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Nanodiamond (ND) has been developed as a carrier to conduct various in vivo diagnostic
and therapeutic uses. Safety is one of the major considerations, while the
hemocompatibility of ND is not clearly addressed. Here we found that, compared to
the other sizes of ND with relatively inert properties, treatments of 50 nm ND induced
stronger platelet aggregation, platelet pyroptosis, apoptosis and thrombocytopenia in
mice. Blockage treatments of soluble P-selectin, reactive oxygen species (ROS), and
Nlrp3 inflammasome inhibitors markedly suppressed such adverse effects, suggesting
ND-induced platelet activation and pyroptosis involves surface P-selectin-mediated
enhancement of mitochondrial superoxide levels and Nlrp3 inflammasome activation. In
addition, challenges of NDs induced less platelet pyroptosis and displayed less
thrombocytopenia in P-selectin (Selp-/-), Nlrp3 (Nlrp3-/-) and caspase-1 (Casp1-/-)
mutants, as compared to the wild type mice. Blockers of P-selectin, ROS, and Nlrp3
inflammasome pathways could be considered as antidotes for ND induced platelet
activation and thrombocytopenia.

Keywords: nanodiamond induced thrombocytopenia, P-selectin, inflammasome, pyroptosis, platelet regulated cell
death, apoptosis, necroptosis, ferroptosis
INTRODUCTION

With reduced sizes, nanomaterials exert unique physio-chemical properties and are suitable for
biomedical applications (1, 2). Among these, nanodiamond (ND) is one of the promising materials
attracting researcher’s attentions. With unique spectroscopic properties such as Raman, infrared,
and defect-induced color centers fluorescence, ND has been demonstrated as a feasible optical probe
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in biomedical usages (3–5). In addition, the excellent physical
and chemical stability further enable ND as the most
biocompatible nanoparticle in the carbon family (5). Early
cellular studies have revealed low cytotoxicity of ND.
Evidences have shown that ND exerted no toxicity to various
cell types, and did not induce cellular reactive oxygen species
(ROS) (6, 7). These results and later cell line investigations have
concluded that ND is a low cytotoxic material (8).

Despite of these in vitro studies, more recent studies have
suggested ND is a promising and useful material for drug
delivery and bio-labeling (5, 9–11). Because of the potential
biomedical applications of ND, and low hemocompatibility
limits the use of nanoparticles (12, 13), the hemocompatibility
analyses become essential for NDs.

The hemocompatibility of a nanomaterial could be
characterized by property on the induction of platelet activation,
platelet aggregation, thrombocytopenia and thrombosis after
in vivo treatments (12, 14–18). Platelets are small anucleate
multifunctional blood cells, which involve in many
pathophysiological processes including coagulation, thrombosis,
inflammation, and innate immunity (18–20). Inflammasomes are
caspase-1 containing cytosolic multiprotein complexes, and are
activated by pattern recognition receptors in responses to
stimulations of pathogen-associated molecular patterns
(PAMPs) and danger-associated molecular patterns (21–25).
The activated caspase-1 cleaves the immature precursors and
leads to the production of mature form of proinflammatory
cytokine interleukin-1b (IL-1b), and pore-forming protein
gasdermins (26–28). Inflammasomes play critical roles in
platelet-mediated inflammation and coagulation (29–31).
Expression levels of inflammasome (32) and IL-1b (33–35) in
platelets could be up-regulated after stimulations by PAMPs.
In addition, platelet inflammasome activation has been revealed
in sepsis (36), thrombosis formation (37) and hindlimb ischemia
(32) models. Despite the detailed mechanism remains to be
further elucidated, activation of inflammasome by dengue virus
has been associated with induction of platelet pyroptosis (38).
Pyroptosis belongs to the family of regulated cell deaths (RCDs),
which include additional cell death pathways such as apoptosis,
necroptosis, ferroptosis and autophagy (39–41). Evidences have
suggested that RCDs involve in platelet maturation, activation and
aggregation (29, 42–45). However, the property of NDs on the
induction of platelet cell death remains elusive.

NLR pyrin domain containing 3 (Nlrp3) inflammasome is one
of the most studied inflammasomes, sensing a variety of cellular
stresses and stimulus, such as ROS, toxins, pathogens, metabolites,
nucleic acids, uric acid crystals and nanoparticles (46–50). Several
lines of evidences have implicated that over activation of
inflammasomes through different pathways in cells can lead to
major types of RCDs, including pyroptosis (47), apoptosis (51, 52),
necroptosis (52), ferroptosis (53) and autophagy (54, 55). For
example, inflammasome activation leads to the maturation and
activation of pore-forming protein gasdermins, cell membrane
rupture and cell death in pyroptosis (47). Inflammasome
activation also leads to apoptosis through Bid and
caspase-8 pathways in gasdermin deficient cell models (51).
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Z-DNA binding protein 1 (ZBP1), a regulator of Nlrp3
inflammasome, was shown to induce pyroptosis, apoptosis, and
necroptosis (52). Ferroptosis is associated with inflammasome
activation in placental trophoblast cell model of oxidative stress
(53). Overexpression of NLRP3 inflammasome components
elevated autophagy, and, conversely, silencing of the NLRP3
downregulated autophagy (54). However, these results are
obtained from diverse cell models. The regulation networks
between inflammasome and these RCDs in a single cell type
remains greatly unknown. In addition, the impact of ND
treatments on the stimulation of platelet inflammasomes and
RCDs remains unclear.

To analyze the hemocompatibility of ND, in this present study,
we investigate ND-induced platelet changes in vitro and
thrombocytopenia in vivo. The analyses data revealed that ND
induces platelet aggregation is associated with P-selectin-
dependent enhanced ROS-medicated activation of Nlrp3
inflammasome and subsequently platelet pyroptosis. Challenges
of NDs induced less platelet cell death in P-selectin (Selp-/-), Nlrp3
(Nlrp3-/-) and caspase-1 (Casp1-/-) null mice as compared to the
wild type mice. Treatments of inhibitors against P-selectin, ROS
andNlrp3 inflammasome pathways ameliorated both ND-induced
platelet activation in vitro and ND-induced thrombocytopenia in
mice. These results collective suggested that ND-induced Nlrp3
inflammation activation is one of the initiation steps leading to the
platelet activation and thrombocytopenia in vivo. Administrations
of ND with lower doses are helpful to reduce such platelet-related
adverse effect. Related regulatory pathways in ND-stimulated
platelets are discussed.
MATERIALS AND METHODS

Chemicals and Nanomaterials
The chemicals used in this study were purchased from Sigma-
Aldrich (St. Louis, MO, USA). To prepare the stock solutions of
10 mg/mL TiO2 (5 and 60 nm; Nanostructured & Amorphous
Materials, Katy, TX, USA), 10 mg/mL NDs (5-200 nm; Kay
Diamond Products, Boca Raton, FL. USA) (56, 57), and red
fluorescent NDs (50 nm; brFND-50, nitrogen-vacancy NV
centers per particle > 100, FND Biotech, Taipei, Taiwan) (58,
59), the nanoparticles (NPs) were dispersed in distilled deionized
water under sonication (80 W/L, 46 kHz) for 20 min. Test NP
solutions were prepared immediately before use by dilution of
the stock solutions with distilled deionized water and sonication
(80 W/L, 46 kHz) for 20 min (60).

Experimental Mice
Wild type male C57BL/6J mice (8–12 wk old) were obtained
from the National Laboratory Animal Center (Taipei, Taiwan).
Gene knockout mice with a C57BL/6J background, including
Nlrp3-/- and Casp1-/- (61), were kindly provided by the Centre
National de Recherche Scientifique (Orléans, France) (61–63).
C57BL/6J male mice (8–12 wk old) deficient in P-selectin (B6;
129S2-Selptm1Hyn/J) (Selp-/-) (19, 64, 65) were purchased from the
Jackson Laboratory (Maine, USA). All animals were maintained
April 2022 | Volume 13 | Article 806686
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in a specific-pathogen-free (SPF) facility in the Laboratory
Animal Center of Tzu Chi University (Hualien, Taiwan).

Ethics Statement
Animal experiments in this study were conducted in agreement
with the National (Taiwan Animal Protection Act, 2008)
directive for the protection of laboratory animals. All
experimental protocols for examining experimental animals
were approved by the Animal Care and Use Committee of
Tzu-Chi University, Hualien, Taiwan (approval ID: 108067).

Blood and Platelet Isolation and
Parameter Analyses
Collected mouse blood samples were transferred into
polypropylene tubes containing anticoagulant acid-citrate-
dextrose solution (38 mM citric acid, 75 mM sodium citrate,
and 100 mM dextrose) (64, 65). Washed platelets were prepared
as previously described (19, 38). Platelet counts of mice were
measured using a hematology analyzer (KX-21N; Sysmex, Kobe,
Japan) (64–66).

In Vivo Analyses: The Induction and
Rescue of Thrombocytopenia in Mice
Various sizes (5, 50, 100, 200 nm) of NDs, or different doses
(0.3125, 0.625, 1.25 mg/kg) of 50 nm NDs were injected into
mice intravenously. Platelet counts were analyzed 1, 4, 24 and 72
h later after ND treatments using a hematology analyzer (KX-
21N; Sysmex). To perform rescue, regents were pretreated before
administration of NDs (NAC 300 mg/kg, Sigma-Aldrich;
MitoTEMPO 0.1 mg/kg, Sigma-Aldrich; OLT1177 50 mg/kg,
Cayman Chemical, Ann Arbor, MI, USA; soluble recombinant
P-selectin, rP-sel, 0.24 mg/kg, R&D Systems, Minneapolis, MN,
USA; Z-WEHD-FMK, 7.5-750 mg/kg, R&D Systems; Z-DEVD-
FMK, 6.5-65 mg/kg, R&D Systems), and then the platelet counts
were then analyzed additional 1 h after ND treatments.

In Vitro Analyses: Platelet Regulated Cell
Death and Mitochondrial Superoxide
Proteins (1 mg/mL), including bovine serum albumin (BSA)
(Sigma-Aldrich), C-type lectin domain family 2 [CLEC2, a gift
from Professor Shie-Liang Hsieh, Genomics Research Center,
Academia Sinica, Taipei, Taiwan (67)], toll-like receptor 4 (TLR4;
R&D Systems), rP-sel (R&D Systems), coated fluorescent silica
beads (1 mg/mL, Bangs Laboratories, Fishers, IN, USA; Alex488-
goat-anti-mouse antibody pre-coated before aforementioned
protein coating) and red fluorescent NDs (1 mg/mL, brFND-50,
FND-Biotech) were used to analyze ND protein binding. After
incubation of NDs with different proteins for 1 h, the ND-protein
complexes were analyzed using flow cytometer. To determine ND-
induced platelet aggregation, mouse platelets (5 × 107/mL) were
treated with NDs (30 mg/mL). After 1 h, the aggregated populations
were analyzed using flow cytometry (gating in Figure S1). To
analyze ND induced platelet cell death, washed mouse platelets
from wild type and mutant (Selp-/-, Nlrp3-/- and Casp1-/-) mice were
incubated with ND for 1 h in a shaker (20 rpm, 25°C) and then
subjected to analyses by flow cytometers [Gallios, Beckman Coulter,
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Brea, CA, USA, and FACScalibur, BD Biosciences, San Jose, CA,
USA (64, 65)] analyses after washed with PBS. Various regulated
cell death (RCD) responses, including apoptosis (CaspGLOWTM
Red Active Caspase-3 Staining Kit, BioVision, Milpitas, CA, USA),
autophagy (Cyto-ID™ Autophagy Detection Kit, Enzo Life
Sciences, Farmingdale, NY, USA), ferroptosis (C11 BODIPY 581/
591, Cayman Chemical, Ann Arbor, MI, USA), necroptosis (RIP3/
B-2 alexa Fluor 488, Santa Cruz Biotechnology, Santa Cruz, CA,
USA), pyroptosis (Caspase-1 Assay, Green, ImmunoChemistry
Technologies, MI, USA), and live/dead cell labeling (Zombie NIR
Fixable Viability Kit, Biolegend, San Diego, CA, USA), were
analyzed using respective cell labeling reagents (30 min in PBS).
Notably, to avoid detecting those RCD signals not contributing by
the ND treatments (e.g. those RCDs elicited by purification and
manipulation processes), Zombie-live/dead cell labeling (30 min)
should be performed immediately after ND treatments, and before
the subsequent RCD signal staining (30 min); and then the RCD
pattern only analyzing on dead-cell population indicating by
Zombie-live/dead staining. Blockers and inhibitors were used to
address the involvements of specific pathways in platelets from wild
type mice (Z-WEHD-FMK, 10 mM, R&D Systems; Z-DEVD-FMK,
10 mM, R&D Systems; OLT1177, 10 mM, Cayman Chemical; NAC
150 ng/mL, Sigma-Aldrich; MitoTEMPO, 1 mM, Sigma-Aldrich; P-
selectin: rP-sel, 100 ng/mL R&D Systems; 30 min pretreatments
before addition of ND). To analyze the induction of mitochondrial
superoxide, MitoSOX™ Red mitochondrial superoxide indicator
was used (Thermo Fisher Scientific; 30 min in PBS).
Carboxyfluorescein succinimidyl ester (CFSE, Sigma-Aldrich) and
CellTracker Blue Dye (ThermoFisher Scientific, Waltham, MA,
USA) were used to label mouse platelets for flow cytometry and
microscopy analyses.

In Vitro Analyses: Confocal
Microscopy Analysis on the
Morphology of Platelet Aggregates
A confocal microscope (C2+, Nikon, Tokyo, Japan) was employed
on the analysis of platelet aggregate morphology. Same conditions
of treatment dosage for ND and cell death inhibitors were applied
in the confocal microscopy as the conditions used in the platelet
cell death analyses. To distinguish populations of platelets, NDs
and platelet-ND aggregates, CellTracker Blue Dye (ThermoFisher
Scientific) labeled mouse platelets, and red fluorescent 50 nmNDs
(brFND-50, FND Biotech) were used in this experiment. The
counts of platelet aggregates per field (> 400 pixels) and the total
platelet aggregate area (pixels) per field were analyzed using
ImageJ software (version 1.32; National Institutes of Health,
USA) (38, 68).

Neutrophil Extracellular Traps Formation
(NETosis)-Related Analyses
According to previously reported methods (69), neutrophils were
purified from mouse blood samples using Ficoll-Paque (Ficoll-
Paque Plus, 1.077 g/mL, GE Healthcare, Chicago, IL, USA) and
dextran (Sigma-Aldrich) sedimentation (3% w/v) density
gradient centrifugation and red blood cell lysis. A flow
cytometer (Gallios, Beckman Coulter, Brea, CA, USA) and a
April 2022 | Volume 13 | Article 806686
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fluorescent anti-citrullinated histone H3 (CitH3) antibody
(Abcam, Cambridge, UK) were used to investigate the
neutrophil expression of NETosis marker CitH3 after
treatments of supernatants from platelets or platelets plus NDs.
To prepare the platelet supernatants, inhibitors (Z-WEHD-FMK,
10 mM, R&D Systems; Z-DEVD-FMK, 10 mM, R&D Systems;
OLT1177, 10 mM, Cayman Chemical; NAC 150 ng/mL, Sigma-
Aldrich; MitoTEMPO, 1 mM, Sigma-Aldrich; P-selectin: rP-sel,
100 ng/mL R&D Systems; 30 min pretreatments before addition
of ND) were used to block ND-induced platelet activation and
cell death. After treatments with or without NDs and inhibitors,
platelet supernatants were harvested by centrifugation (2.5 x 104

g, 10 min; Benchtop Centrifuge, ThermoFisher Scientific) to
remove platelets and NDs. Peptidyl arginine deiminase 4
(PAD4) inhibitor GSK484 (10mM, Sigma–Aldrich, St. Louis,
MO, USA) was used to block neutrophil NETosis in vitro and
in vivo as described (69).

Statistical Analyses
The means, standard deviation (SD), and statistics of the
quantifiable data were calculated using Microsoft Office Excel
2003, SigmaPlot 10, and SPSS 17, respectively. Unless specified,
the significance of the data was examined using one-way
ANOVA, followed by the post hoc Bonferroni-corrected t test.
A probability of type 1 error (a = 0.05) was recognized as the
threshold for statistical significance.
Frontiers in Immunology | www.frontiersin.org 4
RESULTS

Different Sizes of NDs Induced
Different Levels of Platelet-Count
Suppression in Mice
To investigate how ND sizes influence the blood cell counts,
various sizes (5 nm, 50 nm, 100 nm and 200 nm; Figures 1A–C) of
NDs were intravenously injected into mice. Here we found that,
compared to red blood cell and white blood cell counts, platelet
counts displayed more divergence outcomes when treated with
different sizes of NDs (Figures 1A vs. B, C), in which the 50 nm
ND induced more severe thrombocytopenia as compared to
nanoscaled titanium dioxide (TiO2; 5 nm and 60 nm), and the
other sizes of ND (Figure 1A, 50 nm ND vs. 5 nm, 100 nm, and
200 nm groups). Different doses (0.3, 0.6, 1.25 mg/kg) of 50 nm
NDs were further injected into the mice to evaluate the dosage
effect. Analysis data revealed that only treatments with low dose
(0.3 mg/kg) did not displayed obvious effects, while treatments
with doses higher than 0.6 mg/kg (0.625 and 1.25 mg/kg) of 50 nm
ND caused markedly lower platelet counts in mice (Figure 1D).

Pyroptosis and Apoptosis Are Two
Major Cell Death Pathways of Platelets
Treated With 50 nm NDs
Evidences have suggested that platelet activation and aggregation
involve RCD processes of platelets (42–45). However, whether
A B

C D

FIGURE 1 | ND-induced thrombocytopenia in mice. (A) Platelet (PLT) counts, (B) white blood cell (WBC) counts, (C) red blood cell (RBC) counts, of wild type
C57Bl/6J mice challenged by TiO2 (5 and 60 nm; 1.25 mg/kg) and various sizes of ND (5-200 nm; 1.25 mg/kg) nanoparticles. (D) Platelet counts of wild type C57Bl/
6J mice challenged by various doses (0.625-1.25 mg/kg) of 50 nm ND nanoparticles. n = 6 (three experiments with two mice per group). **P < 0.01, vs. 0 h groups.
April 2022 | Volume 13 | Article 806686
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platelet RCDs also involve in ND-induced platelet aggregation
and thrombocytopenia is not clearly addressed. In addition,
according to our previous findings, one cell-death inducer may
trigger multiple RCDs in a specific cell type, such as platelet (38).
The compositions of multiple RCDs are identified and described
as cell-type-specific RCD patterns (CTS-RCDPs) (38, 62, 69).
Accordingly, we would like to investigate 50 nm ND-induced
RCD and CTS-RCDP in platelets. Those most described RCD
pathways (40), which include pyroptosis, necroptosis,
ferroptosis, apoptosis, and autophagy, were analyzed using flow
cytometry approach following previously described methods (38,
62, 69). We found that 50 nm NDs induced platelet cell death
levels are associated with platelet aggregation levels in a dose-
dependent manner (Figure 2A, aggregation levels, gating in
Figure S1; Figure 2B, dead cell populations). Flow cytometry
analyses of CTS-RCDP revealed that treatments with 50 nm NDs
induced considerable higher levels of pyroptosis and apoptosis as
compared to the other analyzed RCDs in platelet death cell
population (Figure 2B, dead cell population; Figure 2C, 30 and
1250 mg/mL ND groups, indicated ND-induced platelet CTS-
RCDP; gating and calculation of CTS-RCDP in Figure S2).

Inhibitors Against P-Selectin, Nlrp3
Inflammasome Pathways Suppressed
ND-Induced Platelet Aggregation,
and Cell Death In Vitro
To investigate potential therapeutic interventions through
suppression of pyroptosis and apoptosis, ROS inhibitors (N-
acetyl-l-cysteine [NAC], mitochondria-targeted antioxidant
MitoTEMPO (62, 70)) , Nlrp3 inhibi tor OLT1177,
inflammasome/caspase1 inhibitor Z-WEHD-FMK (38, 62, 69),
caspase-3 inhibitor Z-DEVD-FMK (71), were used in the
following experiments. Our parallel experiments revealed that
P-selectin, an adhesion receptor expressing on the surfaces of
activated platelets and endothelial cells, displayed markedly
higher ND-binding property as compared to various control
proteins, including known pattern recognition receptors of
platelets, such as toll-like receptor 4 (TLR4) and C-type lectin
domain family 2 (CLEC2) (Figure S3). Consistently, platelets
Frontiers in Immunology | www.frontiersin.org 5
from wild type (Selp+/+) mice displayed relatively higher ND-
binding property as compared to the P-selectin-deficient platelets
from the Selp-/- mutant mice (Figure S4). In addition, when
compared to BSA, soluble recombinant P-selectin (rP-sel)
treatments drastically suppressed 50 nm NDs induced platelet
cell death as compared to the BSA-treated controls (Figure S5).
Accordingly, here we used rP-sel as additional platelet cell
death inhibitor in the following experiments. Analyses results
revealed that treatments of rP-sel, NAC, MitoTEMPO, OLT1177,
Z-WEHD-FMK and Z-DEVD-FMK markedly reduced
ND-induced platelet total cell death (Figure 3A). By dividing
total death cell population (Figure 3A, dead-cell population) into
respective RCD cell populations (Figures 3B–G; Figure S6,
specific RCD inducers induced platelet cell death, positive
controls of RCD analyses), we found that inhibitors rP-sel,
NAC, MitoTEMPO, OLT1177, Z-WEHD-FMK and Z-DEVD-
FMK suppressed RCDs, including pyroptosis, apoptosis,
necroptosis, autophagy, except ferroptosis (Figures 3C, D, F, G).
To investigate whether the platelet aggregation is associated with
the induction and reversal of platelet cell death, the morphology of
ND-induced platelet aggregation was further analyzed using
confocal microscopy under conditions with or without the
inhibitor treatments. In agreement with the cell death analyses,
NDs are able to induce platelet aggregation, and such platelet
aggregates are markedly suppressed by treatments of cell death
inhibitors, which include rP-sel, NAC, MitoTEMPO, OLT1177,
Z-WEHD-FMK and Z-DEVD-FMK (Figures 4A–I, example
images; Figures 4J, K, quantitative results; video S1, an example
3D structure of ND-platelet aggregates). These results suggested
that ND-induced platelet aggregation is associated with ND-
induced cell death.

ND Induced Less Pyroptosis and
Apoptosis in Platelets From Selp-/-,
Nlrp3-/- and Casp1-/- Mutants, as
Compared to the Same Treatments to
Platelets From Wild Type Mice
To further verify whether platelet P-selectin and Nlrp3
inflammasome (Nlrp3 and caspase 1) pathways indeed involve
A B C

FIGURE 2 | ND-induced platelet cell death and aggregation in vitro. (A, B) Treatments of 50 nm NDs induced dose-dependent (0, 30, 1250 mg/mL) platelet
aggregation (A) and cell death (B), as measured by flow cytometry (A, gating in Figure S1), and Zombie NIR live/dead analysis kit (B), respectively. (C) We observed
the ND treatments induced multiple regulated cell death pathways (RCDs) in the dead cell population of mouse platelets. n = 6 (3 experiments with 2 samples per
group). *P < 0.05, **P < 0.01, vs. vehicle control (0 mg/mL) groups.
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A B C

D E

F G

FIGURE 3 | P-selectin, Nlrp3, caspase-1 and caspase-3 inhibitors protect platelets from ND-induced pyroptosis and apoptosis. Treatments with competitive P-
selectin inhibitor rP-sel (100 ng/mL), ROS inhibitor NAC (150 mg/mL), mitochondria-targeted antioxidant MitoTEMPO (10 mMu;), Nlrp3 inhibitor OLT1177 (OLT, 10
mM), caspase 1 inhibitor Z-WEHD-FMK (WEHD, 10 mM) and caspase 3 inhibitor Z-DEVD-FMK (DEVD, 10 mM) rescued ND-induced platelet cell death (A, B). By
dividing total cell death (B) into respective RCDs (C–G), we found that pyroptosis and apoptosis are the top 2 RCDs induced by ND challenges. Additional
treatments with rP-sel, NAC, MitoTEMPO, OLT1177, Z-WEHD-FMK and Z-DEVD-FMK, all markedly rescued ND-induced platelet pyroptosis (C), apoptosis (G),
necroptosis (D) and autophagy (F) levels. Despite overall platelet survival rate increased after the inhibitor treatments, the ferroptosis levels exacerbated (E). n = 6
(3 experiments with 2 samples per group), *P < 0.05, **P < 0.01, vs. vehicle groups.
Frontiers in Immunology | www.frontiersin.org April 2022 | Volume 13 | Article 8066866
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in ND induced platelet cell death, live/dead and CTS-RCDP status
were analyzed using platelets from Selp-/-, Nlrp3-/- and Casp1-/-

mutants. In agreement with the inhibitor experiments, 50 nm ND
induced less pyroptosis and apoptosis levels in platelets from
Selp-/-, Nlrp3-/- and Casp1-/- mutants, as compared to the same
treatments to platelets from wild type mice (Figure 5). These
results suggested that P-selectin and Nlrp3 inflammasome
pathways indeed involve in ND-induced pyroptosis and apoptosis.
Inhibitors Against P-Selectin, ROS and
Nlrp3 Inflammasome Pathways
Suppressed Platelet Aggregation and
Mitochondria Superoxide Burden In Vitro
Because Nlrp3 inflammasome-mediated pyroptosis is a major
RCD involved in 50 nm ND-induced platelet defects, we further
Frontiers in Immunology | www.frontiersin.org 7
investigated whether the suppression of platelet Nlrp3
inflammasome through inhibitor treatments is sufficient to
ameliorate 50 nm ND-induced abnormal platelet activation.
Here we found that 50 nm ND-induced platelet aggregation,
and increased mitochondrial superoxide levels (Figure 6).
Superoxide is a powerful cell-damaging ROS, which is
produced in mitochondria by electrons leaking from the
electron transfer system (72, 73). Upregulated mitochondrial
superoxide indicated increased levels of cellular oxidative stress
and mitochondrial burden (72, 73). Consistent with the platelet
cell death analyses (Figure 3), ND treatments with additional P-
selectin (rP-sel), Nlrp3 inflammasome (OLT1177 and Z-WEHD-
FMK), apoptosis (Z-DEVD-FMK), and ROS [NAC; and
MitoTEMPO, a mitochondria targeted antioxidant (62, 70)]
inhibitors treatments, ameliorated such ND-induced platelet
aggregation and mitochondria superoxide levels (Figure 6).
FIGURE 4 | Confocal microscopy analyses on the morphology of ND-induced platelet aggregates. (A–I) Example images of platelet (PLT) aggregates that were
induced by treatments of ND, with or without additional treatments of inhibitors (rP-sel, NAC, OLT1177, Z-WEHD-FMK and Z-DEVD-FMK) were shown. CellTracker
Blue Dye labeled mouse platelets, and red fluorescent 50 nm NDs (NV center > 100 per particle, FND Biotech) were employed in this experiment. (J, K) Quantitative
analyses revealed that ND treatments markedly enhanced the platelet aggregate counts (those > 400 pixels) (J), and area (K). All tested inhibitors (rP-sel, NAC,
MitoTEMPO, OLT1177, Z-WEHD-FMK and Z-DEVD-FMK) suppressed ND-induced aggregation (K, area; and J, counts; except MitoTEMPO). n = 6 (2 experiments
with 3 mice per group). #P < 0.05 vs. vehicle groups. *P < 0.05, **P < 0.01, vs. ND + vehicle groups. Example images of 3D morphology of ND-induced platelet
aggregate are highlighted (H, I; similar result referred to Supplementary Video S1). Scale bars: (A–G), 10 mm (G-4); (H, I), 10 mm (I).
April 2022 | Volume 13 | Article 806686

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Hung et al. Nanodiamond Induces Platelet Cell Death
Inhibitors Against P-Selectin, ROS, Nlrp3
Inflammasome Pathways Suppressed
Platelet Aggregation, Pyroptosis and
Apoptosis In Vivo
In vivo mouse experiments further revealed that, in
agreement with the in vitro analyses, treatments with
P-selectin (rP-sel), Nlrp3 inflammasome (OLT1177 and
Z-WEHD-FMK), apoptosis (Z-DEVD-FMK), and ROS (NAC
Frontiers in Immunology | www.frontiersin.org 8
and MitoTEMPO) inhibitors markedly ameliorated ND-
induced thrombocytopenia (Figure 7A), and platelet
pyroptosis (Figure 7B, except Z-DEVD-FMK) and apoptosis
(Figure 7C) levels in C57BL/6J mice. These results suggested
that 50 nm ND induces platelet aggregation and platelet cell
death, involve P-selectin, and Nlrp3 inflammasome mediated
enhancement of mitochondrial oxidative stress, pyroptosis
and apoptosis.
A B C

D E

F G

FIGURE 5 | P-selectin, Nlrp3 and caspase-1 deficiencies protect platelets from ND-induced pyroptosis and apoptosis. (A, B) Compared with wild type (WT)
controls, P-selectin (Selp-/-), Nlrp3 (Nlrp3-/-) and caspase 1 (Casp1-/-) deficient platelets displayed less cell death levels in response to ND treatments. (C–G)
Consistent with the cell death analysis, platelets from P-selectin (Selp-/-), Nlrp3 (Nlrp3-/-) and caspase 1 (Casp1-/-) deficient mice displayed less pyroptosis and
apoptosis, the 2 major RCDs, levels in response to ND challenges. n = 6 (2 experiments with 3 mice per group), *P < 0.05, **P < 0.01, vs. WT groups.
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Inhibitors Against P-Selectin, ROS,
Nlrp3 Inflammasome and Caspase-3
Pathways Suppressed ND-Induced
Platelet-Enhanced Neutrophil
Extracellular Trap Formation
Flow cytometry analyses were employed to further investigate
whether ND-induced platelet cell death involves in ND-induced
Frontiers in Immunology | www.frontiersin.org 9
NETosis. In agreement with previous reports (74–76), we found
that ND-treatments directly induced mouse neutrophil NETosis
(Figures 8A–F gatings; Figure 8G quantitative results).
Intriguingly, after stimulation and removal of NDs, the
supernatants form ND-activated platelets (PLT+ND sup) also
induced comparable levels of NETosis (Figure 8G, ND groups
vs. PLT+ND sup groups). In addition, the capability of the
A B

FIGURE 6 | P-selectin, Nlrp3, caspase-1 and ROS inhibitors protect platelets from ND-induced activation. ND-induced platelet activation, including (A) platelet
aggregation, and (B) mitochondrial superoxide levels, could be suppressed with the treatments with P-selectin, ROS inhibitors, Nlrp3, caspase-1 and caspse-3
inhibitors [rP-sel (100 ng/mL), OLT1177 (OLT, 10 mM), Z-WEHD-FMK (WEHD, 10 mM), Z-DEVD-FMK (DEVD, 10 mM), NAC (150 mg/mL), and MitoTEMPO (1 mM)],
respectively (A, B). (A) ND + vehicle groups were normalized to 100%; (B) vehicle groups were normalized to 100%. n = 6 (2 experiments with 3 mice per group),
##P < 0.05, vs. respective vehicle groups; **P < 0.01, vs. respective ND + vehicle groups.
A B C

FIGURE 7 | Treatments of P-selectin, ROS, Nlrp3, caspase-1, and caspase-3 inhibitors ameliorate ND-induced thrombocytopenia in mice. Treatments with
P-selectin, ROS, Nlrp3, caspase-1, and caspase-3 inhibitors [rP-sel (0.24 mg/mL), OLT1177 (OLT, 50 mg/kg), NAC (300 mg/kg), and MitoTEMPO (0.1 mg/kg),
Z-WEHD-FMK (ZWEHD, 750 mg/kg), Z-DEVD-FMK (DEVD, 6.5 mg/kg)], ameliorated ND (50 nm; 1.25 mg/kg)-induced thrombocytopenia (A), and platelet
pyroptosis (B) and apoptosis (C) levels in C57BL/6J mice. (B, C) Vehicle groups were normalized to 100%. n = 6, (2 experiments with 3 mice per group).
#P < 0.05, ##P < 0.01, vs. respective vehicle groups; *P < 0.05, **P < 0.01 significantly lower, vs. respective ND + vehicle groups; ++P < 0.01 significantly higher,
vs. ND + vehicle groups.
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A CB

D FE

G H

FIGURE 8 | Reversal of ND-induced thrombocytopenia through suppression of NETosis in mice. Flow cytometry gating of NETosis (citrullinated histone H3, CitH3
staining) levels of mouse neutrophils treated with vehicle (A, B), 12-O-tetradecanoylphorbol-13-acetate (C, TPA, a positive control NETosis inducer; 2 nM), and
supernatants from 50 nm NDs (30 mg/mL) activated (30 min) wild mice platelets (2 × 106) (PLT ND sup) (E) with or without additional inhibitor (F, OLT) pretreatments
(30 min), as compared to the NETosis induced by none-activated platelet supernatants (D, PLT sup). (G) The quantified results indicated that ND can induce NET
formation directly (green columns). ND treatments can also enhance NETosis indirectly through soluble factors released from ND-activated platelets (G, PLT+ND
sup), and such this “PLT+ND sup”-induced NETosis could be suppressed by treatments of additional inhibitors such as GSK484, rP-sel, NAC, MitoTEMPO,
OLT1177, Z-WEHD-FMK and Z-DEVE-FMK (G, blue columns). (H) Treatments NETosis inhibitor GSK484 ameliorated ND-induced thrombocytopenia. (G, H)
##P < 0.01 vs. vehicle groups. (G) +P < 0.05, vs. ND groups; *P < 0.05, **P < 0.01, vs. “PLT + ND sup” groups. (H) *P < 0.05, vs. ND groups. n = 6
(2 experiments with 3 mice per group).
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PLT+ND sup to induce NETosis could be suppressed by
treatments of platelet cell death inhibitors, including rP-sel,
NAC, MitoTEMPO, OLT1177, Z-WEHD-FMK and Z-DEVD-
FMK, during ND stimulation (Figure 8G). This suggests that, in
addition to direct stimulation of neutrophils, ND can also induce
NETosis indirectly through induction of platelet activations.
Platelet counts of ND-challenges of mice, with or without
NETosis inhibitor GSK484 treatments, were further evaluated
to investigate whether NETosis might involve in ND-induced
thrombocytopenia. Data revealed that GSK484 treatments
markedly rescued ND-induced low plate let counts
(Figure 8H). These results suggested that there is a
feedforward regulation between platelets and neutrophils: ND-
activated platelets release soluble factors induced NETosis, and
NETosis further exacerbate ND-induced thrombocytopenia.
DISCUSSION

Hemocompatibility of blood-contacting nanomaterials is one
of the most important criteria for their successful in vivo
applicability (12, 17, 18). Among coagulation cascades, platelet
activation and aggregation play central roles in determining the
hemocompatibility of nanomaterials (18). As more in vivo
applications of ND have been reported (5, 9–11), in this present
study, we analyzed the impact of ND treatments on the
stimulation of platelet aggregation and cell death. Analyses
results revealed that among the various sizes (5-200 nm) of
detonation NDs, with unknown reasons, treatments of 50 nm
NDs induced highest level of platelet aggregation and
thrombocytopenia, in vitro and in vivo. Complex factors may
affect the hemocompatibility of nanomaterials in vivo, such as
nanomaterial interaction and activation with respective types
of blood cells and coagulation cascades (12, 13, 17). Thus,
the mechanism of how 50 nm NDs displayed highest
hemocompatibility-associated adverse effects is worthy of further
investigated. In addition, here we found that NDs induce platelet
cell death dependent aggregation, because pyroptosis and
apoptosis inhibitors block the platelet aggregation in vitro and
thrombocytopenic responses in vivo. These results suggested that
suppression of platelet pyroptosis and apoptosis could be a useful
method to manage the hemocompatibility-associated adverse
effects of ND.

Our previous findings have shown that a single domain of
dengue virus protein (envelope protein domain III; DENV-EIII)
can elicit various types of RCDs in different cell types including
platelets (38, 62, 69). With more complexed compositions, ND
surfaces were reported to have evenly distributed high levels of
phenols, pyrones, and sulfonic acid groups, as compared to
hydroxyl and epoxide groups that are present only on some
areas of the surfaces (77). Therefore, it is reasonable that ND can
induce various RCDs in platelets. It is yet unclear why single
reagent, such as ND and dengue virus envelope protein (38), can
induce different types of RCDs in platelets. Cell death pathways
have long been considered to regulate in independently; while it
is currently clear that pyroptosis, necroptosis, and apoptosis are
Frontiers in Immunology | www.frontiersin.org 11
tightly connected and can cross-regulate each other (78). For
example, in the absence of gasdermin D, activation of pyroptosis
inducer caspase-1 redirects cell fate toward caspase-3-dependent
apoptosis in macrophages (79). Necroptosis effector protein
receptor-interacting serine/threonine-protein kinase 3 (RIPK3)
promotes cell death and NLRP3 inflammasome activation in the
absence of mixed lineage kinase domain-like pseudokinase
(MLKL) (80). These evidences collectively suggested that
pyroptosis, necroptosis, and apoptosis cross-regulate each
other. Here we found that treatments of Nlrp3 inhibitor
OLT1177 not only suppressed ND-induced pyroptosis, but also
apoptosis, necroptosis and autophagy levels are also suppressed
(Figure 3). This is in agreement with our finding that treatments
of Nlrp3 inhibitor OLT1177 suppressed of DENV-EIII-induced
pyroptosis, necroptosis, and apoptosis in mouse platelets (38).
Because the RCD pathways cross-regulate to each other, the
CTS-RCDP could be served as a molecular-regulation fingerprint
to identify the coordinated regulation of RCDs. For example,
despite the detailed mechanism remains to be further studied, it
seems that there are alternative RCDs, when one particular RCD
is blocked. For instance, when the apoptosis (caspase-3) is
blocked, pyroptosis levels are increased in the platelets
(Figures 7B, C, ND + DEVD groups). When pyroptosis and
apoptosis are blocked, ferroptosis levels are increased in the
platelets (Figures 3, 5, ferroptosis groups). These results
suggested that RCDs are regulated in a coordinated manner.
Here we identified pyroptosis and apoptosis as the top 2 ND-
induced RCDs in platelets. ND-induced adverse effects, such as
platelet aggregation and thrombocytopenia, may be therefore
rescued through suppression of inflammasome activation and
the cell death pathways. As a result, these inhibitors may be
considered as antidotes for in vivo treated NDs. Notably, our
analyses data revealed that P-selectin serves as an upstream
pathway of Nlrp3 inflammasome and plays a critical role on
the regulation of ND-induced platelet cell death.

P-selectin is a cell adhesion molecule expressing on the
surfaces of activated endothelial cells and activated platelets. It
is clear that P-selectin can function as a counter-receptor to
stimulate P-selectin glycoprotein ligand-1 (PSGL-1) signaling, as
interactions of PSGL-1 with immobilized P-selectin rapidly
induce tyrosine phosphorylation of multiple proteins, and P-
selectin-mediated adhesion enables activation outside-in
signaling of b2 integrins in leukocytes (81). By contrast, the
function of P-selectin in serving as a signaling receptor is less
clear. We have previously shown that the binding of DENV-EIII
or anti-P-selectin antibody to endothelial surface P-selectin
initiate cellular inflammasome activation and pyroptosis (62).
In agreement with this, here we found that blockage of ND-P-
selectin interaction by addition of rP-sel markedly suppressed
ND-induced platelet pyroptosis in vitro and in vivo. Moreover,
compared to the wild type controls, P-selectin deficient mice
displayed markedly less platelet activation and thrombocytopenia
after ND injections. These results suggest that P-selectin is
a ND-sensitizing pattern recognition receptor on platelets.
Because P-selectin is highly expressed on the platelet surfaces
during coagulation activation and various inflammatory diseases,
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the pattern-recognition property enables P-selectin serving as a
critical coordinator that links the inflammation (immune system)
to the thrombosis (coagulation system), and vice versa. The
detailed mechanism of how P-selectin initiates inflammasome
activation is worthy or further investigation. As the property
of a blood-contacting material to induce thrombosis and
inflammation determine the hemocompatibility, P-selectin-
material interaction is one of the critical properties for
analyzing hemocompatibility of in vivo used materials.

Previous reports have indicated that nanomaterial-induced
NETs are critical for the initiation of adverse effects in vivo
(74–76, 82). At the same time, platelets are involved in NET-
related abnormal inflammation and coagulation (67, 83).
Consequently, NETs may also contribute to ND-induced
platelet-associated adverse effects in vivo. Our in vitro analysis
results indicated that, compared to the supernatant from vehicle-
treated control platelets, “PLT+ND sup” induced markedly higher
NETosis levels of mouse neutrophils (Figure 8). Treatments of
Nlrp3 inflammasome inhibitor OLT1177 drastically reduced
NETosis-induction property of the “PLT+ND sup” (Figure 8),
suggesting platelet pyroptosis and apoptosis are part of the up-
stream pathways of ND-induced NETosis. At the same time,
because treatments of NETosis inhibitor GSK484 markedly
rescued ND-induced low platelet counts in mice (Figure 8), this
indicated that NETosis in turn exacerbated ND-induced platelet
defect. These results collectively suggested that there exists a
feedforward regulation between platelets and neutrophils after
ND-treatments. Moreover, in addition to direct activation of
platelets, NDs can also indirectly cause platelet-associated
defects through inducing NETosis. The interplay between
platelets and neutrophils in ND-induced abnormal platelet
responses are intriguing, and worth of further investigations.

In summary, here we found that treatments of 50 nm NDs with
dose of 1.25 mg/kg can lead to platelet cell death and
thrombocytopenia in mice. ND induced the platelet activation,
pyroptosis and apoptosis through surface P-selectin-mediated
activation of mitochondrial superoxide levels and Nlrp3
inflammasome. Blockage of P-selectin and Nlrp3 inflammasome
by treatments of rP-sel and Nlrp3 inflammasome inhibitors
markedly suppressed the adverse effects. However, NDs were
shown to trigger the formation of platelet aggregates and NETs;
and NDs are not easy to be sequestered in vivo and excreted from
the body, because of their non-biodegradable property (74–76, 82).
Consequently, despite of blockers of P-selectin and Nlrp3
inflammasome pathways displayed as antidotes of ND, these
adverse effects prohibit the in vivo use of ND before the
fundamental safety problems are solved.
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