J., 85, 2872–2883.

23. Lavery,R., Zakrzewska,K., Beveridge,D., Bishop,T.C., Case,D.A.,
Cheatham,T., Dixit,S., Jayaram,B., Lankas,F., Laughton,C. et al.
(2010) A systematic molecular dynamics study of nearest-neighbor
effects on base pair and base pair step conformations and fluctuations
in B-DNA. Nucleic Acids Res., 38, 299–313.

24. Dixit,S.B., Beveridge,D.L., Case,D.a., Cheatham,T.E., Giudice,E.,
Lankas,F., Lavery,R., Maddocks,J.H., Osman,R., Sklenar,H. et al.
(2005) Molecular dynamics simulations of the 136 unique
tetranucleotide sequences of DNA oligonucleotides. II: sequence
context effects on the dynamical structures of the 10 unique
dinucleotide steps. Biophys. J., 89, 3721–3740.

25. Dans,P.D., Balaceanu,A., Pasi,M., Patelli,A.S., Petkevičiūtė,D.,
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