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Abstract. Helicobacter pylori (HP) infection is one of the most 
frequent bacterial infections in humans and is associated with 
the pathogenesis of gastric motility disorders such as delayed 
gastric emptying (DGE). Although HP infection is considered 
to delay gastric emptying, there has been little research on 
the underlying mechanism. Gastric motility involves inter‑
actions among gastrointestinal hormones, smooth muscle, 
enteric and extrinsic autonomic nerves and interstitial cells 
of Cajal (ICCs), and ICCs play an important role in gastro‑
intestinal motility. Mutation or loss of stem cell factor (SCF) 
expression is known to reduce the number of ICCs or alter the 
integrity of the ICC network, contributing to gastrointestinal 
dysmotility. The aim of the present study was to investigate 
whether a reduction in ICCs contributes to the DGE caused by 
HP. A mouse model of HP infection was established and gastric 
emptying was compared between HP‑infected and uninfected 
mice using the bead method. In addition, ICC counts and 
SCF expression levels in gastric tissue were evaluated using 
immunohistochemistry and western blotting, respectively. The 
results revealed that gastric emptying was significantly slower, 
the number of ICCs in gastric tissue was significantly reduced 
and the protein level of SCF in gastric tissue was significantly 
decreased in HP‑infected mice compared with uninfected 
mice. Therefore, it may be concluded that HP reduced the 
number of ICCs by decreasing the expression of SCF protein 
in gastric tissue, thereby causing DGE.

Introduction

Helicobacter pylori (HP) infection is one of the most 
frequent bacterial infections in humans, and approximately 
half of the global population are infected with HP (1,2). 
HP is associated with the pathogenesis of chronic gastritis, 
peptic ulcers and gastric cancer (3), and also with gastric 
motility disorders such as functional dyspepsia and delayed 
gastric emptying (DGE) (4,5). The effect of HP infection on 
gastric emptying has been an enduring topic of study and 
most researchers consider that HP infection delays gastric 
emptying, but there has been little research on the associated 
mechanism (5‑8).

Gastric motility involves interactions among gastro‑
intestinal hormones, smooth muscle, enteric and extrinsic 
autonomic nerves and interstitial cells of Cajal (ICCs) (9‑11). 
ICCs are a specific type of interstitial cells in the gastrointes‑
tinal tract (12); they play an important role in gastrointestinal 
motility and are acknowledged to act as physiological pace‑
makers for the gastrointestinal tract (13‑16). The proliferation, 
differentiation and function of ICCs is associated with activa‑
tion of c‑kit receptors on their surfaces (17,18). The activation 
of c‑kit is dependent on the natural ligand stem cell factor 
(SCF) (19,20). Previous studies have shown that a mutation or 
loss of expression of SCF leads to a reduction in the number 
of ICCs or alters the integrity of the ICC network, which 
contributes to gastrointestinal dysmotility, including chronic 
idiopathic intestinal pseudo‑obstruction, achalasia, afferent 
loop syndrome and chronic constipation (21‑23). Therefore, 
the SCF/c‑kit pathway is important for the development and 
maintenance of ICC phenotype and function (24,25).

In the present study, an HP‑infected C57BL/6 mouse 
model was established with the aim of studying the effect of 
HP infection on gastric emptying function and the underlying 
mechanism.

Materials and methods

Animals and HP infection. All experiments and procedures 
in the present study were approved by the Ethics Committee 
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of Shandong Cancer Hospital. A total of 24 female specific 
pathogen‑free (SPF) C57BL/6 mice, aged 6‑8 weeks and 
weighing 16‑18 g were purchased from Beijing Vital River 
Laboratory Animal Technology Co., Ltd. To establish 
a model of HP infection, 12 mice (the HP+ group) were 
infected with HP Sydney strain 1 (SS1) at a concentration of 
1x109 colony‑forming units/ml by oral gavage. Another 12 mice 
remained uninfected and were used as controls (the HP‑ group). 
All the mice were housed at constant temperature (23±2˚C) 
and humidity (50±10%) in a SPF facility with a 12‑h light/dark 
cycle and unconditional access to water and food. The mice 
were monitored twice each day to evaluate their health. If they 
were extremely weak, unable to drink and eat by themselves, or 
suffered from cachexia, they would be euthanized by an intra‑
peritoneal injection of barbiturate (150 mg/kg). After 6 weeks, 
all 24 mice were sacrificed using cervical dislocation. The 
criteria used to confirm death included immobility, respiratory 
arrest and pupil dilation. The stomachs were dissected from 
the mice and subjected to histological examination and the 
extraction of protein. The gastric emptying of the HP‑infected 
mice (n=12) and control mice (n=12) was evaluated prior to 
sacrifice as described below. HP infection was confirmed in 
the stomachs of all the HP‑infected mice by the microaerobic 
bacterial culture of stomach homogenates on tryptic soy 
agar medium (cat. no. T8650; Beijing Solarbio Science & 
Technology Co., Ltd.) supplemented with 5% sheep blood 
(cat. no. TX0030; Beijing Solarbio Science & Technology 
Co., Ltd.) and HP selective supplement (cat. no. HB8646a; 
Qingdao Hope Bio‑Technology Co., Ltd.) at 37˚C in an 
atmosphere containing 5% O2, 10% CO2 and 85% N2 and by 
immunohistochemical (IHC) examination.

Evaluation of gastric emptying and specimen collection. 
Distilled water (0.5 ml/mouse) containing 40 resin beads 
(diameter, 0.4 mm) was administered to each mouse via oral 
gavage. The stomach was removed 1 h after the gavage of beads 
and cut along the greater curvature. The contents were washed 
out into a Petri dish and the number of beads in the dish was 
counted. Gastric emptying was calculated using the following 
formula: Gastric emptying (%)= (40‑number of beads in the 
stomach at 1 h)/40 x100 (26,27).

Each gastric tissue specimen was divided into two 
pieces: One piece was washed with PBS and fixed with 
4% paraformaldehyde at room temperature for 48 h for immu‑
nohistochemistry, while the other piece was frozen quickly 
with liquid nitrogen and placed in a refrigerator at ‑70˚C until 
required for protein extraction.

Confirmation of HP infection by immunohistochemistry. Each 
gastric tissue specimen in 4% paraformaldehyde was encased 
in a paraffin block and sectioned. The sections (~5 µm) were 
mounted on slides and baked at 70˚C for 10 min. Xylene 
solution was used for dewaxing.

The gastric tissue specimens were also examined by hema‑
toxylin and eosin (H&E) staining as follows. The sections 
were hydrated for 15 min in anhydrous ethanol, 95% ethanol, 
80% ethanol and 70% ethanol and then washed with water 
for 2 min. Hematoxylin staining was performed at room 
temperature for 3 min, after which the sections were washed 
with flowing water for 5 min, 1% hydrochloric acid‑ethanol 

for 5 sec, flowing water for 5 min and 0.5% aqueous ammonia 
for 20 sec. The sections were then stained with 1% eosin at 
room temperature for 2 min and washed with water for 2 min. 
After this, they were dehydrated in an ethanol gradient, made 
transparent in xylene for 20 min, washed with PBS three times 
and sealed with neutral gum.

The procedures used for the IHC staining of HP were 
as follows. The sections were dewaxed, hydrated and then 
washed with PBS for 5 min. After this, they were incubated 
with 3% hydrogen peroxide solution at room temperature for 
15 min to block endogenous peroxidase activity and washed 
with PBS three times for 5 min each. Sodium citrate was used 
for antigen retrieval at 100˚C for 20 min, and the sections were 
allowed to cool naturally. The sections were washed with PBS 
three times for 3 min each and then incubated in 5% BSA 
blocking solution (cat. no. SW3015; Beijing Solarbio Science 
& Technology Co., Ltd.) at room temperature for 20 min. 
The excess liquid was removed without washing. Anti‑HP 
antibody (dilution 1:500; ab140128; Abcam) was added and 
the sections were incubated at 4˚C overnight and at room 
temperature for 45 min. After washing the sections with PBS 
for 5 min four times each, the sections were incubated with 
biotin‑labeled goat anti‑rabbit secondary antibody (dilution 
1:200; cat. no. BA1003; Wuhan Boster Biological Technology, 
Ltd.) at room temperature for 30 min and then washed with 
PBS for 5 min three times each. The sections were subse‑
quently incubated with streptavidin‑biotin‑peroxidase complex 
(cat. no. SA1029; Wuhan Boster Biological Technology, Ltd.) at 
room temperature for 20 min and washed with PBS for 5 min 
four times each. They were then incubated with diaminobenzi‑
dine detection reagent solution at room temperature for 3 min, 
washed with distilled water, counterstained with hematoxylin 
at room temperature for 2 min and washed with flowing water 
for 5 min. The stained sections were immersed in 1% hydro‑
chloric acid‑ethanol for 10 sec, washed with flowing water for 
5 min, immersed in 0.5% aqueous ammonia for 20 sec and 
washed with flowing water for 5 min (all at room temperature). 
Finally, the sections were dehydrated in an ethanol gradient, 
made transparent in xylene for 20 min, washed with PBS three 
times and sealed with neutral gum.

Specimens were observed under a light microscope 
(magnification, x400). A yellow or brown bacterial colony 
visible on the surface of the gastric mucosa was considered 
positive, which indicated the success of the model.

Measurement of c‑kit‑positive ICCs and c‑kit expression in 
the gastric mucosa. The procedures for c‑kit protein IHC 
staining were the same as those used for HP. The primary anti‑
body used was a rabbit anti‑mouse c‑kit monoclonal antibody 
(dilution 1:200; sc‑365504; Santa Cruz Biotechnology, Inc.).

Specimens were observed under a light microscope 
(magnification, x400). The c‑kit‑positive cells, which were 
indicated to be ICCs, exhibited blue nuclei and brown 
cytoplasm. Five high‑magnification views (x400) were 
randomly selected in each section and the number of ICCs 
was calculated in each field; the sections were collected 
from different groups in a blinded manner by different 
examiners (9,28). The number of ICCs was calculated in the 
intramuscular layer (ICC‑IM subtype) and submucosal layer 
(ICC‑SM subtype).
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Western blotting of SCF. The protein expression levels of 
SCF in gastric samples were evaluated by western blotting. 
Each sample (~50 mg) was harvested and homogenized. 
The homogenate was added to lysis buffer (cat. no. AR0101; 
Wuhan Boster Biological Technology, Ltd.) for 30 min at 4˚C 
and then subjected to centrifugation at 10,000 x g for 10 min 
at 4˚C. The supernatants were collected and the protein 
concentrations determined using a BCA protein concentration 
determination kit. Total protein samples (~40 µg/lane) were 
separated by SDS‑PAGE (12% gel by weight) and transferred 
to PVDF membranes. Following blocking with 5% skimmed 
milk on a shaker at room temperature for 1 h, the membranes 
were incubated with primary antibodies against SCF (dilu‑
tion 1:200; rabbit polyclonal antibody; ab83866; Abcam) and 
glyceraldehyde 3 phosphate dehydrogenase (GAPDH; dilution 
1:500; rabbit polyclonal antibody; BA2913; Wuhan Boster 
Biological Technology, Ltd.) at 4˚C overnight. The membranes 
were then washed with TBS containing 0.05% Tween‑20 
three times prior to incubation with the HRP‑conjugated 
secondary antibody (dilution 1:5,000; goat anti‑rabbit IgG; 
BA1054; Wuhan Boster Biological Technology, Ltd.) at room 
temperature for 1 h. Hypersensitive ECL Chemiluminescence 
Ready‑to‑Use Substrate (cat. no. AR1170; Wuhan Boster 
Biological Technology, Ltd.) was used to reveal the bands and 
the Odyssey Infrared Imaging System (LI‑COR Biosciences) 
was used for chemiluminescence detection. The reference 
protein GAPDH was used as a loading control. The amount of 
protein expression relative to that of GAPDH was calculated 
using ImageJ software version 1.8.0 (National Institutes of 
Health).

Statistical analysis. SPSS software version 20.0 (IBM Corp.) 
was used for data analysis. Measurement data are presented as 
the mean ± SD. For the normally distributed data, differences 
between two groups were evaluated using a Student's t‑test. 
P<0.05 was considered to indicate a statistically significant 
difference.

Results

Confirmation of HP infection by histological staining and 
IHC analysis. Tissue sections were examined to confirm 
the HP infection in the HP‑treated mice. As shown in Fig. 1, 
no visible differences between groups were detected by 
H&E staining. IHC analysis revealed that in the HP+ group, 
yellow or brown HP colonies were present on the surface of 
the tissue, while no such HP colonies were detected in the 
HP‑ group (Fig. 1).

Influence of HP infection on gastric emptying. The gastric 
emptying rate in the HP+ group was 65.8±5.6%, which was 
significantly lower compared with that in the HP‑ group 
(83.8±6.4%) (P<0.001).

Number of ICCs is decreased in the gastric tissues of C57BL/6 
mice with HP infection. As shown in Figs. 2 and 3, there was 
no significant difference in the appearance between the two 
groups of mice, and no visible differences between groups were 
detected by H&E staining. As shown in Fig. 2 and Table I, the 
number of ICCs in the intramuscular layer in the HP+ group 

was significantly lower compared with that in the HP‑ group 
(3.32±1.60 vs. 5.52±2.17, respectively; P=0.011). Furthermore, 
as shown in Fig. 3 and Table II, the number of ICCs in the 

Figure 2. Interstitial cells of Cajal in the gastric intramuscular layers of mice 
with and without HP infection. Representative images of mice from the 
(A) HP+ and (B) HP‑ groups. Hematoxylin and eosin staining of gastric intra‑
muscular layers from the (C) HP+ and (D) HP‑ groups. Immunohistochemical 
staining of c‑kit in gastric intramuscular layers from the (E) HP+ and (F) HP‑ 
groups. The arrows indicate the interstitial cells of Cajal. Magnification, x400. 
HP, Helicobacter pylori.

Figure 1. HP bacterial colonization in gastric tissue. Hematoxylin and eosin 
staining of gastric tissue sections from the (A) HP+ and (B) HP‑ groups. 
Immunohistochemical staining of HP in gastric tissue sections from the 
(C) HP+ and (D) HP‑ groups. The arrow indicates the HP bacterial colony. 
Magnification, x400. HP, Helicobacter pylori.
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submucosal layer in the HP+ group was also significantly lower 
compared with that in the HP‑ group (6.29±2.46 vs. 14.00±5.18, 
respectively; P<0.001).

Protein expression of SCF in the gastric tissues of C57BL/6 
mice after HP infection. The protein expression level of SCF 
was determined by western blotting and normalized to that 
of the internal control GAPDH. The presence of the 31‑kDa 
SCF protein was revealed by western blot analysis (Fig. 4A). 
The expression level of SCF in the HP+ group was signifi‑
cantly lower compared with that in the HP‑ group (P<0.05). 
The SCF/GAPDH ratio was 0.52±0.19 in the HP+ group and 
0.69±0.19 in the HP‑ group (Fig. 4B).

Discussion

HP infection is a highly prevalent bacterial infection in humans 
worldwide (1,2), and is a cause of organic diseases, including 
gastritis, gastric ulcer and gastric cancer, and also gastroin‑
testinal functional diseases such as functional dyspepsia (3,4).

DGE is defined as the delayed emptying of gastric contents 
in the absence of mechanical obstruction. The major symp‑
toms of DGE include nausea, vomiting, bloating, early satiety 
and abdominal pain (29‑31). DGE is a common complication 
following gastrointestinal surgery, particularly pancreatoduo‑
denectomy (32,33). Among patients with DGE who have not 
undergone surgery, diabetes is the most common cause of the 
condition (11,34). Patients with DGE suffer from nutritional 
deficiencies and metabolic consequences as well as impair‑
ment of social activities and quality of life (18,35). There have 
been a number of studies on the relationship between HP 
infection and DGE, and it has been reported that HP infection 
can retard the gastric emptying function and induce DGE, but 
the specific mechanism has rarely been studied (5,6).

The present study was conducted to investigate the mecha‑
nism underlying the effect of HP infection on DGE in mice. 
The SS1 strain of HP was selected because it is the most 
widely used strain for establishing the mouse model of HP 
infection. Furthermore, the use of this strain is convenient for 
comparing the results of the present study with those of other 
studies using the same strain.

The results of the present study showed that the gastric 
emptying rate of the mice infected with HP was significantly 
lower than that of noninfected mice, which is consistent with 
the results of previous studies (5,6).

Gastric motility involves interactions between smooth 
muscle, enteric and extrinsic autonomic nerves and ICCs, 
with the role of ICC considered to be critical for proper 
gastrointestinal motility; several gastrointestinal motility 
disorders have been confirmed to be caused by ICC 
damage (21‑23). ICCs are mesenchymal cells that act as 
pacemakers for the generation of slow waves in the gastro‑
intestinal tract. The electrical activity of ICCs defines the 
frequency of the rhythmic contraction of smooth muscles 
in the tract (13‑16). ICCs are distributed throughout the 
gastrointestinal tract from the esophagus to the internal 
anal sphincter (36). They are involved in motor activities 
as conduits for muscular innervation and may also provide 
sensory innervation to the gastrointestinal tract (37). It 
has been identified that subtypes of ICC exist according to 
their location in the body and certain morphological and 

Figure 3. Interstitial cells of Cajal in the gastric submucosal layers of mice with 
and without HP infection. Representative images of mice from the (A) HP+ 
and (B) HP‑ groups. Hematoxylin and eosin staining of gastric submucosal 
layers from the (C) HP+ and (D) HP‑ groups. Immunohistochemical staining 
of c‑kit in gastric submucosal layers from the (E) HP+ and (F) HP‑ groups. 
The arrows indicate the interstitial cells of Cajal. Magnification, x400. 
HP, Helicobacter pylori.

Table I. ICC count in the gastric intramuscular layer.

Groups Number of ICCs P‑value

HP+ group 3.32±1.60 0.011
HP‑ group 5.52±2.17

Date are presented as the mean ± SD. The between‑group comparison 
was performed using a Student's t‑test. ICCs, interstitial cells of Cajal; 
HP, Helicobacter pylori.

Table II. ICC count in the gastric submucosal layer.

Groups Number of ICCs P‑value

HP+ group 6.29±2.46 <0.001
HP‑ group 14.00±5.18

Data are presented as the mean ± SD. The between‑group comparison 
was performed using a Student's t‑test. ICCs, interstitial cells of Cajal; 
HP, Helicobacter pylori.
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functional criteria; these include ICCs located in muscle 
bundles and between muscle cells (the ICC‑IM subtype) 
and ICCs located in submucosal layers (the ICC‑SM 
subtype) (38‑40). Smooth muscle cells (SMCs), ICC‑IMs 
and platelet‑derived growth factor α‑positive cells form the 
SIP syncytium, and ICC‑IMs are considered to integrate 
neuronal signals in the SMC syncytium to ensure functional 
gastrointestinal motility (41). ICC‑SMs are able to generate 
slow waves and induce gastrointestinal activity (42). ICCs 
express the proto‑oncogene c‑kit and its natural ligand SCF, 
which are associated with the proliferation, differentiation 
and function of ICCs (17‑20,43). Changes in SCF levels 
have been shown to lead to changes in the numbers of ICCs, 
which contributes to gastrointestinal dysmotility (12).

In the present study, western blot analysis revealed that 
the expression levels of SCF were significantly lower in 
gastric tissue from the HP‑infected group in comparison 
with that from the HP‑uninfected group. The numbers of 
ICC‑SMs and ICC‑IMs were also significantly reduced in the 
HP‑infected group. From these results, it may be concluded 
that HP infection caused a reduction in the SCF level, leading 
to a reduction in the number of ICCs in gastric tissue and 
resulting in DGE. Specifically, this suggests that HP infection 
causes DGE by reducing the number of ICCs in gastric tissue. 
At present, there is no literature describing the mechanism 
by which HP causes SCF protein expression to be reduced. 
As protein expression requires transcription and translation 
processes, any factors that affect the process of transcription 
and translation could potentially affect protein expression. 
Therefore, it may be inferred that HP infection changed the 
environment in the stomach so that it was less suitable for 
SCF protein expression, which caused the reduction in SCF 
protein expression.

At present, the rate of antibiotic resistance to HP is 
worrying and continues to increase each year, leading to 
difficulties in eradicating the infection (44,45). The rates 
of resistance of HP to various antibiotics are rising (44). 
Therefore, it may become increasingly difficult to eradicate 
HP and thereby resolve associated diseases, including DGE 
caused by HP. Thus, it is necessary to explore novel methods 
for treating DGE, such as methods for increasing the number 
of ICCs in gastric tissue.

Previous studies have shown that electroacupuncture 
at ST36 (25), aqueous extracts of Herba Cistanche (13) and 
Yangyin Runchang decoction (14) can increase the number 

of ICCs by increasing the expression of the SCF protein. 
Therefore, we hypothesize that the reduction in the number of 
ICCs caused by HP infection may be rescued by the overex‑
pression of SCF. However, this additional animal experiment 
requires ethical approval and fund applications to acquire 
financing. Therefore, this experiment was not performed as 
part of the present study, which is a limitation of the study; 
however, it will be conducted in the future.

Although the effect of HP infection on solid gastric 
emptying in mice was studied in the present study, its effect 
of liquid gastric emptying was not investigated, which is 
another limitation of the study. The gastric emptying of liquid 
is physiologically different from that of a solid meal; therefore, 
the effect of HP infection on liquid gastric emptying requires 
investigation in another study.

In summary, the present study investigated whether HP 
causes DGE by reducing the number of ICCs. However, 
whether the increased expression of ICCs can be targeted 
for the treatment of DGE remains to be explored, and other 
mechanisms of HP that affect gastric emptying require further 
study.
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