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Abstract: Traditional dilated ophthalmoscopy can reveal diseases, such as age-related macular
degeneration (AMD), diabetic retinopathy (DR), diabetic macular edema (DME), retinal tear, epiretinal
membrane, macular hole, retinal detachment, retinitis pigmentosa, retinal vein occlusion (RVO),
and retinal artery occlusion (RAO). Among these diseases, AMD and DR are the major causes of
progressive vision loss, while the latter is recognized as a world-wide epidemic. Advances in retinal
imaging have improved the diagnosis and management of DR and AMD. In this review article,
we focus on the variable imaging modalities for accurate diagnosis, early detection, and staging
of both AMD and DR. In addition, the role of artificial intelligence (AI) in providing automated
detection, diagnosis, and staging of these diseases will be surveyed. Furthermore, current works
are summarized and discussed. Finally, projected future trends are outlined. The work done on this
survey indicates the effective role of AI in the early detection, diagnosis, and staging of DR and/or
AMD. In the future, more AI solutions will be presented that hold promise for clinical applications.

Keywords: retinal diseases; artificial intelligence; diabetic retinopathy; macular degeneration; modalities

1. Introduction to Retinal Diseases

Retinal diseases receive serious and widespread attention, as retinopathies are some of
the leading causes of severe vision loss and blindness at a global level [1]. Ocular imaging
is critical in the management of retinal diseases, especially diabetic eye disease. Advanced
imaging modalities allow better understanding of diabetic eye diseases and selection of
suitable management options [2].

Multiple retinal diseases can be detected, such as age-related macular degeneration
(AMD), diabetic retinopathy (DR), diabetic macular edema (DME), retinal tear, epiretinal
membrane, macular hole, retinal detachment, retinitis pigmentosa, retinal vein occlusion
(RVO), and retinal artery occlusion (RAO) (see Figure 1). Among these diseases, AMD
and DR are the major causes of progressive vision loss, while the latter is recognized as a
world-wide epidemic [3]. This review outlines the basic modalities used for the diagnosis
of AMD and DR. In addition, the role of AI in diagnosis and staging of these diseases will
be surveyed.
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1.1. Diabetic Retinopathy (DR)

DR and DME are considered the leading cause of blindness worldwide, and lead
to significant visual morbidity [2,4]. The prevalence of DR among diabetic patients may
reach 34.6%, while the prevalence of severe DR that threatens the vision is 10.2% [5].
The prevalence of diabetes mellitus (DM) has been continuously increasing over the last
three decades due to lifestyle changes [6]. Patients with type 1 DM are more prone to
DR than those with type 2 DM. The most important preventable risk factor for DR is
hyperglycemia [7].

Screening for DR is a crucial component of DM management [8], thus supported by
the fact that major complications of DM that affect vision such as diabetic macular edema
(DME) and proliferative DR can respond to treatment [9].

The International Council of Ophthalmology Guidelines for Diabetic Eye Care 2017
recommended that examinations for screening for DR should include retinal evaluation by
ophthalmoscope or fundus photography [10]. Early detection of DR through population
screening and timely treatment can reduce the retinal complications in diabetic patients
and prevent visual loss and blindness [11]. One of the aims of this review is to discuss the
different retinal imaging techniques for early detection and grading of DR.

Retinal imaging techniques play a major role in the management and prognosis of
diabetic eye disease. Better understanding of the advances in retinal imaging modalities
helps in the screening, diagnosis, and treatment of different disease presentations [2,12].

While direct and indirect ophthalmoscopy are the primary techniques for evaluation
of DR, several imaging techniques such as color fundus photography (CFP), fundus fluo-
rescence angiography (FFA), ultrasonography, fundus autofluorescence (FAF), and optical
coherence tomography (OCT) have proven to be useful depending on the manifestation of
the disease [13].

1.2. Age-Related Macular Degeneration (AMD)

Macular degeneration or AMD is the primary cause of blindness affecting elder
individuals [14]. The progression of the disease involves deterioration with age. Hence,
aging is the key factor behind the development and progress of AMD [15].

AMD has traditionally been divided into two major types: the non-neovascular
(dry or atrophic) form and the neovascular (wet or exudative) form [16]. AMD is also
classified into early, intermediate, and advanced AMD, according to the natural course
of the disease [17,18]. Non-neovascular AMD represents nearly 90% of all cases and is
exemplified by drusen accumulation, the absence of choroidal neovascularization, and
retinal pigment epithelium (RPE) atrophy [19]. Neovascular AMD (nAMD) is distinguished
by choroidal neovascularization (NV) with abnormal blood vessels that tend to leak fluid
or blood [20]. It causes more than 80% of serious vision loss from AMD, with rapid
deterioration toward blindness [18]. Untreated nAMD often leads to fibrovascular scarring
with associated loss of central visual function [16].

Age at time of diagnosis with AMD is the vital factor in stopping AMD progression.
In addition to the aging process, smoking is a risk factor related with AMD. A cohort
study observed that smoking doubles the risk of having AMD in 5 years compared to
nonsmokers [21]. The precise pathophysiology of AMD is still unknown. Various theories
are hypothesized to be the underlying factors for AMD. These include drusen accumula-
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tion, chronic inflammation, oxidative stress, reduction of antioxidant, and dysregulated
complement [21,22].

Early diagnosis of AMD plays a major role in delaying progression and improving
outcomes. Multimodal imaging in diagnosis offers a detailed structure of retinal alteration
in AMD without the need for invasive procedures, resulting in early detection and com-
prehensive management of AMD [6]. Imaging not only plays an important diagnostic role
in AMD, but is also used to deliver improved knowledge of its pathophysiology, define
treatment options, and assess the treatment response [23]. Imaging helps clinicians to visu-
alize abnormalities, such as RPE atrophy, drusen deposits, subretinal fluid, and choroidal
neovascularization [23].

Imaging modalities comprise CFP, FFA, indocyanine green angiography (ICGA),
fundus autofluorescence (FAF), OCT, and OCTA [6].

The FFA is still considered by some to be the gold standard for the diagnosis of wet
nAMD [5]. However, the concomitant use of FFA with OCT has become the standard
in current practice due to the progressive use of OCT as a first-line diagnostic tool for
nAMD [7,8].

With the introduction of advanced retinal imaging modalities, the CFP is no longer the
primary method for diagnosing and monitoring dry AMD. FAF and OCT are now consid-
ered essential methods, whereas other modalities, such as near-infrared autofluorescence
(NIA), FFA, and OCTA, may deliver complementary data [24].

As shown in Figure 2, imaging modalities are the input of any AI system that aims to
detect, diagnose, classify, and/or stage retinal diseases. The goal of this manuscript is to
outline the different medical image modalities and technologies that help in the detection,
diagnosis, classification, and grading of the retinal diseases, and more specifically, DR and
AMD. In addition, this paper aims at providing a review of the literature on AI systems,
surveyed from 1995 to 2022, used for the automated detection, diagnosis, classification,
and/or staging of DR and AMD.
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Figure 2. Analysis of retinal images.

The rest of this paper is organized as follows. Section 2 summarizes the retinal imaging
modalities, their technologies, and their role in the detection and staging of DR and AMD.
Section 3 summarizes the noise sources and denoising methods of retinal images. Section 4
introduces the concept of AI to assist the clinicians in the detection and staging processes
of retinal diseases. Sections 5 and 6 specify the role of AI in the detection, diagnosis, and
grading of RD and AMD, respectively. Section 7 discusses the findings of the paper and
outlines the future trends. Finally, Section 8 concludes the paper.

2. Retinal Imaging Modalities

As shown in Figure 2, to build any AI system for the detection, diagnosis, and grading
of retinal diseases, the first step is to capture the retinal image using the appropriate
medical image modality. Advances in retinal imaging have improved the diagnosis and
management of diabetic retinopathy (DR) and age-related macular degeneration (AMD). A
summary of the medical image modalities that are used for the detection, diagnosis, and
staging of DR and AMD is illustrated in Figure 3. Fundus fluorescein angiography (FFA)
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is the classic imaging modality for AMD, and is a powerful technology for identifying
its presence and degree. Optical coherence tomography (OCT) is now widely used for
early diagnosis and determination of the anti-vascular endothelial growth factor therapy
(anti-VEGF) retreatment criteria for neovascular lesions. FFA is currently considered the
gold standard technique for the evaluation of the retinal vasculature, which is the most
affected part of the retina in the diabetic eye. Optical coherence tomography angiography
(OCTA) can detect subtle changes in the retinal vasculature before the development of the
clinical features of retinopathy, allowing early detection of DR and help in screening for DR
among populations at risk. In this section, we will go over the different modalities for the
detection and staging of DR and AMD. For each modality, we will illustrate its subtypes
and sub-technologies, along with a detailed illustration of how to use this modality for the
early detection and staging of both DR and AMD.
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2.1. Color Fundus Photography (CFP)

Fundus imaging is the process whereby reflected light is used to acquire a two-
dimensional image of three-dimensional retinal tissue, with image intensities representing
the quantity of reflected light [9]. Fundus photography provides a colored image of the
retina. Conventional fundus photography was performed using film, before becoming
digitalized. Digital fundus photography has the advantages of rapid acquisition, immediate
availability, and the ability to enhance and process the images [10,13].

Types of fundus photography include (i) standard, (ii) widefield/ultra-widefield, and
(iii) stereoscopic fundus photography [13].

• Standard fundus photography is widely available and easy to use. It captures a 30◦ to
50◦ image of the posterior pole of the eye, including the macula and the optic nerve.
Standard fundus photography cameras can collect multiple fundus field images. These
images are then overlapped to create a montage image with a 75◦ field of view [10,13].

• Widefield/ultra-widefield fundus photography can image the peripheral retina. It can
capture a 200◦ field of view even if the pupil is not dilated. This 200◦ field extends
beyond the macula to cover 80% of the total surface of the retina. Theoretically, the
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large field of view permits better detection of peripheral retinal pathology. How-
ever, widefield fundus photography presents some limitations; the spherical shape
of the globe causes image distortion, artifacts as a result of eyelashes, and false find-
ings due to inadequate color representation, in addition to the expensive equipment.
Consequently, standard 30◦ fundus photography remains the best choice for fundus
imaging [10,13].

• Stereoscopic fundus photography can be used to obtain a stereo image created by
merging photographs taken at two slightly different positions from both eyes to
enable the perception of depth [11,13,25]. Despite the potential value of stereoscopic
fundus photography, its clinical value is controversial due to several limitations. The
acquisition of stereo images is time consuming, and patients must be exposed to double
the number of light flashes [11]. The photographer’s experience has an impact on the
technique, and the left and right images must be equally sharp and have the same
illumination in each image in the pair [12,26]. Image interpretation is time consuming
and requires special goggles or optical viewers to fuse the image stereoscopically and
achieve depth [11,25].

2.1.1. Application of Color Fundus Photography (CFP) in DR

CFP is widely available, and therefore it is used in screening and clinical trials of DR;
it provides good visualization of obvious signs of diabetic macular edema and proliferative
diabetic retinopathy such as microaneurysms, liquid exudate, and dot and blot hemor-
rhages [10]. The wider field of view obtained using the steered images technique in color
fundus photography is the basis of the Early Treatment Diabetic Retinopathy Study (ETDR
S) grading system, which modifies the Airlie House classification and develops a severity
scale of 13 levels [27–29]. These levels range from no evidence of retinopathy to significant
vitreous hemorrhage [5]. Ultra-widefield color fundus photography allows better detection
of peripheral retinal pathology. However, the drawbacks of widefield fundus photography
plus the expensive equipment make standard 30◦ fundus photography the best choice for
fundus imaging [10,13].

2.1.2. Application of Color Fundus Photography (CFP) in AMD

CFP is one of the simplest imaging modalities for detecting both dry (non-neovascular)
and wet (neovascular) AMD [30]. CFP offers an illustration of variable fundus abnormal-
ities, involving various subtypes of macular drusen and pigmentary abnormalities, and
closely parallels biomicroscopic examination [31]. Early funduscopic classification systems
of non-neovascular AMD include descriptions of the following: drusen size (i.e., large
versus small), consistency (i.e., soft versus hard), location, number, area of involvement,
geographic atrophy (GA) size, location, and area [32]. Drusen appears as a yellowish round
lesion, with a pigmentary deposit around the macula, while atrophic RPE shows a hypopig-
mentation around the macula. Meanwhile, the application of CFP in neovascular AMD
(nAMD) is helpful in the detection of exudative complications, such as macular edema and
macular detachment [33]. CFP has several drawbacks, as the image is created in 2D, and
thus lacks proper visualization of small details. Abnormalities in the refractive media, such
as cataracts, result in lower image clarity [18]. Additionally, it has a lower sensitivity of
78% when used as an individual imaging procedure to detect choroidal neovascularization,
compared to the sensitivity of OCT (94%) [33,34]. CFP alone is deficient for diagnosing
nAMD, as it underestimates the presence of choroidal neovascularization [30].

2.2. Fundus Fluorescein Angiography (FFA)

FFA is a two-dimensional imaging technique that depends on an intravenous injection
of fluorescent dye (resorcinolphthalein sodium) [10,30]. A ring-shaped flash camera is used
for excitation of the dye molecules and the projected blue light is reflected from the layers
of the retina. Some of the projected light becomes absorbed by the fluorescent dye, and
then it is emitted back as green light with a wavelength of 530 nm to be captured by a
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filter on a digital detector. FFA records the dynamic changes in the retinal and choroidal
vasculature [30].

The disadvantages of FFA are general systemic side effects of the injected dye, such
as anaphylactic or allergic reaction and nausea, and extensive leak of the dye into the
surrounding tissue, which could alter the readings [35].

Types of FFA include (i) indocyanine green angiography (ICGA).

• Indocyanine green angiography (ICGA) is a type of FFA based on intravenously in-
jected high-molecular-weight indocyanine green dye. It projects light with a longer
wavelength (near infrared light (790 nm)), which allows deeper penetration of the reti-
nal layers, resulting in better visualization of choroidal and retinal circulation [23,36].
Systemic side effects can similarly occur [36]. In ICGA, the dye combines with plasma
proteins, leading to less dye leakage than in FFA [37].

2.2.1. Application of FFA in DR

FFA is currently considered the gold standard technique for the evaluation of the
retinal vasculature, which is the most affected part of the retina in the diabetic eye [13].

DR signs in FFA images:

• Microaneurysms: appear as punctate hyperfluorescent areas.
• Retinal hypoperfusion: nonperfused retinal capillaries, which can cause ischemia and

appear as patches of hypofluorescent areas.
• Increased foveal avascular zone: results from macular ischemia and can explain the

cause of loss of vision in some diabetic patients.
• Retinal neo-vascularization or intraretinal microvascular abnormalities.

Fluorescein dye leaks out from abnormal blood vessels. The visualization of this
leak over time is beneficial in the detection of the breakdown of the blood–retinal barrier.
Monitoring fluorescein leakage overtime in the macula is very useful in patients with DME.
Fluorescein dye leakage also occurs with retinal neovascularization. In proliferative DR
patients, this can help in the diagnosis of neovascularization in the optic disc and other
areas of the retina [13].

Given the advantage of widefield FFA in imaging of the peripheral retina, it can used
in the detection of peripheral retinal neovascularization and the determination of the extent
of peripheral areas of capillary nonperfusion and hypoperfusion [38,39].

2.2.2. Application of FFA in AMD

FFA is the gold standard for nAMD, compared to other modalities. FFA outperforms
its rivals in specifying choroidal neovascularization (CNV) in its structural and leakage
state. Based on the location of CNV, it can be classified as extrafoveal, subfoveal, and
juxtafoveal [30,40]. Recognition of the CNV location is a valuable prognostic factor. Ex-
trafoveal CNV is situated around 200–2500 µm from the center of the foveal avascular zone
(FAZ), subfoveal CNV is situated beneath the center of the FAZ, while juxtafoveal CNV is
situated up to 199 µm from the center of the FAZ and some part of the FAZ excluding the
center portion [30].

FFA also indicates the leakage properties of the CNV, which can be categorized into
occult CNV (type I), classic CNV (type II), and retinal angiomatous proliferation (type
III) [23]. Occult CNV exists as mottled and patchy hyperfluorescence in early-phase
angiograms and leaks in the later phase, forming larger hyperfluorescent dots [30]. The
occult CNV is subgrouped into two types on the basis of its leakage features. Type I occult
CNV is fibrovascular and is defined as stippled hyperfluorescence in the early phase, with
progressive leakage upon late-phase angiogram. Meanwhile Type II occult CNV consists
of late leakage from an unspecified source and does not appear in the early phase, but
displays speckled hyperfluorescence upon mid- to late-phase angiogram [30,41]. Classic
CNV presents as a well-defined hyperfluorescence network membrane in the early phase,
followed by progressive leakage upon late-phase angiogram [42]. Retinal angiomatous
proliferation (RAP) was recently described as NV arising from the intraretinal layer and
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infiltrating into the choroid layer, forming a retinal–choroidal anastomosis. RAP can be
divided into three stages based on the extent of NV and proliferation [43].

Disadvantages of the FFA procedure include its systemic complication from the in-
jected dye. Additionally, the dye leaks considerably to the surrounding tissue, which might
affect the detailing of the CNV. Hence, in some cases of type I CNV and RAP, ICGA is a
preferable method to FFA [44].

2.2.3. Application of Indocyanine Green Angiography (ICGA) in AMD

ICGA uses a high-molecular-weight contrast that binds to plasma proteins and thus
leaks less compared to FFA [45]. ICGA is well established in the detection of type I CNV
and occult CNV: the early phase often shows ill-defined hypercyanescent lesions, the mid
phase shows progressive intensity, and the late phase exhibits hypercyanescent plaque.
However, ICGA is less appropriate for detecting classic CNV, which appears as well-defined
hypercyanescence [46].

Polypoidal choroidal vasculopathy (PCV) is an abnormal choroidal vascular network
with aneurysmal dilatation (polypoidal characteristics) at its periphery [24]. On ICGA,
PCV exists as a hypercyanescent hot spot in early angiograms, with a grape-like/polypoid
structure. PCV frequently masks the appearance of occult or classic CNV on FFA, and
therefore ICGA is considered the gold standard in the detection of PCV, as its appearance
is masked by the RPE layers in FFA [30]. PCV is associated with neurosensory detachment,
high numbers of recurrent cases, and poor visual outcomes [31].

RAP is best visualized by ICGA and appears in the early phase as a hyperfluorescent
hot spot with apparent retinal artery communication into the CNV, followed by a progres-
sive increase in both size and intensity in the late phase [43]. The recognition of RAP on
one eye is associated with increased incidence of NV on the other eye, with nearly a 100%
risk in 3 years of follow-up [47].

ICGA uses a longer wavelength of infrared compared to FFA, thus allowing deeper
penetration into the RPE, choroidal structure, and any subretinal fluid, hemorrhages, or
pigment epithelium detachment, which often alter imaging in FFA. Hence, in the presence
of hemorrhage, ICGA images offer a more detailed overview of the characteristics of CNV
in AMD patients compared to FFA [30].

2.3. Fundus Autofluorescence Imaging (FAF)

FAF is a noninvasive imaging technique for the mapping of natural or pathological
fluorophores of the ocular fundus. The dominant source of fluorophores is the lipofus-
cin located in the retinal pigment epithelium; lipofuscin is responsible for the fluores-
cent properties necessary for FAF imaging [48]. A light with a specific wavelength of
300–500 nm is used to stimulate fundus fluorescent properties without the use of contrast
material, and excites the lipofuscin particles, which then emit a light with a wavelength of
500–700 nm [18,33,37].

FAF can be performed using a fundus camera, fundus spectrophotometer, or confocal
scanning laser ophthalmoscope. The best choice is confocal scanning laser ophthalmoscope,
because of its ability to decrease the noise from other autofluorescence materials from the
anterior eye segment [33,49].

Types of fundus FAF include near infrared autofluorescence (NIA).

• Near infrared autofluorescence (NIA) is another fundus imaging technique that uses
the other fluorophore properties of the retina located in melanin. Melanin is present
mainly in the retinal pigment epithelium, and to a lesser extent in the choroid in
small amounts. NIA uses diode laser light with a longer wavelength of 787 nm
for excitation, and then a specific wavelength above 800 nm is captured using a
confocal scanning laser ophthalmoscope [50,51]. The captured image shows increased
hyperautofluorescence in the center of the fovea due to the high melanin content of the
retinal pigment epithelial cells [50]. Retromode imaging (RM) is an imaging modality
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using an infrared laser at 790 nm, generating a pseudo-3D appearance of the deeper
retinal layer [52].

FAF techniques include (i) fundus spectrophotometry, (ii) scanning laser ophthal-
moscopy, (iii) fundus camera, and (iv) widefield imaging.

• Fundus spectrophotometry is able to process the excitation and emission spectra of
autofluorescence signals originating from a small retinal area of the fundus (only 2◦

in diameter) [53]. It is composed of an image intensifier, diode array detector, and
crystalline lens. The beam is separated in the pupil, and the detection is confocal to
reduce the contribution of the crystalline lens in the autofluorescence. The complex
instrumentation and the small examined area have led fundus spectrophotometry not
to be the preferred technique in clinical practice for FAF [48,53].

• Scanning laser ophthalmoscopy can image larger areas of the retina by using a low-
power laser beam that is projected onto the retina and distributed over the fundus [54].
Then, the reflected light intensities from each point after passing through a confocal
pinhole are collected via a detector, and the image is produced [48]. A series of several
images are recorded, then averaged to form the final image, reduce the background
noise, and improve the image contrast [55].

• Fundus cameras have limitations with respect to FAF, such as weak signal, the crys-
talline lens absorptive effect, nonconfocal imaging, and light scattering [48]. A modi-
fied fundus camera was designed by adding an aperture to the illumination optics to
decrease the effect of light scattering from the crystalline lens and reduce the loss of
contrast [56]. This modified design is limited by the small field of view (only 13◦ in
diameter) and complex instrumentation [48].

• Widefield imaging: confocal scanning laser ophthalmoscopy has a 30◦ × 30◦ retinal
field. Therefore, imaging of larger retinal areas like a 55◦ field needs additional lenses.
The fundus camera can be used to manually produce montage images using seven
field panorama-based software packages [48].

• Widefield scanning laser ophthalmoscopy was developed to record peripheral aut-
ofluorescence images using green light excitation (532 nm) with an acquisition time of
less than two seconds. The widefield extends beyond the vascular arcades and can
be used to assess the peripheral involvement of retinal diseases [48]. Ultra-widefield
scanning laser ophthalmoscopy was developed by combining confocal scanning laser
ophthalmoscopy with a concave elliptical mirror. It can record a wider view of the
retina of up to 200◦ in a single image with an acquisition time of less than one second,
without the need for pupil dilatation [25,57]. The use of ultra-widefield scanning laser
ophthalmoscopy is still limited due to its high cost [12].

2.3.1. Application of FAF in DR

Previous studies have reported increased autofluorescence in patients with DME [58,59].
Multiple patterns have been used to describe the FAF findings: single cyst, multiple cysts
of increased FAF, or both combined [60]. Other patterns include normal, increased FAF,
single spot, and multiple spots of increased FAF [61].

In DME, an association has been reported between increased FAF and decreased visual
acuity [59]. Follow-up visits for patients with DME revealed that patients with deteriorated
vision had increased FAF compared to patients with stationary or improved vision [2].

2.3.2. Application of FAF in AMD

FAF is an imaging method that uses a specific wavelength of light to trigger the fundus
fluorescence characteristics without the need for contrast [33]. FAF images have the ability
to detect numerous retinal abnormalities, such as pigmentary changes, drusen, geographic
atrophy, and reticular pseudodrusen [49].

Drusen exists in numerous patterns on FAF, such as hypoautofluorescence, hyper-
autofluorescence, and normal lesions, depending on the variability of the fluorophore
contents and the size of the drusen [49,62]. FAF is the gold standard modality for the
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assessment of GA, as it offers high-contrast retinal images that can be used to detect areas
of atrophy. Atrophic lesions present as hypoautofluorescent areas, owing to the loss of
the RPE cells containing intrinsic fluorophores, such as lipofuscin [16]. The disparity be-
tween areas of RPE loss and adjacent areas of intact photoreceptors allows the reproducible
semiautomated quantification of atrophic areas. Therefore, FAF has been recognized as an
anatomic outcome parameter for the progression of GA in clinical trials by international
agencies [45,63].

Patchy, linear, or reticular patterns recognized on FAF have been associated with
the development of nAMD, while the patchy pattern is the highest-risk FAF pattern for
conversion to nAMD [64,65]. Hemorrhages, scarring, and fibrovascular membranes are
hypoautofluorescence lesions, while subretinal fluid appears hyperautofluorescent [49].

The currently most frequently used FAF imaging method uses a confocal scanning
laser ophthalmoscope (cSLO) with a blue light excitation wavelength filter (488 nm) and an
emission filter of 500 to 521 nm. In comparison with CFP, FAF has the capacity to detect
retinal changes in early and intermediate AMD that may appear normal in CFP [50].

FAF has high sensitivity in identifying nAMD (93%), but relatively low specificity
(37%) compared to FFA as the gold standard [65]. Obstacles to FAF imaging comprise
susceptibility to media opacities, difficult foveal imaging due to macular pigment that
absorbs blue light, and patient discomfort [66]. Alternate wavelengths, such as green light,
have advantages. For example, it may be more comfortable for patients, and it can reduce
macular pigment absorption. However, it can still generate an excellent visualization of the
atrophic areas [44].

NIA employs the other fluorophore properties of the retina and melanin [46]. The NIA
images show high hyperautofluorescence in the center of the fovea due to the elevated
melanin content in RPE cells [50].

Both NIA and FAF appear dark in the atrophic region in dry AMD, while the adjacent
area appears to possess increased intensity. Half of AMD patients had increased NIA at
the normal FAF site, thus suggesting that there is an increase in melanin activity preceding
lipofuscin activity [60]. In nAMD, the image seems dark in both NIA and FAF owing to
the blockage of the autofluorescence signal by subretinal fluid, hemorrhage, or choroidal
NV [30,67]. Nevertheless, FAF (56.5%) is more efficient at describing exudative activity
than NIA (33.9%) [51].

RM is helpful for distinguishing pathological structures in dry and wet AMD. For
example, drusen is more obvious in RM compared to in fundus photography [52]. In wet
AMD, RM has a higher agreement with OCT in imagining macular edema, but relatively
low for RPE detachment [68].

2.4. Optical Coherence Tomography (OCT)

OCT plays a crucial role in the diagnosis and management of retinal diseases, as it
provides detailed cross-sectional images of the retina, so that ophthalmologists can detect
changes in anatomy and monitor treatment response [2].

OCT uses light waves to generate the image in a method comparable to ultrasonog-
raphy, using reflected light, instead of sound, to create the image. Low-coherence light
is scanned and concentrated on the ocular structure of interest using an internal lens. A
second beam internal to the OCT unit is used as a reference, and a signal is formed by
calculating the variation between the reference beam and the reflected beam. Detection of
these beams depends on the time-domain or spectral-domain protocols [69].

OCT is the most powerful diagnostic tool for retinal diseases due to its noninvasive,
unique, and high-resolution evaluation of tissue, with direct correspondence to the histo-
logical appearance of the retina, achieving axial resolution of up to 2–3 µm in tissue. OCT
has other advantages that involve reproducibility, noninvasiveness, and repeatability. Ad-
ditionally, OCT is obtainable across most media opacities, including vitreous hemorrhage,
cataract, and silicone oil.
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OCT provides a superior, noninvasive modality for evaluating DME [2]. In addi-
tion, the spectral domain (SD)-OCT is the gold standard for the most important macular
diseases [70]. The introduction of OCT has altered the clinical management of several
retinal diseases, involving AMD [71], DME [72], and RVO [73,74].

OCT technologies include (i) time-domain OCT (TD-OCT), (ii) spectral-domain OCT
(SD-OCT), (iii) swept-source OCT (SS-OCT), (iv) high-speed ultra-high-resolution OCT, (v)
optical coherence tomography angiography (OCTA), (vi) intraoperative optical coherence
tomography, and (vii) functional optical coherence tomography.

• TD-OCT is the first commercially offered OCT device based on time-domain detection
that shows rather low scan rates of 400 A-scans per second. The key imitations in the
clinical use of TD-OCT are the limited resolution and slow acquisition [75]. However,
it is commonly accepted for the evaluation of several retinal diseases, such as macular
edema, AMD, and glaucoma [76].

• Spectral domain OCT (SD-OCT): Subsequently, spectral domain imaging technolo-
gies have significantly improved sampling speed and signal-to-noise ratio by using
a high-speed spectrometer that measures the light interferences from all time delays
simultaneously [77]. In commercially available SD-OCT devices, technical improve-
ments have enabled scan rates of up to 250,000 Hz [78]. SD-OCT’s higher acquisition
speeds allow for a shift from two-dimensional to three-dimensional images of ocular
anatomy. In addition, SD-OCT is several orders of magnitude more sensitive than
TD-OCT [75]. SD-OCT is used to diagnose DR and diabetic macular edema (DME).

• SS-OCT technology has also improved imaging accuracy by using a swept laser
light source that successively emits various frequencies in time and photodetectors to
measure the interference [79]. SS-OCT devices employ a longer wavelength (>1050 nm)
laser light source and have scan rates as fast as 200,000 Hz. The longer wavelengths are
thought to enhance visualization of subretinal tissue and choroidal structures [80,81].
SS-OCT has been used to visualize a thick posterior hyaloids among eyes with diabetes
compared to normal controls [82]. SS OCT can be used to reveal adhesion between the
retina and detached posterior hyaloid in eyes with DR and DME, while this was not
detected in eyes without diabetic eye disease [2].

• High-speed ultra-high-resolution OCT (hsUHR-OCT) is another variation on SS-CT
that provides a striking improvement in terms of cross-sectional image resolution
and acquisition speed. The axial resolution of hsUHR-OCT is approximately 3.5 µm,
compared with the 10 µm resolution in the standard OCT. This enables superior
visualization of retinal morphology in retinal abnormalities. The imaging speed is
approximately 75 times faster than that with standard SD-OCT. hsUHR-OCT im-
proves visualization by obtaining high-transverse-pixel density and high-definition
images [83,84].

• OCTA is a relatively new modality for visualizing flow in the retinal and choroidal vas-
culature. Rapid scanning by SD-OCT or SS-OCT devices allows analysis of variation
of reflectivity from retinal blood vessels, permitting the creation of microvascular flow
maps. This technology enables clinicians to visualize the microvasculature without
the need for an intravenous injection of fluorescein [2]. OCTA signifies progression
of OCT technology, as motion contrast is used to create high-resolution, volumetric,
angiographic flow images in a few minutes [85]. Neovascularization at the optic disc
is obviously visualized on OCTA, and microaneurysms exist as focally distended
saccular or fusiform capillaries on OCTA [86].

• Intraoperative optical coherence tomography: Performing intraoperative OCT in the
operating theater may offer supplementary data on retinal structures that were in-
accessible preoperatively due to media opacity [2]. Prospective intraoperative and
perioperative ophthalmic imaging with OCT study has been performed to assess the
feasibility, utility, and safety of using intraoperative OCT through different vitreoreti-
nal surgical procedures. The information achieved from intraoperative OCT permit
surgeons to evaluate subtle details from a perspective distinctive from that of standard
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en face visualization, which can improve surgical decisions and patient outcome [87].
Intraoperative OCT revealed variable retinal abnormalities in patients who underwent
pars plana vitrectomy for dense vitreous hemorrhage secondary to DR, including
epiretinal membranes (60.9%), macular edema (60.9%) and retinal detachment (4.3%).
The surgeons reported that intraoperative OCT impacts their surgical decision making,
particularly when membrane peeling is accomplished [88].

• Functional OCT makes it possible to perform noninvasive physiological evaluation
of retinal tissue, with respect to factors such as its metabolism [89,90]. A transient
intrinsic optical signal (IOS) is noted in retinal photoreceptors implying a distinctive
biomarker for ocular disease detection. By developing high spatiotemporal resolution,
OCT and using an algorithm for IOS processing, transient IOS could be recorded [89].
IOS imaging is a promising alternative for the measurement of retinal physiological
functions [91]. Functional OCT provides a noninvasive method for the early disease
detection and improved treatment of retinal diseases that cuase changes to retinal
function and photoreceptor damage, such as DR and AMD, which can be detected
using functional OCT as differences in IOS [2,89].

Functional extensions to OCT increase its clinical potential. For example, polarization-
sensitive OCT (PS-OCT) delivers intrinsic, tissue-specific contrast of birefringent (e.g., retinal
nerve fiber layer (RNFL)) and depolarizing (e.g., retinal pigment epithelium (RPE)) tissue
with the use of polarized light. This allows PS-OCT to be helpful for the diagnosis of RPE
disorders in some disease such as AMD [92].

Another extension is Doppler tomography, which allows depth-resolved imaging of
flow by observing differences in phase between successive depth scans. This technology
offers important data about blood flow patterns in the retina and choroid, granting absolute
quantification of the flow within retinal vessels [93].

2.4.1. Application of OCT in DR

OCT has become the gold standard method for the evaluation and management of
DME by visualizing changes in the retinal anatomy caused by DME and monitoring the
response to treatment [2,10]. OCT is able to determine whether DME is center involving or
noncenter involving, which affects the therapy plan [13].

DME causes several morphologic patterns; diffuse thickening of the retina, intra-retinal
cystic spaces, vitreofoveal traction with loss of the foveal depression, and loss of the external
limiting membrane. These patterns are correlated with the degree of visual impairment
and the thickness of the retina [10,94,95]. In severe forms of DME, subretinal fluid and focal
retinal detachment occur, appearing as voids or dark spaces between the retina and retinal
pigment epithelium [10]. Hard exudate on OCT appears as hyperreflective punctate foci in
the outer plexiform layer. As well as hemorrhage in different layers of the retina, cotton
wool spots in the superficial layer of the retina may be visualized. The appearance of retinal
neovascularization on OCT is a highly reflective spot on the inner surface of the retina [10].
Hyaloid traction and preretinal membranes cause distortion of the retinal architecture on
OCT, and identification of this traction is crucial for the management of DME, as eyes will
not respond to treatment and may require surgery for the resolution of DME. OCT cannot
diagnose macular ischemia like FFA does, which in turn limits the ability of OCT to be
correlated with anatomical changes with visual acuity [10].

There are multiple classifications for DME based on OCT findings. Patterns are
described as diffuse or sponge-like retinal thickening, cystoid macular edema, serous
subretinal fluid without posterior hyaloid traction, with posterior hyaloid traction, and
mixed patterns [96]. Identification of these different patterns directly affects the diagnosis
and treatment of DME [10].

2.4.2. Application of OCTA in DR

OCTA can be used to visualize abnormal flow patterns or irregular vessel geome-
tries in DR, in order to diagnose retinal neovascularization, capillary nonperfusion and
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microaneurysms. Studies confirmed that OCTA can detect subtle changes in the retinal
vasculature before the development of the clinical features of retinopathy allowing early
detection of DR and help in the screening for DR among populations at risk [85].

With regard to the visualization of microaneurysms, OCTA can be used to detect
the intra-retinal depth of extension of microaneurysms, although it appears less sensitive
than FFA for the detection of microaneurysms [97]. Microaneurysms in OCTA appear
as dilated capillary segments or loops, small neovascularization foci, or focal capillary
dilatations in area adjacent to the capillary nonperfusion [97]. OCTA can create quantitative
measurements of the avascular zone of the fovea, capillary nonperfusion areas, flow maps,
and vessel density analysis. These quantitative data can provide more detailed and precise
information than that obtained using FFA [98].

2.4.3. Application of OCT in AMD

OCT is one of the most suitable noninvasive imaging modalities for identifying and
monitoring AMD. There are four hyperreflective bands detected in AMD patients using
OCT, which are assumed to represent the external limiting membrane, the inner/outer
segment of the photoreceptor, RPE, and Bruch’s membrane [99]. OCT is able to demon-
strate AMD abnormalities such as drusen deposits, pseudodrusen, subretinal fluid, RPE
detachment, and choroid NV. Drusen deposits present as low mounds underneath the RPE
layer, while pseudodrusen presents as a hyperreflective deposit located beneath the retina
layer [23].

The existence of pseudodrusen in AMD patients is associated with increased risk of GA
or nAMD. OCT has the highest sensitivity and specificity for the detection of pseudodrusen
among all of the other imaging modalities [100]. OCT is frequently used as a reference
imaging method for evaluating the response of nAMD to anti-vascular endothelial growth
factor therapy [101,102]. A recent study demonstrated that SD-OCT or FA combined with
CFP had similar sensitivity and specificity, with no statistical difference for the primary
diagnosis of NV secondary to AMD [103].

In GA, the RPE atrophy shows a feathered-like form projected deep into the RPE [36].
OCT additionally displays a progressive loss of retinal bands, which is related to the
external limiting membrane, the inner/outer segments of the photoreceptor layer, the RPE
layer, and the outer nuclear layer [33]. The enlargement of the atrophic region is linked with
the gradual loss of the outer hyperreflective bands and the thinning of the outer nuclear
layer, the outer plexiform layer, and the RPE membrane during 12 months of follow-up.
Additionally, GA is related to a 14.09 µm increase in retinal thickness [104].

NV activity is assessed on OCT based on the accumulation of fluid at different levels
of the retina. Subretinal fluid is depicted as a hyporeflective lesion situated above the RPE
and below the retina [23]. RPE detachment looks like a dome shape on the RPE layer [36].
Exudative activity is one of the defining factors for nAMD treatment; increased choroid
thickness might represent a possible choroid, but cannot distinguish between classic AMD
and PCV [23]. Outer retinal tubules are another structural retinal abnormality in OCT
that appears as a hyporeflective center with a hyperreflective border. It represents the
degenerated photoreceptors, and thus does not represent exudative activity for NV and
does not require treatment for nAMD [105].

OCT has drawbacks with respect to grading choroidal NV; however, these can be
overwhelmed by performing FFA or OCTA in combination with OCT when indicated [30].

2.4.4. Application of OCTA in AMD

In contrast to both FFA and ICGA, OCTA is a noninvasive procedure for retinal
vascular imaging, and has rapidly achieved acceptance for the detection and monitoring
of nAMD [106]. The presence of a choroidal NV on OCTA links perfectly with findings
on structural OCT and FFA [107]. The improved definition of NV on OCTA has led to an
improved understanding of the structural evolution of these lesions with anti-angiogenic
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treatment [108]. Despite inactivity on FFA, a vascular network can remain persistent on
OCTA [109].

OCTA has equivalent detection ability with respect to visualizing CNV to that of FFA
and ICGA [30]. In nonexudative CNV, OCTA is valuable in visualizing choriocapillaris
blood flow with a significant decrease in choriocapillaris flow in atrophic zone reaching
outside the GA area in dry AMD [110]. OCTA revealed a significantly decreased ves-
sel density—by 9%—in dry AMD patients in both superficial and deep vascular layers
compared with healthy individuals [111].

Nonexudative CNV is often identified by OCTA in the eyes of patients with exudative
CNV, with a high risk of exudation developing within the first year after detection. Those
patients could benefit from close monitoring [84].

CNV is detected as a hyperfluorescent high flow network with variable depth of the
retina involvement according to the degree of CNV [23]. Type I CNV is emerging as a
minimal delineated vascularization developing from choriocapillaris and RPE penetrating
the Brusch’s membrane, but does not penetrate the RPE layer with no evidence of NV in the
outer retina [112,113]. Type II CNV seems like a sharp demarcated vascular change at the
choroid, choriocapillaris, and RPE, and extending to the outer retina [113]. Type III CNV
is emerging as a hyperreflective cluster located in outer retinal layer with interconnecting
vessels and inner retinal circulation [106].

OCTA has a number of limitations, as subretinal hemorrhage diminishes its signal to
detect CNV. In addition, OCTA has lower sensitivity compared to FFA for the detection
of exudative AMD in cases with large subretinal hemorrhages [114]. Furthermore, OCTA
may underestimate the CNV size compared to ICGA [115].

2.5. Adaptive Optics (AO)

AO is an adapted technology in which scanning laser ophthalmoscopy (SLO) and
OCT are employed to resolve optical aberrations on the basis of retinal imaging. AO
grants noninvasive visualization and quantification of retinal capillaries, as it can deliver
high-resolution images of the foveal cones, dynamic images of the retinal vasculature, and
calculate arterial wall measurements and blood flow speed [116,117]. However, AO is
limited by its very small field of view—in the range of 1–2 degrees—which hinders its
clinical benefit.

2.5.1. Application of AO in DR

In diabetic eyes, AO has been used to show the irregular branching of blood vessels,
shunt vessels and narrowed perifoveal capillaries [118,119]. The diminished regularity of
the cone photoreceptor arrangement determined with AO-SLO has been correlated with
increasing DR severity and DME [120]. Additionally, an association between capillary
nonperfusion in the deep capillary plexus and abnormalities in the photoreceptor layer in
DR has been reported using both AO-SLO and OCTA [121].

2.5.2. Application of AO in AMD

AO promotes the correction of ocular aberrations, increases lateral resolution, and
decreases artifacts. AO-OCT enhances the ability of OCT to grant early recognition of
cellular pathology before visual changes occur [122]. AO-OCT reveals higher reflectivity
and reduced speckle size in AMD compared to in OCT [123]. In GA, AO-OCT reveals
detailed membrane loss, inner and outer segment loss, and RPE loss. Additionally, in
advanced GA, the AO-OCT detects calcified drusen and drusenoid pigment epithelial
detachment, thus allowing direct visualization of the photoreceptor destruction caused by
drusen [63].

2.6. Ultrasound Imaging

Ophthalmic B-scan ultrasound is a rapid, noninvasive imaging technique that creates
real-time high-resolution images of the eye with minimum discomfort [124].
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Application of Ultrasonic Imaging in DR

In DR, B-scan ultrasound imaging can determine the status of the retina when visibility
is obscured by hemorrhage or dense cataract. It can illustrate the causes of low vision
in patients with DR, such as vitreous hemorrhage, asteroid hyalosis, and retinal detach-
ment, with a better assessment of the complications that predict the visual outcome [125].
Ophthalmic ultrasound can also accurately illustrate ocular emergencies, such as retinal de-
tachment and ocular trauma [126]. Additionally, ophthalmic ultrasound is very helpful for
relieving the risk of vision loss associated with central retinal artery occlusion [127]. B-scan
ultrasound imaging is not sensitive enough to evaluate for DME, and it has a restricted
efficiency when the ocular media is clear [128].

3. Denoising of Retinal Images

To process retinal images using AI, denoising represents a preprocessing step that may
help to improve the AI efficiency for the detection, diagnosis, and staging of retinal diseases.
Noise sources in CFP include additive and multiplicative noise [129]. For OCT, noise
sources include speckle noise, shot noise, and additive white Gaussian noise (AWGN) [130].
For OCTA, noise sources include speckle noise and AWGN [131]. For FFA, noise sources
include the internal noise of sensitive components, optical material grain noise, thermal
noise, transmission channel interference, and quantization noise [132]. Most popular
denoising techniques include using a Gaussian filter, a median filter, a wavelet filter,
and/or a spatial domain filter. More recently, deep autoencoders play a significant role
in image denoising. However, recent directions of deep learning attempt to efficiently
train the deep learning network to process directly noisy images without the need for
preprocessing techniques.

4. The Role of AI in the Diagnosis of Retinal Diseases

Artificial intelligence (AI) is a field of knowledge that refers to the imitation of the
way in which humans think and solve problems using artificially intelligent components.
Machine learning is a basic part of AI. Machine learning depends on extracting features
from the input database using different image processing tools, and either categorizing
the data based on unsupervised learning or classifying the data into grades using su-
pervised learning. Supervised learning refers to data classification based on supervision
(i.e., through labeled input–output pairs; each pair contains an input associated with its de-
sired ground truth output). Classifiers include supported vector machines (SVM), random
forest, traditional neural networks (neural networks that are composed of two layers, where
the traditional back propagation algorithm is used to adjust the weights), see Figure 4.
Recently, deep learning, which is a part of machine learning, has gained a lot of popularity
and potential applications in the medical field. The most popular deep learning networks
are convolutional neural networks (CNNs). Unlike traditional neural networks, CNNs are
composed of many convolutional and fully connected layers that perform both feature
extraction and classification. On the other hand, unsupervised learning does not depend
on supervision (labeled input output pairs) to perform data categorization. Instead, the
patterns of the input data are used to efficiently categorize the data.

Nowadays, AI plays a major role in many applications, including in the detection,
diagnosis, grading, and classification of eye diseases (see Figure 2). In this paper, we will
briefly survey the different AI-based methods for the early detection, diagnosis, grading,
and classification of eye diseases. We will focus on the two major eye diseases: DR
and AMD.

To measure the performance of AI components, different metrics are used to solve
medical problems, such as the early detection, diagnosis, and classification of eye diseases.
In this section, we will provide a brief overview of these metrics.
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Figure 4. Components of artificial intelligence (AI).

Performance Metrics

Let TP indicate true positive, TN indicate true negative, FN denote false negative, and
FP denote false positive. The following performance metrics are defined as follows:

• Specificity:

Spe f =
Number o f true postive assesments
Number o f all postive assesments

=
TP

TP + FN

• Sensitivity (recall):

Sen =
Number o f true negative assesments
Number o f all negative assesments

=
TN

TN + FP

• Accuracy:

ACC =
Number o f correct assesments

Number o f all assesments
=

TP + TN
TP + TN + FP + FN

• F1-score:

F1 =
TP

TP + 0.5(FP + FN)

• Precision:

Pre =
Number o f true postive assesments
Number o f all postive assesments

=
TP

TP + FP

• Kappa:

k =
po − pe

1 − pe

where po = Number o f Agreements among raters
Total and pe is the hypothetical probability of

chance agreement.

• AUC is the area under the curve of the receiver operating characteristics (ROC), a
curve that relates the false positive rate (specificity, on the x-axis) to the true positive
rate (sensitivity, on the y-axis). AUC is between 0 and 1. The closer the AUC to 1, the
better the performance.

• Confusion matrix, which is a summary of classification results based on highlighting
the number of correct and incorrect predictions for each class.
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5. The Role of AI in the Early Detection, Diagnosis, and Grading of DR

DR is an epidemic disease [133,134]. In this section, the automated methods for the
detection, diagnosis, and staging of DR are outlined.

5.1. Traditional Machine Learning Methods

Traditional machine learning (ML) methods involve extracting features from input
data using different image processing tools and using a separate classifier to perform
classification. These methods may include a feature selection and reduction algorithm to
select the most relevant features to the specific classification problem. In the literature,
different ML methods have been applied for the purpose of the detection, diagnosis, and
grading of DR. These methods are different with respect to the image modality used, the
feature extracted, and the classifier used. The most used image modality is fundus imaging
(10 out of 18 research studies), followed by OCT, and then OCTA. Please note that the OCT
and OCTA modalities have more recently become the modalities of choice (i.e., between
2020 and 2022). Features include statistical features, texture feature and morphological
(shape) features. The most used classifiers are the SVM and traditional neural networks.
Figure 5 summarizes the traditional ML methods used for the job of detecting, diagnossing,
and grading DR.

Bioengineering 2022, 9, x FOR PEER REVIEW 16 of 38 
 

𝑘 =
𝑝𝑜 − 𝑝𝑒

1 − 𝑝𝑒

 

where 𝑝𝑜 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐴𝑔𝑟𝑒𝑒𝑚𝑒𝑛𝑡𝑠 𝑎𝑚𝑜𝑛𝑔 𝑟𝑎𝑡𝑒𝑟𝑠

𝑇𝑜𝑡𝑎𝑙
 and 𝑝𝑒  is the hypothetical probability of 

chance agreement. 

• AUC is the area under the curve of the receiver operating characteristics (ROC), a 

curve that relates the false positive rate (specificity, on the x-axis) to the true positive 

rate (sensitivity, on the y-axis). AUC is between 0 and 1. The closer the AUC to 1, the 

better the performance. 

• Confusion matrix, which is a summary of classification results based on highlighting 

the number of correct and incorrect predictions for each class. 

5. The Role of AI in the Early Detection, Diagnosis, and Grading of DR 

DR is an epidemic disease [133,134]. In this section, the automated methods for the 

detection, diagnosis, and staging of DR are outlined. 

5.1. Traditional Machine Learning Methods 

Traditional machine learning (ML) methods involve extracting features from input 

data using different image processing tools and using a separate classifier to perform clas-

sification. These methods may include a feature selection and reduction algorithm to se-

lect the most relevant features to the specific classification problem. In the literature, dif-

ferent ML methods have been applied for the purpose of the detection, diagnosis, and 

grading of DR. These methods are different with respect to the image modality used, the 

feature extracted, and the classifier used. The most used image modality is fundus imag-

ing (10 out of 18 research studies), followed by OCT, and then OCTA. Please note that the 

OCT and OCTA modalities have more recently become the modalities of choice (i.e., be-

tween 2020 and 2022). Features include statistical features, texture feature and morpho-

logical (shape) features. The most used classifiers are the SVM and traditional neural net-

works. Figure 5 summarizes the traditional ML methods used for the job of detecting, 

diagnossing, and grading DR. 

 

Figure 5. Summary of traditional ML methods for DR detection, diagnosis, and/or staging. 

For fundus images, different features obtained using different image processing al-

gorithms have been used. For example, Welikala et al. [135] used local morphology fea-

tures with a genetic feature selection algorithm to select the most relevant features for the 

Figure 5. Summary of traditional ML methods for DR detection, diagnosis, and/or staging.

For fundus images, different features obtained using different image processing algo-
rithms have been used. For example, Welikala et al. [135] used local morphology features
with a genetic feature selection algorithm to select the most relevant features for the de-
tection of new vessels from fundus images as an indication of PDR. The detection was
performed using an SVM classifier. Prasad et al. [136] used 41 statistical and texture features
followed by a Haar wavelet transform for feature selection and principal component analy-
sis (PCA) for feature reduction. A back propagation neural network and one rule classifier
were used for the detection of DR from fundus images. Mahendran et al. [137] used both
statistical and texture features extracted using a gray-level co-occurrence matrix (GLCM)
applied on segmented fundus images. They used SVM and neural networks to detect
abnormal DR and then to classify abnormal DR into moderate NPDR or severe NPDR.
Bhatkar et al. [138] used discrete cosine transform and statistical features to detect DR using
fundus images. A multi-layer perceptron neural network was used for the discrimination
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of abnormal DR images from normal ones. Labhade et al. [139] classified the data into
four classes: normal, mild NPDR, severe NPDR, and PDR using 40 statistical and GLCM
texture features extracted from fundus images. Different classifiers have been investigated,
including SVM, random forest, gradient boost, AdaBoost, and Gaussian naive Bayes, with
the SVM classifier achieving the best performance. Rahim et al. [140] classified fundus im-
ages into five classes: no DR, mild NPDR, moderate NPDR, severe NPDR, and PDR. Three
features were used: area, mean, and standard deviation of two extracted regions (i.e., retina
and exudates), which were segmented using fuzzy techniques. An SVM with a radial basis
function (RBF) kernel was used for classification. Islam et al. [141] discriminated between
normal and DR fundus images using sped up robust features, followed by k-means, a
bag of words approach, and SVM classifiers. Carrera et al. [142] classified nonprolifer-
ative DR into four grades using fundus images. They extracted features from isolated
blood vessels, microaneurysms, and hard exudates, and an SVM was used to perform
classification. Somasundaram and Alli [143] differentiated between NPDR and PDR. They
extracted the candidate objects (blood vessels, optic nerve, neural tissue, neuroretinal rim,
optic disc size, thickness and variance), and a bagging ensemble was used for classification.
Costa et al. [144] graded DR using fundus images. They used a weakly supervised multiple
instances learning framework based on joint optimization of the instance encoding and the
image classification stages.

For OCT images, different methods have been applied. For example, Sharafeldeen et al. [145]
detected DR from OCT images using features that were extracted from 12 retinal layers,
including the thickness, tortuosity, and reflectivity of each layer. Two-level neural networks
were used for classification. Wang et al. [146] extracted foveal avascular zone (FAZ) metrics,
vessel density, extrafoveal avascular area, and vessel morphology metrics from OCT images.
A multivariate regression analysis was used to identify the most discriminative features
for grading DR. Abdelsalam et al. [147] used multifractal geometry and an SVM for early
diagnosis of NPDR using OCTA. Elsharkawy et al. [148] applied majority voting on an
ensemble of neural networks, where the input of the NN was the Gibbs energies extracted
from the 12 layers of the retina. Table 1 summarizes the different traditional machine
learning methods that have been used for DR detection, diagnosis, and grading since 2015.

For OCTA images, different techniques have been employed. For example, Eladawi et al. [149]
achieved early detection of DR using OCTA. They extracted features like the density and
appearance of the retinal blood vessels, and the distance map of the foveal avascular zone,
and an SVM was used for classification. Alam et al. [150] achieved early detection of
DR using OCTA images. Features are extracted including blood vessel tortuosity, blood
vascular caliber, vessel perimeter index, blood vessel density, foveal avascular zone area,
and foveal avascular zone contour irregularity; then, an SVM was used for classification.
Liu et al. [151] detected DR using OCTA. A discrete wavelet transform was applied to
extract texture features from each image. Different numbers of classifiers were investigated,
including logistic regression, logistic regression regularized with the elastic net penalty,
SVM, and the gradient boosting tree.

Mixed modalities have also been investigated. For example, Sandhu et al. [152]
diagnosed NPDR using both OCT and OCTA. Features were extracted from both OCT and
OCTA. From OCT, the curvature, reflectivity, and thickness of retinal layers were extracted.
From OCTA, the area of the foveal avascular zone, the vascular caliber, the vessel density,
and the number of bifurcation points were extracted. A random forest classifier was used
for classification. Table 1 summarizes the traditional ML methods for early detection,
diagnosis, and grading of DR.
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Table 1. Traditional ML methods for early detection, diagnosis, and grading of DR.

Study Goal Features Classifier Database Size Performance

Welikala et al. [135],
2015

Detection of new
vessels from fundus

images as an indication
of PDR

Local morphology
features + genetic
feature selection

algorithm

SVM
60 Images from

MESSIDOR [153] and
local Hospital

Sen = 1000
Spec = 0.975
per image

Prasad et al. [136], 2015
Detection of DR (two

classes: non DR vs. DR)
using fundus images

41-statistical and texture
features+ Haar wavelet

transform for feature
selection + PCA for
feature reduction

Back propagation
neural network and one

rule classifier

89 images from
DIARETDB1 [154]

ACC = 93.8% for back
propagation neural

network and
ACC = 97.75% for one

rule classifier

Mahendran et al. [137],
2015

Classification of the
data into normal vs.

abnormal followed by
classification of

abnormal into moderate
NPDR or severe NPDR

using fundus images

Statistical and texture
features using GLCM

extracted from
segmented images

SVM and
neural network

1200 images from
MESSIDOR database

ACC = 97.8% (SVM)
and ACC = 94.7%,
(neural network)

Bhatkar et al. [138], 2015 Detect DR using
fundus images

Discrete Cosine
transform and

statistical features

Multi-layer perceptron
neural network

130 images from
DIARETDB0 database

Spe f = 100%
Sens = 100%

Labhade et al. [139],
2016

Classification of the
data into four classes:
normal, mild NPDR,

severe NPDR, and PDR
using fundus images

40 statistical and GLCM
texture features

SVM,
random forests,
gradient boost,

AdaBoost, Gaussian
naive Bayes

1200 images from
MESSIDOR database

Best ACC = 88.71
using SVM

Rahim et al. [140], 2016

Classification of the
data into five classes: no

DR, mild NPDR,
moderate NPDR, severe
NPDR, and PDR using

fundus images

Three features (area,
mean, and standard

deviation) of two
extracted regions using
fuzzy techniques (retina

and exudates)

SVM with RBF kernel

600 images from 300
patients collected at the

Hospital Melaka,
Malaysia

ACC = 93%,
Spef = 93.62%, and

Sen = 92.45%

Islam et al. [141], 2017
Discriminate between
normal and DR using

fundus images

Speeded up robust
features

k-means, a bag of words
approach, and SVM 180 fundus images ACC = 94.4%, Pre = 94%,

F1 = 94% AUC = 95%

Carrera et al. [142], 2017

Classifying
nonproliferative DR
into 4 grades using

fundus images

Extract features from
isolates blood vessels,
microaneurysms, and

hard exudates

SVM 400 images Sen = 95%

Somasundaram and Alli
[143], 2017

Differentiate between
NPDR and PDR

Extraction of the
candidate objects (blood

vessels, optic nerve,
neural tissue,

neuroretinal rim, optic
disc size, thickness and

variance)

Bagging ensemble
classifier 89 colors fundus images ACC = 49% for

DR detection

Eladawi et al. [149] Detecting early DR
using OCTA

Density, appearance of
the retinal blood vessels,
and distance map of the

foveal avascular zone

SVM 105 subjects ACC = 97.3%

Costa et al. [144] Grading DR using
fundus images

Joint optimization of the
instance encoding

and the image
classification stages

Weakly supervised
multiple instance

learning framework

1200
(Messidor)
1077 (DR1)
5320 (DR2)

images

AUC = 90%
(Messidor)

AUC = 93 %
(DR1)

AUC = 96%
(DR2)

Alam et al. [150] Early detection of DR
using OCTA images

Blood vessel tortuosity,
blood vascular caliber,
vessel perimeter index,

blood vessel density,
foveal avascular zone

area, and foveal
avascular zone

contour irregularity

SVM 120 images

AUC = 94.41 %
(control vs. disease)

AUC = 92.96%
(control vs. mild)

Sandhu et al. [152], 2020 Diagnosis of NPDR
using OCT and OCTA

Curvature, reflectivity,
and thickness of retinal

layers (OCT),
Area of foveal avascular

zone, vascular caliber,
vessel density, and

number of bifurcation
points (OCTA)

Random forest 111 patients
ACC = 96%, Sen = 100%,
Spec = 94%, AUC = 0.96

(OCT + OCTA)
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Table 1. Cont.

Study Goal Features Classifier Database Size Performance

Sharafeldeen et al. [145],
2021

Detecting DR
using OCT

Thickness, tortuosity,
and reflectivity of 12

extracted retinal layers

Two-level
neural networks

260 images from
130 patients

Sen = 96.15%,
Spe f = 99.23%

F1 = 97.66%
AUC = 97.69%

Liu et al. [151], 2021 Detecting DR
using OCTA

A discrete wavelet
transform was applied

to extract texture
features from
each image

Logistic regression,
logistic regression

regularized with the
elastic net penalty, SVM,

and the gradient
boosting tree

114 DR images + 132
control images

ACC = 82%
AUC = 0.84

(logistic regression)

Wang et al. [146], 2021 Grading DR using
OCT images

Foveal avascular zone
(FAZ) metrics, Vessel
density, extrafoveal

avascular area
and vessel

morphology metrics

Multivariate regression
analysis was used to

identify the most
discriminative features

105 eyes from
105 patients

Sen = 83.72%
Spe f = 78.38%

Abdelsalam et al. [147],
2021

Diagnosis of early
NPDR using OCTA Multifractal geometry SVM 170 eye images

ACC = 98.5%,
Sens = 100%,
Spe f = 97.3%

Elsharkawy et al. [148],
2022

Detection of DR
using OCT

Gibbs energy extracted
from 12 retinal layers

Majority voting using
an ensemble of

Neural networks
188 3D-OCT subjects ACC = 90.56%

(4-fold cross validation)

5.2. Deep Learning Methods

The most popular deep learning method is the CNN, which is composed of two
types of layer: convolutional layers and fully connected layers. Convolutional layers are
used to extract low- and high-level compact features, whereas the fully connected layers
are used for classification. Different deep learning features may be applied, including
transfer learning, data augmentation, and ensemble learning. Figure 6 summarizes the
deep learning methods used for the detection, diagnosis, and grading of DR.
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For fundus images, different deep learning methods have been applied. For example,
Gulshan et al. [155] used an ensemble of 10 CNN networks for the grading of DR and
DME using fundus images. The final decision of the ensemble was computed as the linear
average of the predictions of the ensemble. Colas et al. [156] graded DR using a deep CNN
network applied on fundus images. Their technique provided the location of the detected
anomalies. Ghosh et al. [25] applied data augmentation, normalization, and denoising
preprocessing stages. Then, a 28-layer CNN was applied for the grading of DR using
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fundus images. Takahashi et al. [157] differentiated between NPDR, severe NPDR, and
PDR using fundus images. They applied a modified GoogleNet on the fundus scans to
perform both feature extraction and classification. An ensemble of 26-layer ConvNets was
used by Quellec et al. [158] for the grading of DR using fundus images. Ting et al. [134]
identified DR and related eye diseases using an adapted VGGNet architecture. An ensemble
of two networks was used for the detection of referable DR from fundus images. A zoom-in
network was applied by Wang et al. [159] for the diagnosis of DR and the identification of
suspicious regions using fundus images. Dutta et al. [160] compared back propagation NN,
Deep NN, and VGG16-based CNN for the differentiation between mild NPDR, moderate
NPDR, severe NPDR, and PDR using fundus images. The deep NN achieved the best
performance. Zhang et al. [161] diagnosed the severity of DR using DR-Net with adaptive
cross-entropy loss. Chakrabarty et al. [162] resized the grey-level fundus scans and input
them to a nine-layer CNN in order to detect DR. Kwasigroch et al. [163] input the fundus
images into a VGGNet in order to detect and stage DR. Li et al. [164] enhanced the contrast
of fundus scans and input them into a transfer learning Inception-v3 CNN in order to detect
referral DR. Nagasawa et al. [165] differentiated between nonPDR and PDR using ultrawide-
field fundus images. Transfer learning of Inception-v3 CNN was used. Metan et al. [166]
used ResNet for DR staging using color fundus images. Qummar et al. [167] used an
ensemble of five CNNs, i.e., ResNet50, Inception-v3, Xception, Dense121, and Dense 169
to perform DR staging using fundus images. Sayres et al. [168] used Inception-v4 for
DR staging using fundus images. Sengupta et al. [169] applied data preprocessing steps
followed by an Inception-v3 CNN for DR staging using fundus images. Hathwar et al. [41]
used a transfer learning Xception method for DR detection and staging using fundus images.
Narayanan et al. [170] detected and graded the fundus images by investigating transfer
learning of different networks, including AlexNet, VGG16, ResNet, Inception-v3, NASNet,
DenseNet, and GoogleNet. Shankar et al. [171] applied histogram-based segmentation to
extract the details of the fundus image. Synergic deep learning was performed for DR
grading using fundus images. He et al. [172] graded DR using fundus images. They used
CABNet, which is an attention module with a global attention block. They used DenseNet-
121 as a backbone network of CABNet. Saeed et al. [173] applied transfer learning using
two pretrained CNNs for DR grading using fundus images. Wang et al. [174] applied
transfer learning using two networks, i.e., Inception-v3 and lesionNet, for DR grading.
Hsieh et al. [175] used VeriSee™ software, which is based on a modified Inception-v4 model
as a backbone network to perform DR grading using fundus images. Khan et al. [176]
graded DR using a VGG-NiN model, which is formed by stacking VGG16, a spatial
pyramid pooling layer and network-in-network. Zia et al. [177] applied feature selection
and fusion steps. Then, the use of a CNN, including VGGNet and Inception-v3 models,
was investigated for DR grading. Das et al. [178] detected and classified DR using fundus
images. A CNN is built in which the number of layers was selected using a genetic
algorithm. an SVM was used for classification. For grading DR, Tsai et al. [179] applied
transfer learning using three models, i.e., Inception-v3, ResNet101, and DenseNet121.

Using FFA images, Gao et al. [180] graded DR by investigating three deep networks,
i.e., VGG16, ResNet50, and DenseNet. VGG16 achieved the best performance, with an
accuracy of 94.17%.

Using OCT images, Eltanboly et al. [181,182] detected and graded DR by extracting
features, including the reflectivity, curvature, and thickness of twelve segmented retinal
layers. Deep fusion of the features was performed using auto-encoders. Li et al. [183]
applied a deep network, called OCTD_Net, for early detection of DR using OCT images.
Ghazal et al. [184] developed early detection of NPDR using OCT images based on an
AlexNet followed by an SVM for classification.

Using OCTA images, Heisler et al. [185] applied ensemble training based on majority
voting or stacking techniques using four fine-tuned VGG19. A maximum accuracy of 92%
was achieved using the majority voting techniques. Ryu et al. [186] used ResNet101 for
early detection of DR using OCTA. Using both OCT and OCTA, Zang et al. [187] classified
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DR using a network called DcardNet. He achieved an ACC of 95.7% for the detection
of referable DR. Table 2 summarizes the deep learning methods used for early detection,
diagnosis, and grading of DR.

Table 2. Deep learning methods for early detection, diagnosis, and grading of DR.

Study Goal Deep Network Other Features Database Size Performance

Gulshan et al. [155],
2016

Grading of DR and
DME using

fundus images

Ensemble of
10 CNN networks

Final decision was
computed as the linear

average of the
predictions of
the ensemble

128,175 + 9963 from
EyePACS-1 +1748 from

MESSIDOR-2

AUC = 99.1%
(EyePACS-1)
AUC = 99%

(Messidor-2)

Colas et al. [156], 2016 Grading of DR using
fundus images Deep CNN network

Their technique
provides the location of
the detected anomalies

70,000 image
(training) +10,000 (test)

AUC = 94.6%,
Sen = 96.2%,
Spef = 66.6%

Ghosh et al. [188], 2017 Grading of DR using
fundus images 28-layer CNN

Data augmentation,
normalization

denoising were applied
before the CNN

30,000 Kaggle images ACC = 95% (two-class)
ACC = 85% (five-class)

Eltanboly et al. [181],
2017

DR detection using OCT
images

Deep fusion classifier
using auto-encoders

Features are: reflectivity,
curvature, and

thickness of twelve
segmented retinal layers

52 scans
ACC = 92%

Sen = 83%, and
Spef = 100%

Takahashi et al. [157],
2017

Differentiate between
NPDR, Severe NPDR,

and PDR using
fundus images

Modified GoogleNet
Fundus scans are the

inputs to the
Modified GoogleNet

9939 scans from
2740 patients ACC = 81%

Quellec et al. [158], 2017 Grading DR using
fundus images 26-layer ConvNets An ensemble of

ConvNet was used

88,702 scans (Kaggle)
+107,799 images

(e-optha)

AUC = 0.954 (Kaggle)
AUC = 0.949 (e-optha)

Ting et al. [134], 2017
Identifying DR and
related eye diseases

using fundus images

Adapted VGGNet
architecture

An ensemble of two
networks for detecting

referable DR
494,661 images

Sen = 90.5%
Spef = 91.6% for

detecting referable DR

Wang et al. [159]

Diagnosing DR and
identifying suspicious

regions using
fundus images

Zoom-in-Net Inception-Resnet for the
backbone network

35k/11k/43k for
train/val/test

(EyePACS) and 1.2k
(Messidor)

AUC = 0.95
(Messidor)

AUC = 0.92 (EyePACS)

Dutta et al. [160], 2018

Differentiate between
mild NPDR, moderate
NPDR, severe NPDR,

and PDR

Back propagation NN,
Deep NN, and CNN

CNN used
VGG16 model

35,000 training and
15,000 test images

(Kaggle)

ACC = 86.3% (DNN)
ACC = 78.3% (VGGNet)

ACC = 42% (back
propagation NN)

Eltanboly et al. [182],
2018

Grading of
nonproliferative DR
using OCT images

Two-stage deep fusion
classifier using

autoencoder

Features are: reflectivity,
curvature, and

thickness of twelve
segmented retinal layers

74 OCT images

ACC = 93% Sen = 91%,
Spef = 97%

(for detecting DR)
ACC = 98%

(for detecting
early stage from

mild/moderate DR)

Zhang et al. [161], 2018
Diagnose the severity

of diabetic
retinopathy (DR)

DR-Net with
an adaptive

cross-entropy loss

Data augmentation
is applied

88,702 images from
EyePACS dataset ACC = 82.1%

Chakrabarty et al. [162],
2018

DR detection using
fundus images 9-layer CNN

Resized grey-level
Fundus scans are the

inputs to the CNN
300 images ACC = 100%

Sen = 100%

Kwasigroch et al. [163],
2018

DR detection and
staging using fundus

images
VGGNet Fundus scans are the

inputs to the CNN 88,000 images
ACC = 82% (DR

detection) ACC = 51%
(DR staging)

Li et al. [164], 2019 Detection of referral DR
using fundus images Inception-v3

Enhanced contrast scans
are the inputs to the

CNN, Transfer learning
is applied

19,233 images from
5278 patients

ACC = 93.49%
Sen = 96.93%
Spef = 93.45%
AUC = 0.9905

Nagasawa et al. [165],
2019

Differentiate between
nonPDR and PDR using

ultrawide-field
fundus images

Inception-v3 Transfer learning
is applied 378 scans

Sen = 94.7%
Spec = 97.2%
AUC = 0.969

Metan et al. [166], 2019 DR staging using
fundus images ResNet

Color fundus images
are the inputs to

the CNN

88,702
(EyePacks) ACC = 91%
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Table 2. Cont.

Study Goal Deep Network Other Features Database Size Performance

Qummar et al. [167],
2019

DR staging using
fundus images

Five CNNs: ResNet50,
Inception-v3, Xception,

Dense121, and
Dense 169

Ensemble of five CNN 88,702
(EyePacks)

ACC = 80.80%,
Recall = 51.50%,
Spef = 86.72%,
F1 = 53.74%

Sayres et al. [168], 2019 DR staging using
fundus images Inception-v4 Fundus images are the

inputs to the CNN
1769 images from

1612 patients ACC = 88.4%

Sengupta et al. [169],
2019

DR staging using
fundus images Inception-v3 Data preprocessing

is applied
Kaggle EYEPACS and

Messidor datasets
Sen = 90% Spef = 91.94%

ACC = 90.4

Hathwar et al. [189],
2019

DR detection and
staging using fundus

images
Xception Transfer learning

is applied

35,124 images
(EyePACS)

413 images (IDRiD)

Sen = 94.3%
(DR detection)

Li et al. [183], 2019 Early detection of DR
using OCT images OCTD_Net Data augmentation

is applied 4168 OCT images ACC = 92% Spef = 95%
Sen = 92%

Heisler et al. [185], 2020 Classifying DR Using
OCTA images Four fine-tuned VGG19

Ensemble training is
applied based on
majority voting

or stacking

463 volumes from
360 eyes

ACC = 92%
(majority voting)

ACC = 90%
(stacking)

Zang et al. [187], 2020 Classifying DR Using
OCT and OCTA images DcardNet Data augmentation

is applied
303 eyes from

250 participants
ACC = 95.7%

(detecting referable DR)

Ghazal et al. [184], 2020
Early detection of

NPDR using
OCT images

AlexNet SVM was used
for classification 52 subjects ACC = 94%

Narayanan et al. [170],
2020

detect and grade the
fundus images

AlexNet, VGG16,
ResNet, Inception-v3,
NASNet, DenseNet,

GoogleNet

Transfer Learning is
applied for

each network
3661 images

ACC = 98.4% (detection)
ACC = 96.3%

(grading)

Shankar et al. [171],
2020

DR grading using
fundus images Synergic deep learning

Histogram-based
segmentation was

applied to extract the
details of the
fundus image

1200 images
(MESSIDOR dataset)

ACC = 99.28%,
Sen = 98%, Spef = 99%

Ryu et al. [186], 2021 Early detection of DR
using OCTA ResNet101 OCTA images are the

inputs to the CNN 496 eyes

ACC = 91–98%
Sen = 86–97%,
Spef = 94–99%,

AUC = 0.919–0.976.

He et al. [172], 2021 Grading DR using
fundus images

CABNet with
DenseNet-121 as a
backbone network

CABNet is an attention
module with global

attention block

1200 images
(MESSIDOR), 88,702

(EyePACS)

ACC = 93.1%
AUC = 0.969
Per = 92.9%

Saeed et al. [173], 2021 Grading DR using
fundus images Two pretrained CNNs Transfer Learning

is applied

1200 images
(MESSIDOR), 88,702

(EyePACS)

ACC = 99.73%
AUC = 89%
(EyePACS)

Wang et al. [174], 2021 Grading DR using
fundus images

Inception-v3 +
lesionNet

Transfer Learning
is applied

12,252 images + 565
(external test set)

AUC = 94.3%
Sen = 90.6%

Spe f = 80.7%

Hsieh et al. [175] Grading DR using
fundus images VeriSee™ software

Modified Inception-v4
model as

backbone network
7524 images

Sen = 92.2%
Spec = 89.5%
AUC = 0.955

(detecting DR)

Khan et al. [176] Grading DR using
fundus images VGG-NiN model

VGG16, spatial pyramid
pooling layer and

network-in-network are
stacked to form

VGG-NiN model

25,810 images AUC = 0.838

Gao et al. [180], 2022
Grading DR using
fundus fluorescein

angiography images

VGG16, ResNet50,
DenseNet

Images are the inputs to
the CNNs

11,214 images from
705 patients

ACC = 94.17%
(VGG16)

Zia et al. [177], 2022 Grading DR using
fundus images

VGGNet and
Inception-v3

Applied a feature fusion
and selection steps 35,126 Kaggle dataset ACC = 96.4%

Das et al. [178], 2022
Detecting and

classifying DR using
fundus images

A CNN is used with
several layers that is
optimized using a
genetic algorithm

SVM was used
for classification

1200 images
(Messidor dataset)

ACC = 98.67%
AUC = 0.9933

Tsai et al. [179], 2022 Grading DR using
fundus images

Inception-v3,
ResNet101, and

DenseNet121

Transfer Learning
is applied

88,702 images
(EyePACS) 4038 images

ACC = 84.64% (Kaggle)
ACC = 83.80

(Taiwanese dataset)
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6. The Role of AI in the Early Detection, Diagnosis, and Grading of AMD

In developed countries, AMD is a common eye disease in elderly people. OCT and
other imaging modalities are used to detect and diagnose AMD. Subjective diagnosis is
tedious and depends on the operator. With the invention of machine and deep learning,
systems for the early detection, diagnosis, and grading of AMD have been designed to aid
radiologists. In this section, we will briefly provide an overview of these methods.

6.1. Traditional ML Methods

Different traditional ML methods based on image processing have been used for
the early detection, diagnosis, and grading of ADM. Using color fundus images, García-
Floriano et al. [190] differentiated normal from AMD with drusen. The image contrast was
enhanced, followed by two morphological operations. Subsequently, invariant momenta
were extracted and fed to an SVM, achieving an ACC of 92% for the identification of AMD
with drusen from normal images.

Using OCT, Liu et al. [191] used an automated method to identify normal and three
types of retinal diseases (macular hole, macular edema, and AMD). Each SD-OCT image
was encoded using spatially distributed multiscale texture and shape features. Two SVM
classifiers with a radial basis kernel were trained to identify the presence of normal macula
and each of the three pathologies, separately. For AMD, they achieved an AUC of 0.941.
Srinivasan et al. [192] used SD-OCT to identify normal and two retinal diseases: dry AMD
and diabetic macular edema (DME). Features were extracted using multiscale histograms of
the oriented gradient descriptor, and an SVM was used for classification. They achieved an
ACC of 100% for the identification of cases with AMD. Fraccaro et al. [193] used OCT images
to automatically diagnose AMD with the aid of patient features, such as patient age, gender,
and clinical binary signs (i.e., the existence of soft drusen, retinal pigment epithelium,
defects/pigment mottling, depigmentation area, subretinal hemorrhage, subretinal fluid,
macula thickness, macular scar, and subretinal fibrosis). They used two types of classifier:
white boxes (interpretable techniques, including logistic regression and decision tree) and
black boxes (less interpretable techniques, including SVM, random forest, and AdaBoost).
Both types of classifier performed well, with an AUC of 0.92 using random forest, logistic
regression, and adabosoost, and an AUC of 0.9 for SVM and decision tree. Soft drusen and
age were identified as the most discriminating variables. A summary of the traditional
ML methods for AMD detection, diagnosis, and/or staging is presented on Figure 7 and
Table 3.

Bioengineering 2022, 9, x FOR PEER REVIEW 25 of 38 
 

6. The Role of AI in the Early Detection, Diagnosis, and Grading of AMD 

In developed countries, AMD is a common eye disease in elderly people. OCT and 

other imaging modalities are used to detect and diagnose AMD. Subjective diagnosis is 

tedious and depends on the operator. With the invention of machine and deep learning, 

systems for the early detection, diagnosis, and grading of AMD have been designed to aid 

radiologists. In this section, we will briefly provide an overview of these methods.  

6.1. Traditional ML Methods 

Different traditional ML methods based on image processing have been used for the 

early detection, diagnosis, and grading of ADM. Using color fundus images, García-Flo-

riano et al. [190] differentiated normal from AMD with drusen. The image contrast was 

enhanced, followed by two morphological operations. Subsequently, invariant momenta 

were extracted and fed to an SVM, achieving an 𝐴𝐶𝐶 of 92% for the identification of AMD 

with drusen from normal images.  

Using OCT, Liu et al. [191] used an automated method to identify normal and three 

types of retinal diseases (macular hole, macular edema, and AMD). Each SD-OCT image 

was encoded using spatially distributed multiscale texture and shape features. Two SVM 

classifiers with a radial basis kernel were trained to identify the presence of normal mac-

ula and each of the three pathologies, separately. For AMD, they achieved an 𝐴𝑈𝐶 of 

0.941. Srinivasan et al. [192] used SD-OCT to identify normal and two retinal diseases: dry 

AMD and diabetic macular edema (DME). Features were extracted using multiscale his-

tograms of the oriented gradient descriptor, and an SVM was used for classification. They 

achieved an 𝐴𝐶𝐶 of 100% for the identification of cases with AMD. Fraccaro et al. [193] 

used OCT images to automatically diagnose AMD with the aid of patient features, such 

as patient age, gender, and clinical binary signs (i.e., the existence of soft drusen, retinal 

pigment epithelium, defects/ pigment mottling, depigmentation area, subretinal hemor-

rhage, subretinal fluid, macula thickness, macular scar, and subretinal fibrosis). They used 

two types of classifier: white boxes (interpretable techniques, including logistic regression 

and decision tree) and black boxes (less interpretable techniques, including SVM, random 

forest, and AdaBoost). Both types of classifier performed well, with an 𝐴𝑈𝐶 of 0.92 using 

random forest, logistic regression, and adabosoost, and an 𝐴𝑈𝐶 of 0.9 for SVM and deci-

sion tree. Soft drusen and age were identified as the most discriminating variables. A sum-

mary of the traditional ML methods for AMD detection, diagnosis, and/or staging is pre-

sented on Figure 7 and Table 3. 

 

Figure 7. Summary of traditional ML methods for AMD detection, diagnosis, and/or staging. Figure 7. Summary of traditional ML methods for AMD detection, diagnosis, and/or staging.



Bioengineering 2022, 9, 366 24 of 35

Table 3. Traditional ML methods for early detection, diagnosis, and grading of AMD.

Study Goal Features Classifier Database Size Performance

Liu et al. [191], 2011

Identify normal and
three retinal diseases
using OCT images:

AMD, macular hole,
and macular edema

Spatial and
shape features SVM

Train: 326 scans from
136 subject (193 eyes)
Test:131 scans from
37 subjects (58 eyes)

AUC = 0.975; to identify
AMD from

normal subjects

Srinivasan et al. [192],
2014

Identify normal and
two retinal diseases
using SD-OCT: dry
AMD and diabetic

macular edema (DME)

Multiscale histograms
of oriented

gradient descriptors
SVM

45 subjects: 15 normal,
15 with dry AMD, and

15 with DME

ACC = 100% for
identifying cases

with AMD

Fraccaro et al. [193],
2015

To diagnose AMD using
OCT images

Patient age, gender, and
clinical binary attributes

White boxes
(e.g., logistic regression

& decision tree) and
black boxes (e.g., SVM

& random forest)

487 patients (912 eyes):
50 bootstrap test AUC = 0.92

García-Floriano et al.
[190], 2019

To differentiate normal
from AMD with drusen

using color
fundus images

Invariant momentums
extracted from

contrast enhanced,
morphological

processed images

SVM
70 images: 37 healthy

and 33 AMD with
drusen

ACC = 92%

6.2. Deep Learning Methods

More recently, deep learning methods have been used for the detection, diagnosis,
and grading of AMD. Using OCT, Lee et al. [194] modified a VGG19 CNN by exchanging
the last fully connected layer with a fully connected layer of two nodes to support binary
classification (i.e., two-class problem). Based on their network, they were able to differ-
entiate between normal and AMD cases with an AUC of 92.77%, with an ACC of 87.6%,
Sen of 84.6% and Spec of 91.5%, at the level of each image. Burlina et al. [195] used color
fundus images to differentiate no or early AMD from intermediate or advanced AMD. They
built an AlexNet architecture using a database of over 130,000 images from 4613 patients.
They achieved an ACC from 88.4% to 91.6% and an AUC of 0.94 to 0.96. Teder et al. used
transfer learning and Inception-v3 to detect exudative AMD from normal subjects using
SD-OCT. Hassan et al. [196] segmented nine retinal layers and used SegNet followd by
an AlexNet for the diagnosis of three retinal diseases (i.e., macular edema, central serous
choriorentopathy, and AMD) using OCT. Motozawa et al. [197] used two 18-layer CNNs: A
model to distinguish AMD from normal followed by a model to distinguish AMD with
from AMD without exudative changes using SD-OCT scans. Li et al. [198] distinguished be-
tween normal, AMD, and diabetic macular edema using OCT images and transfer learning
of a VGG-16 model.

Using color fundus images, Ting et al. [134] identified three retinal diseases: DR,
glaucoma, and AMD. They used an ensemble of two networks for the classification of each
eye disease based on an adapted VGGNet architecture. They used a validation dataset
of 71.896 images from 14,880 patients, achieving a Sen of 93.2% and Spe f of 88.7% for
identifying AMD. Tan et al. [199] achieved early detection of AMD using fundus images by
applying data augmentation and a14-layer CNN model. An et al. [193] built two classifiers,
one to detect AMD from normal and the other to detect AMD with fluid from AMD
without fluid. They used two VGG16 models: a model to distinguish AMD from normal
followed by a model to distinguish AMD with from AMD without fluid. Hwang et al. [200]
distinguished between normal, dry (drusen), active wet, and inactive wet AMD using a
cloud computing website [67]. The website was built using ResNet50, Inception-v3, and
VGG16 networks. Figure 8 and Table 4 summarize the deep learning tools used for AMD
detection and diagnosis.
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Table 4. Deep learning methods for early detection, diagnosis, and grading of AMD.

Study Goal CNN Other Features Database Size Performance

Lee et al. [194], 2017
To differentiate between
normal and AMD cases

using OCT
Modified VGG19

A modified VGG19
DCNN with changing
the last fully connected

layer with a
two-nodes layer

80,839 images for
training and

20,163 images for test

AUC = 92.77%,
ACC = 87.6%,
Sen = 84.6%
Spef = 91.5%

Ting et al. [134], 2017

Identify three retinal
diseases: DR, glaucoma,

AMD using color
fundus images

Adapted VGGNet
model

An ensemble of two
networks is used for the

classification of each
eye disease

Validation dataset of
71,896 images; from

14,880 patients

Sen = 93.2%
Spe f = 88.7

Burlina et al. [195], 2017

Identify no or early
AMD from intermediate

or advanced AMD
using fundus images

AlexNet Solving
two-class problem

130,000 images from
4613 patients

ACC = 88.4% to 91.6%
AUC = 0.94 to 0.96

Treder et al. [201], 2018
Detect exudative AMD
from normal subjects

using SD-OCT
Inception-v3 Transfer learning 1012 SD-OCT scans

ACC = 96%
Sen = 100%
Spe f = 92%

Tan et al. [199], 2018 Early detect AMD using
fundus images 14-layer CNN model Data augmentation

402 normal, 583 early,
intermediate AMD, or

GA, and 125 wet
AMD eyes

ACC = 95%
Sen = 96%

Spe f = 94%
10-fold cross-validation

Hassan et al. [196], 2018

Diagnosis of three
retinal diseases (i.e.,

macular edema, central
serous choriorentopathy,
and AMD) using OCT

SegNet followed by an
AlexNet

Segmenting nine retinal
layers

41,921 retinal OCT
scans for testing and

4992 for training
ACC = 96%

An et al. [202], 2019

Two classifiers: AMD vs.
normal and AMD with

fluid vs. AMD
without fluid

Two VGG16 models

A model to distinguish
AMD from normal

followed by a model to
distinguish AMD with

from AMD
without fluid

1234 training data and
391 test data

ACC = 99.2%
AUC = 0.999 to identify

AMD from normal.
ACC = 95.1%

AUC = 0.992 to
distinguish AMD with

from AMD
without fluid

Motozawa et al. [197],
2019

Two classifiers: AMD vs.
normal and AMD with
exudative changes vs.

AMD without
exudative changes

using SD-OCT images

Two 18-layer CNN

A model to distinguish
AMD from normal

followed by a model to
distinguish AMD with

from AMD without
exudative changes

1621 images

ACC = 99%
sen = 100%

Spe f = 91.8% to identify
AMD from normal.

ACC = 93.9%
Sen = 98.4%

Spe f = 88.3% to identify
AMD with from
AMD without

exudative changes

Hwang et al. [200], 2019

Distinguish between
normal, Dry (drusen),

active wet, and inactive
wet AMD

ResNet50, Inception-v3,
and VGG16

A cloud computing
website [196] wasss
developed based on

their algorithm

35,900 images
ACC = 91.40% (VGG16),
92.67% (Inception-v3),
and 90.73% (ResNet50)

Li et al. [198], 2019

Distinguish between
normal, AMD, and

diabetic macular edema
using OCT images

VGG-16 Transfer learning 207,130 images

ACC = 98.6%,
Sen = 97.8%,
Spef = 99.4%
AUC = 100%
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7. Discussion and Future Trends

Artificial intelligence (AI) has demonstrated proof-of-concept in medical fields such as
radiology and pathology, which have stunning similarities to ophthalmology, as they are
intensely embedded in diagnostic imaging, the leading application of AI in healthcare [203–205].
The rapid expansion of AI facilities and their broad application continue to expand techno-
logical boundaries [206].

In ophthalmology, deep learning has been applied to automated diagnosis, segmen-
tation, data analysis, and outcome predictions [1]. Several recent studies have used deep
learning to diagnose and segment features of AMD [199,207] and DR, performing compa-
rably to human experts [208,209].

One of the vital AI-based applications in ophthalmology is OCT image assessment, as
the noninvasive, standardized, and rapid visualization of retinal pathology by OCT holds
potential for the application of AI-based analyses [206]. AI not only allows knowledge to
be generated based on large, multidimensional datasets, it is also able to capture individual
variability in disease and function more efficiently than traditional methods [210]. We can
summarize the findings in this survey as follows:

• Currently, FFA is the gold standard for assessing retinal vasculature, the most affected
part of the retina in the diabetic eye. For early detection of DR, OCTA can detect
changes in the retinal vasculature before developing DR clinical features.

• FFA and OCT are the gold standards for wet nAMD diagnosis [7,8].
• Currently, FAF and OCT are the basic methods for diagnosing and monitoring dry

AMD. NIA, FFA and OCTA can provide complementary data [24].
• OCT is used to identify and monitor AMD and its abnormalities, such as drusen

deposits, pseudodrusen, subretinal fluid, RPE detachment, and choroid NV [23].
• Using different medical image modalities, AI components have demonstrated out-

standing capabilities to provide assisting automated early detection, diagnosis, and
staging of DR and AMD diseases.

• Traditional ML methods are different with respect to the imaging modality used, the
features extracted, and the classifiers used. For DR detection, diagnosis, and staging,
fundus imaging, OCT, and OCTA have been used in the literature. For AMD detection,
diagnosis, and staging, fundus imaging, FFA, OCT and OCTA have been used.

• Deep learning methods (mainly CNNs) have recently been introduced for the auto-
mated detection, diagnosis, and staging of DR and AMD diseases, achieving improved
performance and representing the state of the art for the upcoming years. For DR
detection, diagnosis, and staging, fundus imaging, OCT, and OCTA have been used.
For AMD detection, diagnosis, and staging, fundus imaging and OCT have been used.

The future holds advances in technology:

• Using mixed image modalities for the eye will provide more information about the
pathology, diagnosis, and proper treatments.

• Automated image interpretation using AI will play a dominant role in the early
detection, diagnosis, and staging of retinal diseases, especially DR and AMD.

• Mobile applications are emerging, and can provide a fast, mobile solution for the early
detection and diagnosis of retinal diseases.

• Large data sets will be acquired and available online for users. Quantification of large
datasets will help to find reliable solutions.

• Further investigation into the relationship between retinal function and structure
are required.

8. Conclusions

The current paper provided an in depth overview of the ophthalmic imaging modali-
ties and their different types and different technologies in order to detect, diagnose, classify,
and stage different retinal diseases, and more specifically, DR and AMD. In addition, the
role of AI systems was surveyed from 1995 to 2022. Overall, AI systems are capable of
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assisting clinicians and providing an automated tool for the early detection, diagnosis,
classification, and grading of DR and AMD. In the future, AI-based mobile solutions will
be available.
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204. Tekkeşin, A. A rtificial intelligence in healthcare: Past, present and future. Anatol. J. Cardiol. 2019, 22, 8–9.
205. Alksas, A.; Shehata, M.; Saleh, G.A.; Shaffie, A.; Soliman, A.; Ghazal, M.; Khelifi, A.; Abu Khalifeh, H.; Razek, A.A.;

Giridharan, G.A.; et al. A novel computer-aided diagnostic system for accurate detection and grading of liver tumors. Sci.
Rep. 2021, 11, 1–18. [CrossRef] [PubMed]

206. Yanagihara, R.T.; Lee, C.S.; Ting, D.S.W.; Lee, A.Y. Methodological challenges of deep learning in optical coherence tomography
for retinal diseases: A review. Transl. Vis. Sci. Technol. 2020, 9, 11. [CrossRef] [PubMed]

207. Schlegl, T.; Waldstein, S.M.; Bogunovic, H.; Endstraßer, F.; Sadeghipour, A.; Philip, A.-M.; Podkowinski, D.; Gerendas, B.S.; Langs,
G.; Schmidt-Erfurth, U. Fully automated detection and quantification of macular fluid in OCT using deep learning. Ophthalmology
2018, 125, 549–558. [CrossRef]

208. Abràmoff, M.D.; Lavin, P.T.; Birch, M.; Shah, N.; Folk, J.C. Pivotal trial of an autonomous AI-based diagnostic system for detection
of diabetic retinopathy in primary care offices. NPJ Digit. Med. 2018, 1, 1–8. [CrossRef]

209. De Fauw, J.; Ledsam, J.R.; Romera-Paredes, B.; Nikolov, S.; Tomasev, N.; Blackwell, S.; Askham, H.; Glorot, X.; O’Donoghue, B.;
Visentin, D.; et al. Clinically applicable deep learning for diagnosis and referral in retinal disease. Nat. Med. 2018, 24, 1342–1350.
[CrossRef] [PubMed]

210. Michl, M.; Fabianska, M.; Seeböck, P.; Sadeghipour, A.; Najeeb, B.H.; Bogunovic, H.; Schmidt-Erfurth, U.M.; Gerendas, B.S.
Automated quantification of macular fluid in retinal diseases and their response to anti-VEGF therapy. Br. J. Ophthalmol. 2022,
106, 113–120. [CrossRef] [PubMed]

http://doi.org/10.1016/j.compeleceng.2017.11.008
http://doi.org/10.1167/iovs.10-7012
http://doi.org/10.1364/BOE.5.003568
http://doi.org/10.1186/1471-2415-15-10
http://doi.org/10.1016/j.oret.2016.12.009
http://doi.org/10.1001/jamaophthalmol.2017.3782
http://www.ncbi.nlm.nih.gov/pubmed/28973096
http://doi.org/10.1007/s10916-018-1078-3
http://www.ncbi.nlm.nih.gov/pubmed/30284052
http://doi.org/10.1007/s40123-019-00207-y
http://www.ncbi.nlm.nih.gov/pubmed/31407214
http://doi.org/10.1007/s00417-018-04224-8
http://www.ncbi.nlm.nih.gov/pubmed/30610422
http://doi.org/10.1016/j.future.2018.05.001
http://doi.org/10.7150/thno.28447
http://www.ncbi.nlm.nih.gov/pubmed/30662564
http://doi.org/10.1007/s00417-017-3850-3
http://doi.org/10.1136/svn-2017-000101
http://doi.org/10.1038/s41598-021-91634-0
http://www.ncbi.nlm.nih.gov/pubmed/34162893
http://doi.org/10.1167/tvst.9.2.11
http://www.ncbi.nlm.nih.gov/pubmed/32704417
http://doi.org/10.1016/j.ophtha.2017.10.031
http://doi.org/10.1038/s41746-018-0040-6
http://doi.org/10.1038/s41591-018-0107-6
http://www.ncbi.nlm.nih.gov/pubmed/30104768
http://doi.org/10.1136/bjophthalmol-2020-317416
http://www.ncbi.nlm.nih.gov/pubmed/33087314

	Introduction to Retinal Diseases 
	Diabetic Retinopathy (DR) 
	Age-Related Macular Degeneration (AMD) 

	Retinal Imaging Modalities 
	Color Fundus Photography (CFP) 
	Application of Color Fundus Photography (CFP) in DR 
	Application of Color Fundus Photography (CFP) in AMD 

	Fundus Fluorescein Angiography (FFA) 
	Application of FFA in DR 
	Application of FFA in AMD 
	Application of Indocyanine Green Angiography (ICGA) in AMD 

	Fundus Autofluorescence Imaging (FAF) 
	Application of FAF in DR 
	Application of FAF in AMD 

	Optical Coherence Tomography (OCT) 
	Application of OCT in DR 
	Application of OCTA in DR 
	Application of OCT in AMD 
	Application of OCTA in AMD 

	Adaptive Optics (AO) 
	Application of AO in DR 
	Application of AO in AMD 

	Ultrasound Imaging 

	Denoising of Retinal Images 
	The Role of AI in the Diagnosis of Retinal Diseases 
	The Role of AI in the Early Detection, Diagnosis, and Grading of DR 
	Traditional Machine Learning Methods 
	Deep Learning Methods 

	The Role of AI in the Early Detection, Diagnosis, and Grading of AMD 
	Traditional ML Methods 
	Deep Learning Methods 

	Discussion and Future Trends 
	Conclusions 
	References

