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Abstract

In rodents, daily feeding schedules induce food anticipatory activity (FAA) rhythms with formal properties suggesting
mediation by food-entrained circadian oscillators (FEOs). The search for the neuronal substrate of FEOs responsible for FAA
is an active area of research, but studies spanning several decades have yet to identify unequivocally a brain region required
for FAA. Variability of results across studies leads to questions about underlying biology versus methodology. Here we
describe in C57BL/6 male mice the effects of varying the ‘dose’ of caloric restriction (0%, 60%, 80%, 110%) on the expression
of FAA as measured by a video-based analysis system, and on the induction of c-Fos in brain regions that have been
implicated in FAA. We determined that more severe caloric restriction (60%) leads to a faster onset of FAA with increased
magnitude. Using the 60% caloric restriction, we found little evidence for unique signatures of neuronal activation in the
brains of mice anticipating a daily mealtime compared to mice that were fasted acutely or fed ad-libitum–even in regions
such as the dorsomedial and ventrolateral hypothalamus, nucleus accumbens, and cerebellum that have previously been
implicated in FAA. These results underscore the importance of feeding schedule parameters in determining quantitative
features of FAA in mice, and demonstrate dissociations between behavioral FAA and neural activity in brain areas thought
to harbor FEOs or participate in their entrainment or output.
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Introduction

Circadian regulation of organismal physiology and health is a

rapidly expanding area of research [1,2,3,4]. Numerous studies

have examined the entraining properties of light on the ‘‘master’’

clock, the suprachiasmatic nucleus (SCN), which is a cluster of

,10,000 neurons in the most ventral and medial portion of the

rostral hypothalamus with connections to many nearby nuclei

involved in coordinating metabolism, wakefulness, and body

temperature [5,6,7,8]. Clearly, light inputs via the SCN can

coordinate feeding behavior but the question of whether feeding

behavior itself can be an important zeitgeber (entraining stimulus)

has received increasing attention in recent years [1,9].

If nocturnal rodents are fed during the day, the rest phase of

their circadian rest-activity cycle, they show activity preceding the

scheduled feeding time, termed ‘‘food anticipatory activity’’ (FAA),

in addition to their normal nighttime activity [10]. In SCN-

lesioned animals, which are arrhythmic when food is available ad

libitum (AL), activity converges to a single peak preceding

scheduled feeding, suggesting the presence of a timing mechanism

that coordinates activity with feeding independent of the SCN

[11,12]. Formal properties of FAA in SCN-ablated and intact

rodents are consistent with mediation by one or more food-

entrainable circadian oscillators (FEO). Despite many years of

investigation, the location of the FEO(s) necessary for FAA

remains uncertain and food anticipatory rhythms are surprisingly

robust to knockouts of known circadian clock genes

[13,14,15,16,17]. The role of hunger related inputs assessed using

gene knockout studies is no less murky [18,19,20,21,22,23,24].

A number of ex vivo neuronal activation studies have been

undertaken to delineate the neuronal circuitry of FAA. Measures

have included mRNA or protein expression of immediate early

genes, such as c-Fos, or clock components like Period 1 or 2, or

metabolic markers such as 2-deoxyglucose uptake in brain sections

of rats or mice on daily feeding schedules

[25,26,27,28,29,30,31,32,33]. These studies have broadly impli-

cated several hypothalamic and a few extrahypothalamic regions

as involved in FAA, with some variability in results across studies.

One potential cause of variable results is variation in the method

and extent of food restriction. Previous studies mapping neural

correlates of FAA have used limited-duration feeding schedules, in

which rats or mice are permitted to eat as much as they can during

a fixed mealtime, usually in the 2–6 h range. Here we present the

results from experiments that utilized limited-amount feeding
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schedules, in which mice were provided once daily with an amount

of food corresponding to some percentage of daily AL caloric

intake. Mice on limited amount caloric restriction (CR) feeding

schedules can eat for a more extended period of time, but still

exhibit robust FAA. The first objective of this study was to

determine the extent to which daytime FAA and nocturnal activity

(which together determine the magnitude of commonly used

metrics of FAA) depend on the degree of CR. We found that the

rapidity and magnitude of FAA induction increases with the

degree of CR, and established a 60% CR feeding schedule as

optimal for inducing high amplitude FAA that is stable over many

weeks. We then used a 60% CR schedule and immunohisto-

chemical staining of the immediate early gene product c-Fos to

map the neural correlates of CR at 5 time points before and after

scheduled food access or an acute fast. We examined c-Fos

expression in a number of brain regions implicated in FAA,

including the nucleus accumbens, dorsomedial, ventromedial and

lateral hypothalamus, and the cerebellum. Surprisingly, these

areas did not exhibit significantly elevated c-Fos expression 1 and

2.5 h prior to scheduled daily food access, by comparison with

acute fasting and AL food access conditions, although expression

was marked 2 h after meal onset. These results indicate that

limited-amount CR schedules can dissociate behavioral FAA from

a commonly used correlate of neural activity in brain regions

observed to be activated prior to limited-time feeding schedules.

Materials and Methods

Ethics Statement
These experiments were approved by the California Institute of

Technology Institutional Animal Care and Use Committee under

protocol #1567.

Behavioral Analysis
Video-based activity data was analyzed using HomeCageScan

3.0; behavioral definitions were as described previously [34,35].

High intensity activity was defined as walking, jumping, rearing,

and hanging behaviors. Activity data were accumulated in 60-

minute time bins and evaluated for statistically significant changes

using non-parametric tests such as the Mann-Whitney Test using

GraphPad Instat. All graphs were made with GraphPad Prism 4;

medians are reported +/2 interquartile ranges. Sample sizes are

indicated in the Figure legends.

Acute Fasting Experiment
For acute fasting experiments male C57BL/6J at least 10 weeks

of age were purchased from Jackson Labs (Bar Harbor, ME).

These mice were maintained on a 13:11 LD cycle and single-

housed for 4–6 days with AL access to food (Laboratory Rodent

Chow Type 5001) and water prior to being placed on special

feeding protocols. Daily food intake was measured over a 48 h

period beginning at least three days after single housing and used

to compute the amount of food delivered during CR (see below).

For the experiment n= 13 mice were fasted and n= 15 mice were

AL control. These mice were video recorded for 24 hours and the

videos were analyzed using HomeCageScan 3.0.

Dose-response Experiment
Male C57BL/6J mice from Jackson Labs were singly housed

four days after arrival. Body weight measurements were taken at

days 210, 23, 3, 7, 14, 21, 28, 35, and 42, with Day 0 marking

the start of special feeding conditions (approximately twelve days

after single-housing).

Mice were given AL food and water until day 0 of the study.

Approximately one week prior to day 0, food intake was measured

for forty-two mice over the course of two days. Starting from day

0, 2 hours prior to lights-off (Zeitgeber Time 10, where ZT12 is

lights-off by convention) eight mice were given AL access to food,

eight were given 110% of the mean food intake for all mice, eight

were given 80% of the mean food intake for all mice, and ten were

given 60% of the mean food intake for all mice. All mice were

recorded for 23.5–24 hours once a week starting with day 0 and

ending at day 42. Mice were fed and recorded at ZT 10. Water

remained freely available throughout the study though we noted

that mice did most of their drinking behavior during the 2 hours

after meal presentation.

Neural Correlates of Acute and Scheduled Hunger
Mice were divided into three groups: AL, CR, and Fast (no

food for the indicated time before perfusions). Mice in AL and

Fast groups had free access to chow and water. Mice in the CR

group were provided with 60% of their AL levels. On the last

day of the scheduled feeding (day 28), mice were euthanized with

carbon dioxide and perfused transcardially with 10 mL of 0.1 M

PBS at 5 time points relative to scheduled feeding: time point

Figure 1. High activity profiles, and total diurnal and nocturnal
activity of ad libitum and acutely fasted mice. (A) The seconds of
high activity per hour in a 24 hour video recording of AL mice (black) or
acutely fasted mice (red). The light phase is shown in yellow (ZT 10–12)
followed by 11 hours of darkness indicated in gray (ZT 12–23) followed
by light (ZT 24–9) (B) The total high activity summed across the 24 hour
recording for AL and fasted mice. (C) The total high activity during the
light and dark periods. n = 13 fasted and n=15 AL. Values represent
medians +/2 IQ range. The statistical significance was tested using
Mann-Whitney test; **denotes p,0.01.
doi:10.1371/journal.pone.0095990.g001

Neural Correlates of Food Anticipation
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Figure 2. Food intake and body weight distribution and normalized body weights of mice on different food restriction amounts. (A)
Individual measurements of food intake over a 48 hour period for individual mice divided by 2 to give a 24 hour food intake (n = 42). (B) Individual
measurements of body weight prior to any dietary change (day210) (n = 42). (C) Mean body weight measurements +/2 SEM of each treatment
group over the duration of the experiment. Mice fed AL (black; n = 8), 110% (blue, n = 8), 80% (purple; n = 8) and 60% (red; n = 10) show dose-
dependent changes in body weight depending on food availability. Significance was tested with Tukey-Kramer multiple comparisons test with one-
way ANOVA post-test for all treatment groups vs. AL controls for each respective day. ***denotes p,0.001.
doi:10.1371/journal.pone.0095990.g002

Figure 3. High activity behaviors of mice in on different food restriction amounts. (A) The total amount of high activity behaviors (in
seconds) during weekly 24 hour video recordings for mice on AL, 110%, 80%, and 60% CR. (B) Normalized nocturnal high activity behaviors during
weekly 24 hour video recordings for mice on AL, 110%, 80%, and 60% CR. (C) Fraction of time spent on high activity behaviors in the 3 hours
preceding meal presentation (ZT 7–9). (D) Normalized fraction of time per hour spent on high activity behavior during the 24-recording of day 0 (D)
and (E) day 28 of dose-response experiment. Values represent medians +/2 IQ range, with high activity values normalized to total daily activity
(significance tested with Mann-Whitney test with Dunn’s post test for all treatment groups vs. AL controls for each respective day). *denotes p,0.05,
**denotes p,0.01, and ***denotes p,0.001. n = 8 for all groups except for 60% CR where n = 10. (F) Correlation and linear regression of normalized
food anticipatory activity in the 3 hours preceding scheduled feeding with % body weight loss.
doi:10.1371/journal.pone.0095990.g003
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(TP) 27.5, 24.5, 22.5, 21, +2. Biological samples sizes for were

n= 2 per group at TP 27.5; n= 4 for AL and CR and n= 2 for

fasted at TP 24.5; n= 4 for AL and CR and n= 2 for fasted at

TP 22.5; n = 3 for AL and CR and n= 2 for fasted at TP 21;

and n= 2 for all groups at TP +2. The brains were removed

from mice and immersion fixed in 10% buffered formalin

(Sigma) for at least 24 h. They were then bisected in a saggital

plane and half-brains were sent to NeuroScience Associates

(Knoxville, TN). Samples were then treated with 20% glycerol

and 2% dimethylsulfoxide to prevent freeze-artifacts and

embedded with up to 32 hemi-brains in a block of gelatin

matrix using MultiBrain TechnologyTM. The block of embedded

tissue was allowed to cure and then was rapidly frozen by

immersion in isopentane chilled to –70uC with crushed dry ice.

Blocks were mounted on a freezing stage of an AO 860 sliding

microtome and sectioned coronally at 35 mm thickness. All

sections cut were collected sequentially into a 466 array of

containers filled with ‘antigen preserve’ (buffered ethylene glycol).

At the completion of sectioning, each container holds a serial set

of one-of-every-24th section (e.g. one section every 840 mm). For

Immunostaining every 6th section was used.

For immunochemistry, the sections were stained free-floating.

All incubation solutions from the blocking serum use Tris buffered

saline (TBS) with Triton X100 (TX) as the vehicle; all rinses are

with TBS. After a hydrogen peroxide treatment and blocking

serum, the sections were immunostained with a primary anti-c-Fos

(Novus, rabbit anti c-Fos) 1:10,000 antibody overnight at room

temperature. Vehicle solution contains 0.3% TritonX-100 for

permeabilization. To visualize the location of binding site of the

primary antibody an avidin-biotin-HRP complex (details in

Vectastain elite ABC kit, Vector, Burlingame, CA) is applied.

After rinses, the sections were treated with diaminobenzidine

tetrahydrochloride (DAB) using nickel enchancemnet and hydro-

gen peroxide to create a visible reaction product and mounted on

gelatinized (subbed) glass slides, air dried, dehydrated in alcohols,

cleared in xylene and cover slipped.

c-Fos stained sections were examined under a Nikon Eclipse

TE2000-U light microscope coupled to a computer with NIS-

Elements BR 3.0 software. Image saturation was avoided by

adjusting exposure time with the brain slice with the highest c-Fos

signal. Expression analysis of c-Fos protein was done for the

following regions: SCN (0.48 to 0.655 caudal to bregma), nucleus

accumbens core (NAc) (0.745 to 0.445 rostral to bregma),

Figure 4. c-Fos protein expression in the dorsomedial hypothalamus of calorie-restricted, acutely fasted, and AL control mice. (A)
Representative images of c-Fos staining the DMH of mice at 27.5, 21 hours before feeding and +2 hours after feeding. (B) Mean (6SEM) number of
c-Fos-immunoreactive nuclei in the DMH of AL controls (blue), fasted (blue), and CR (red) at 5 time points relative to feeding. TP 0 represents time of
expected meal presentation as highlighted by the vertical dotted line on the x-axis. (C) Representative coronal brain map with Nissl stain showing
location of region under study. (Adapted from Paxinos and Franklin 2007) [57]. Sample sizes for TP27.5 thru +2 are n = 6, 11, 11, 9, 5 for AL groups,
n = 6, 11, 8, 9, 5 for CR groups, and n=4, 4, 4, 4, 4 for Fasted groups.
doi:10.1371/journal.pone.0095990.g004
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paraventricular hypothalamus (PVH) (0.48 to 0.655 caudal to

bregma), Rostral arcuate (Arc) (1.055 to 1.855 caudal to bregma),

caudal arcuate (Arc) (2.055 to 2.255 caudal to bregma),

ventromedial hypothalamus (VMH) (1.255 to 1.755 caudal to

bregma), dorsomedial hypothalamus (DMH) (1.255 to 1.755

caudal to bregma), lateral hypothalamus (LHA) (1.255 to 1.755

caudal to bregma), cerebellum (6.355 to 7.055 caudal to bregma),

and superior colliculus (SuG) (3.68 to 4.45 caudal to bregma). Cells

immunopositive for c-Fos protein were counted using 10x and 4x

lenses. The mean number of c-Fos-positive cells per time point was

calculated from individual unilateral counts at three contiguous

bregma depths (with at least 3 replicates per time point). Counts

were done automatically by software after setting an ROI and

threshold levels for each brain region, with threshold levels kept

constant in between counts of a specific brain region. ROIs were

defined in slices based on visible landmarks and comparison with

mouse brain atlas of Paxinos and Franklin (2007). Representative

images were captured using the CCD camera while doing

automated counts. Tukey-Kramer parametric regressions were

used to establish statistical differences between groups (AL, CR,

Fast).

Results

Acute Food Deprivation Increases Nocturnal Activity
We tested the home cage behavioral response to acute food

deprivation in C57BL/6 male mice. At ZT10 (2 hours before

lights-off) we removed all food from the cage of n = 13 mice and

left in ample food for n= 15 mice and monitored these mice for 24

hours. The fasted mice showed a strong increase in ‘high’ activity

behaviors (defined as jumping, hanging, rearing, and walking),

particularly in the middle-to late night hours of ZT 15–18

(Figure 1A). The total high activity over 24 hours was significantly

increased in the fasted group compared to the AL control group

during the 24-hour video recording (Figure 1B; p = 0.0044, Mann-

Whitney). Activity during the 13 hour lights on period was not

increased in fasted mice; however, nighttime activity almost

doubled in fasted mice compared to AL controls, showing a

statistically significant increase (Figure 1C; p,0.01, Mann-

Whitney).

Figure 5. c-Fos induction in VMH, PVH, LHA, Rostral and Caudal Arc, and SuG of calorie-restricted, acutely fasted, and AL control
mice. Mean (6SEM) number of c-Fos-immunoreactive nuclei in the several brain nuclei of AL controls (blue), fasted (blue), and CR (red) at 5 time
points relative to feeding. TP 0 represents time of expected meal presentation as highlighted by the vertical dotted line on the x-axis. (A) Mean (+/2
SEM) c-fos counts for the ventral medial hypothalamus (VMH). (B) c-Fos counts for the paraventricular nucleus (PVH). (C) c-fos counts for the rostral
arcuate nucleus. (D) c-fos counts for the caudal arcuate nucleus. (E) c-fos counts for the lateral hypothalamus (LHA). (F) c-fos counts for the superior
colliculus gray layer (SuG). Sample sizes for TP27.5 thru +2 are n= 2–6, 7–12, 7–12, 6–9, 4–6 for AL groups, n = 3–6, 4–12, 5–12, 4–9 for CR groups, and
n= 5–6, 5–6, 2–6, 6, 5–6 for Fast groups. Representative images of each neuroanatomical location are shown (from Paxinos and Franklin).
doi:10.1371/journal.pone.0095990.g005
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Nocturnal Activity Decreases While FAA Increases with
Increased Magnitude of CR
There is evidence that CR increases activity overall but it has

not been examined in detail using C57BL/6J male mice under the

same time scales typically employed by our laboratory [36,37,38].

To that end, we tested the effect of varying the percentage of food

delivered on a timed CR schedule in C57BL/6J male mice and

assayed their overall, nocturnal, and preprandial high activity

behaviors.

We measured food intake over 48 hours for all mice used in

this study, finding a broad range of values from 3 to 6 grams per

day (mean 4.6+/20.1 SEM; Figure 2A). Body weight showed

some variability as well but not as much as food intake. The

smallest mouse weighed 23.4 grams while the largest mouse

weighed 29.3 grams (mean weight 26.6+/20.2 grams; Figure 2B).

Rather than scale the percent CR on an individual mouse basis,

which would be cumbersome, we restricted based on the

population average. For mice fed an AL diet we delivered an

additional pellet to their cage daily at ZT 10 to control for the

disturbance of feeding while for another group we delivered

110% of AL food intake (in pilot studies we observed FAA in

some mice for 100% diets). Mice that were fed 60% of the mean

food intake exhibited a precipitous decrease in weight until day

7, when the decrease tapered to ,80% of day 23 baseline

values (Figure 2C). Mice fed 60% CR also had significantly lower

percent weight than those fed 80% CR starting on day 7 and

lasting the duration of scheduled feeding experiments (p,0.001).

Mice that were fed 80% CR had a significant decrease in weight

from day 23 to day 14 (p,0.001); however, they also had a

significant weight gain from day 14 to day 28 (p,0.001). Mice

fed 110% of the mean food intake showed a modest increase in

body weight that was similar to that of AL controls, until day 14,

when body weight stabilized to around 105% of baseline value.

Mice fed 110% did not show any statistically significant

difference from mice fed AL in the percent change in weight

relative to day 23. Mice fed AL had a significant change in

weight between day 23 and day 14 (p,0.05), day 3 and 35 (p,

0.05), day 3 and 42 (p,0.01), and day 7 and day 42 (p,0.01)

(Repeated Measures ANOVA with Tukey-Kramer Multiple

Comparison’s Test).

Figure 6. c-Fos protein expression in the in the suprachiasmatic nucleus (SCN) of calorie-restricted, acutely fasted, and AL control
mice. (A) Mean (6SEM) number of c-Fos-immunoreactive nuclei in the SCN of AL controls, fasted, and CR at 5 time points measured relative to
feeding. (B) Representative coronal brain map with Nissl stain showing location of region under study adapted from Paxinos and Franklin. (C)
Representative micrographs at TP21 of FOS expression in the SCN. Sample sizes for TP27.5 thru +2 are n= 6, 11, 12, 8, 6 for AL groups, n = 5, 12, 11,
11, 6 for CR groups, and n=6, 6, 6, 6, 6 for Fast groups.
doi:10.1371/journal.pone.0095990.g006

Neural Correlates of Food Anticipation
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Overall, the total amount of high activity behaviors (in seconds)

of mice on CR was not higher than that of AL controls (Figure 3A).

In fact, we were surprised to observe that activity was significantly

elevated only at one time point for 80% CR–the first day of the

modified diet (‘‘day 0’’)–and that at no other points were mice on

CR more active than those on AL or 110% AL control diets

(Figure 3A). Despite this lack of a major difference in overall

activity, we followed our standard practice of normalizing high

activity by dividing the seconds of high activity in each hourly bin

by the total high activity for that day, resulting in a fraction of high

activity per hour. When binning for high activity behaviors during

the 11 hours of darkness (ZT 12–23), mice in the 60% CR group

showed a clear decrease in normalized nocturnal high activity,

reaching its lowest points on days 28 and 35 (Figure 3B). Even

when taking into account the slight decrease in dark cycle activity

in AL controls over time, the decrease in nighttime activity in the

60% CR groups was statistically significant on days 14, 28, and 35

(p,0.001, p,0.05, and p,0.01 respectively). Conversely mice fed

110% of the baseline food intake showed a distinctly more

constant fraction of nighttime activity compared to AL controls

with statistically significant differences on days 21 and 28 (p,0.01

and p,0.5 respectively). Mice in the 80% CR group displayed a

transient decrease in nighttime activity relative to the AL controls

at day 14 but then showed a similar amount of nocturnal activity

at all later time points (Figure 3B).

Preprandial high activity behaviors for CR groups during the 3

hours preceding scheduled meal time (ZT 7–9) showed a dose-

dependent increase in the fraction of high activity compared to AL

controls, with mice on 60% CR exhibiting an overall greater

magnitude of FAA compared to those on 80%CR (Figure 3C).Mice

on 60%CR showed FAA that was statistically significant (p,0.001)

on all days following the start of restricted feeding schedules

(Figure 3C). Mice on 80%CR displayed FAA fairly consistently but

at a lesser magnitude than the mice on 60%CR. In this group, FAA

was statistically significant on CR days 14 and 28 at p,0.001, on

days 7, 21 and 42 at p,0.05, but not on day 35, although some

individual mice did exhibit preprandial high activity behaviors on

that day. The mean fraction of high activity that was observed

during the FAA window in both AL mice and the mice fed 110% of

baseline was consistently below 5% for all days. There was no

statistically significant difference between the AL controls and the

mice fed 110% at any time point except day 21 when AL mice

showed an increase in activity (p,0.05). Waveforms of normalized

activity are shown for the first day (Day 0) and the 28th day of

modified diet (Figure 3D–E). We also tested for a correlation

between percentage of weight loss and FAA within treatement

groups but found no evidence for linear relationships as r2 values

were very low; for example, the r2 value from a linear regression

between % weight loss and FAA among mice on 60% CR was only

0.09 (Figure 3F). Similar analyses was performed for each day of the

experiment with a similar result (Supplemental Figure 1).

Figure 7. c-Fos protein expression in the in the nucleus accumbens core (NAc Core) of calorie-restricted, acutely fasted, and AL
control mice. (A) Representative micrographs of c-Fos staining in the core of the nucleus accumenbs at TP21 and +2. (B) Mean (6SEM) number of
c-Fos-immunoreactive nuclei in the NAc Core of AL, fasted, and CR mice at 5 time points measured relative to feeding. (C) Representative coronal
brain map with Nissl stain showing location of region under study. (Adapted from Paxinos and Franklin). Sample sizes for TP27.5 thru +2 are n = 4, 8,
8, 6, 4 for AL groups, n = 4, 8, 8, 6, 4 for CR groups, and n=4, 4, 4, 4, 4 for Fast groups.
doi:10.1371/journal.pone.0095990.g007

Neural Correlates of Food Anticipation
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Figure 8. c-Fos protein expression in the in the ansiform lobule crus 2 of the cerebellum of calorie-restricted mice, acutely fasted,
and AL control mice. (A) Mean (6SEM) number of c-Fos-immunoreactive nuclei in the NAc Core of AL controls, fasted and CR mice at 5 time points
measured relative to feeding. CR mice show a prodigious increase (p,0.001) in FOS protein expression at TP+2 (note the split y-axis). Fasted show
significant induction of FOS protein at TP27.5 (p,0.05). AL control mice do not show any appreciable induction in the expression of FOS protein at
any time point. (B) Representative coronal brain map with Nissl stain showing location of the ansiform lobule crus 2 of the Cerebellum adapted from
Paxinos and Franklin. (C) Representative micrographs at TP+2 of FOS expression. Insets show high magnifications of c-Fos labeling in the lobule.
Sample sizes for TP27.5 thru +2 are n = 6, 15, 10, 8, 3 for AL groups, n = 6, 12, 12, 9, 6 for CR groups, and n= 3, 5, 5, 5, 3 for Fast groups.
doi:10.1371/journal.pone.0095990.g008

Neural Correlates of Food Anticipation
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Neural Correlates of Acute and Scheduled Hunger
To determine the patterns of neural activity in mice on CR

feeding schedules, additional C57BL/6J male mice were obtained

and assigned to one of three groups: 1) 60% CR feeding at ZT 10

for 28 days 2) AL controls given an extra food pellet at ZT 10 daily

to control for disturbances and 3) fasted controls treated identically

to group 2 until the last day of the experiment, day 29, when food

was removed 24 h prior to euthanasia. The acutely fasted mice

control for c-Fos activation in response to hunger and any

nonspecific wakefulness or activity. Based on our observations in

the present study (Figure 3) and those of our prior studies

[18,28,39] with C57BL/6J male mice, FAA begins ,3 hours prior

to scheduled meal time. On the final day of the experiment, day

29, brain samples were taken from n= 2–4 mice from each group

at ZT 2.5 (7.5 hours prior to meal time, indicated as TP 27.5 in

the Figures), ZT 5.5 (TP 24.5), ZT 7.5 (TP 22.5), ZT 9 (TP 21),

and ZT 11 (2 hours after meal time, labeled as TP +2). The mice

at +2 were fed their meal so signals at this time point are either due

to entrainment or feeding itself. Brains were fixed, cut into 35

micron sections, and every 6th section was immunostained for c-

Fos (see Materials and Methods).

Subsequently, these sections were examined microscopically,

focusing on patterns of c-Fos induction in regions of the

hypothalamus that have been implicated in metabolism, circa-

dian rhythm, and/or food entrainment. We began by examining

the dorsomedial hypothalamus (DMH), which has been reported

to express c-Fos and the circadian clock proteins Per1 and Per2

in association with restricted feeding schedules in which food

access is limited to 4–6 h in the mid-light period [26,31] [40,41].

Counting both the pars compacta and the ventral DMH revealed

essentially no c-Fos induction prior to scheduled meal time in

mice on CR diets (Figure 4). Most of the c-Fos induction in the

fasting group was seen at time point (TP) 27.5 (7.5 hours prior

to scheduled meal time) and 24.5 hours where c-Fos was

significantly higher in the DMH of fasted mice versus those on

Al or on CR (p,0.001). The most striking group difference in c-

Fos activation occurred 2 hours after meal time when there were

at least twice as many c-Fos positive nuclei in the CR samples

compared to the AL or fasted groups (Figure 4; p,0.05 for CR

versus fasted; p,0.01 for CR versus AL).

We continued by examining other hypothalamic structures

that have been implicated in FAA, hunger sensing, or both. The

ventromedial hypothalamus (VMH) was implicated as a mediator

of FAA by Ribeiro and colleagues using mice [32] but our cell

counts in this region showed no significant group differences at

any time point (Figure 5A). We next examined the paraven-

tricular nucleus of the hypothalamus (PVH), a structure that

showed c-Fos activation prior to a scheduled daytime meal in

rats [41]. Our results clearly indicate an increase in c-Fos

expression in this region in fasted mice but no change in the

mice on CR feeding (Figure 5B). We examined the arcuate

nucleus (Arc) separately in terms of rostral and caudal axes [42].

AL and CR samples showed similar c-Fos expression before

mealtime in the rostral Arc, but fasted mice showed a significant

increase at 24.5 and 22.5 hours before feeding (Figure 5C; p,

0.05 AL vs. CR and p,0.01 Fast vs. CR). In the caudal Arc we

observed increased c-Fos expression in the CR group one hour

prior to mealtime relative to earlier time points, but not relative

to the AL controls (Figure 5D). Interestingly, the caudal Arc

showed strong and continued activation in fasted mice at all time

points, including after feeding at +2 hours. The lateral

hypothalamus (LHA) showed an activation pattern similar to

that of the PVH with fasted samples significantly elevated over

AL and CR at 27.5 and 24.5 hours prior to feeding (Figure 5E).

A notable difference occurred after feeding, when CR samples

showed a large increase in c-Fos expression compared to AL

samples in the LHA, similar to what was observed in the DMH

(Figure 5E). During our initial survey we noted that the gray

layer of the superior colliculus (SuG) showed strong c-Fos

induction one hour prior to feeding (Figure 5F). The CR group

showed a strong and statistically significant c-Fos induction in the

SuG one hour prior to meal time when values surged from about

10 cells per section to more than 100 (p,0.001 at TP 21

comparing CR to AL or to fast; Figure 5F). In contrast, the

fasted mice showed an increase in staining in the SuG only after

feeding. Given its role in visual processing, this region may be a

correlate of arousal rather than a mediator of FAA.

The last hypothalamic structure that we examined was the

SCN, which despite being ruled out as a circadian clock necessary

for FAA, may be a modulator of FAA and is thought to compete

with the FEO for control over the arousal state of the animal. CR

treatment groups show a significantly lower preprandial c-Fos

induction at TP 21 compared to both fasted and AL mice (p,

0.05 and p,0.01 respectively) (Figure 6). Suppressed c-Fos

induction in the CR mice continued into the post-prandial time

point, with AL mice showing significantly higher c-Fos induction

compared to the CR group (p,0.05), and the fasted group

showing a trend for more c-Fos cells compared to the CR group.

We continued our search for neural correlates of food

entrainment outside of the hypothalamus by examining the

nucleus accumbens core (NAc), an area involved in reward and

the motivational drive for caloric intake. One prior study in rats

implicates the NAc in food entrainment [43]. Our c-Fos counting

results in the NAc were similar to those obtained in the DHM and

LHA. There was no preprandial c-Fos induction in mice on CR

(Figure 7). In contrast, fasted mice showed a significant increase in

c-Fos expression at 27.5 and 24.5 hours before feeding (p,0.001

fast versus AL or CR). The NAc showed a massive increase in c-

Fos staining after feeding in CR mice and in fasted mice as well

but not as large of an increase (p,0.001 CR versus AL, p,0.01

CR versus fasted; Figure 7).

The final structure that we examined was the cerebellum, which

may contain FEOs [44]. We quantified c-Fos expression in the

ansiform lobule crus 2 of the cerebellum. We observed no

preprandial increase in c-Fos staining in CR samples (Figure 8).

However, after feeding there was a massive increase in c-Fos

immunostaining in the cerebellum (Figure 8) (p,0.001 CR versus

AL, at TP +2). Although we quantified only the ansiform lobule

crus 2, visual inspection of other areas of the cerebellum showed

similar changes.

Discussion

In this study we observed that acute fasting specifically increases

nocturnal activity. We have determined that timed 60 and 80%

CR feeding induces robust FAA in the hours before feeding and

that this increased activity before meal time comes at the expense

of nocturnal activity. The results of our dose response study

emphasize the important role of caloric intake in eliciting FAA.

Although mice on a relatively modest CR such as 80% CR will

exhibit FAA, this difference becomes small after 14 days of

scheduled feeding. In addition, suppression of nocturnal activity of

mice on 80% CR ceases after only 14 days of CR. This shows that

mice on a modest CR not only exhibit reduced FAA relative to

mice on a more severely restricted diet but also exhibit daily

activity patterns that may gradually become more like those of

mice on an AL diet over the course of an experiment. Our results

suggest that a 60% CR is ideal for maintaining consistency in
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behavior across individual mice as well as over the course of

experiments lasting several weeks. Whether the increased FAA in

60% CR mice relative to 80% CR is due to effects downstream

from FEOs driving FAA or also involves an increase in the

strength of food as a Zeitgeber is an open question that would

require range of entrainment or meal-shift re-entrainment

experiments to assess.

Using the 60% CR protocol we then examined neural correlates

of daily feeding or acute fasting using c-Fos immunostaining.

Surprisingly, we observed very little evidence for preprandial

activation of brain regions in mice on CR schedules, but did

observe dramatic activations of many brains regions in CR groups

when samples were taken two hours after meal onset. These results

are striking in the magnitude of the differences before and after

mealtime, and in the discrepancies with previous studies that have

reported c-Fos activation of a number of these structures in rats or

mice on limited-time as opposed to limited-amount feeding

schedules. One factor that could be explored in future studies is

the number of days of restricted feeding prior to c-Fos assessment.

Mice in our study were adapted to restricted feeding schedules for

1 month, while previous studies have typically used 10, 14 or 21

days. c-Fos in some brain regions may be activated by metabolic

factors that eventually adapt to long-term caloric restriction. This

may also explain the increased c-Fos expression noted in the acute

24 h fasting groups in most brain regions sampled in our study.

The DMH has been the focus of numerous studies of FAA

employing lesion and clock gene or immediate early gene mapping

methods [40,45,46,47,48]. At least three studies using limited-

duration daytime feeding schedules reported significant increases

of c-Fos prior to mealtime in rats or mice [41]. Our data, by

contrast, reveal no preprandial induction in the DMH of mice

maintained on a 60% CR schedule but strong postprandial c-Fos

induction (consistent with postprandial data from Poulin and

Timofeeva, 2008) and strong induction in fasted groups at the very

early preprandial time points, suggesting a predominantly satiety-

sensing or meal processing role for the DMH in our model. While

the DMH has been ruled out as necessary for FAA, it has been

proposed as a source of inhibitory inputs to the SCN pacemaker,

which promote the expression of FAA by suppressing sleep-

promoting SCN output during the day (the sleep phase in

nocturnal rodents) [40,47,49]. Our immunohistochemical data do

not provide strong support for a DMH-SCN intrahypothalamic

gate model given the visibly low c-Fos induction in the DMH in

both CR and AL groups at all preprandial time points.

On the other hand, we did observe significantly lower c-Fos

induction in the SCN prior to mealtime in the CR groups

compared to Fast/AL groups. This result is consistent with the

model that FAA may be facilitated by inhibition of the SCN to

permit locomotor activity in the usual sleep phase of the circadian

cycle. This model is further supported by evidence that FAA is

enhanced by SCN-ablation in rats [50]. We previously observed

that AL fed mice can anticipate a daily palatable meal of cheese or

high fat diet and that this was associated with a modest increase in

c-Fos expression in the SCN [28] This suggests that mice can

anticipate a daily meal without SCN inhibition (or, more precisely,

without a reduction of c-Fos protein in the SCN). A difference in

pre-meal SCN activity between CR and palatable feeding

schedules may explain in whole or in part why FAA is much

greater in mice on the CR schedules.

The nucleus accumbens, part of the reward system, has been

another target of interest regarding a role in promoting FAA.

Mendoza and colleagues [43] observed c-Fos induction in the NAc

prior to mealtime, and found that lesions restricted to the NAc

suppressed FAA in rats. An earlier study in which the entire NAc

was removed did not observe reduced FAA in food restricted rats,

indicating that while components of the NAc may participate in

expression of FAA, the structure cannot be the source of signals

critical for timing FAA [51]. A modulatory role for the NAc is also

suggested by the results of recent studies of ghrelin-deficient mice,

which expressed less FAA in some studies, and have reduced c-Fos

expression in the mesolimbic dopamine pathway under restricted

feeding conditions [29]. Our c-Fos data are not consistent with a

critical role for the NAc given the extremely low preprandial c-Fos

induction in mice on CR. On the contrary, the strong induction of

c-Fos 2 hours after meal onset is more consistent with a role for the

NAc in processing stimuli related to food intake, including its

reward properties. The NAc may be more important for

anticipating palatable food [30,52], although this remains to be

tested directly.

In conclusion, the results of our study underscore the

importance of feeding schedule parameters for the expression of

behavioral and neural correlates of FAA in mice. Mice provided

food at the same time every day may show weak FAA if CR is

modest. This raises the possibility that neural, genetic or endocrine

manipulations could reduce FAA without impinging on the food-

entrainable clock mechanism, by reducing metabolic activity and

thereby effectively reducing the degree of CR expressed relative to

caloric needs. The results of our study also raise questions about

the role of several hypothalamic structures thought to be

important for induction of FAA. We established that a 60% CR

schedule induces robust FAA in mice, but using this schedule failed

to observe food anticipatory increases in c-Fos in the DMH,

VMH, PVN, Arc, or LHA of mice after ,30 days of restricted

feeding. By contrast, most of these structures showed robust

elevation of c-Fos 2-h after meal onset. These results demonstrate

that neural activity in the hypothalamus and other regions can be

dissociated from FAA in CR mice, as has previously been reported

in rats and mice anticipating a palatable daily snack without CR

[28,30,53]. In the absence of convincing evidence that FAA is

eliminated by lesions confined to any one brain structure, many

researchers in the field now favor the idea that FAA is regulated by

a distributed population of FEOs [2,9,30,33,54,55,56]. This model

would seem to predict activation of multiple regions in the brain

preceding scheduled meal time, but this was not evident in our

study. It is certainly possible that FAA output may involve

reductions in activity in some structures (e.g., the SCN) and

activation in other structures that is not reflected in marked c-Fos

expression, or there may have been c-Fos entrainment in

structures not thoroughly examined in this study (e.g., brain stem

nuclei). This issue may require alternative measures of neural

activity for clarification.
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