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Abstract 

Gene regulation in eukaryotes is partly shaped by the 3D organization of chromatin within the cell nucleus. Distal interactions between cis - 
regulatory elements and their target genes are widespread, and many causal loci underlying heritable agricultural traits ha v e been mapped to 
distal non-coding elements. The biology underlying chromatin loop formation in plants is poorly understood. Dissecting the sequence features 
that mediate distal interactions is an important step to w ard identifying putativ e molecular mechanisms. Here, w e trained GenomicLinks, a deep 
learning model, to identify DNA sequence features predictive of 3D chromatin interactions in maize. We found that the presence of binding 
motifs of specific transcription factor classes, especially bHLH, is predictive of chromatin interaction specificities. Using an in silico mutagenesis 
approach we show the removal of these motifs from loop anchors leads to reduced interaction probabilities. We were able to validate these 
predictions with single-cell co-accessibility data from different maize genotypes that harbor natural substitutions in these TF binding motifs. 
GenomicLinks is currently implemented as an open-source web tool, which should facilitate its wider use in the plant research community. 
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he spatial configuration of chromatin within the nucleus
f eukaryotic cells is fundamental to genome regulation. Its
tructural dynamics are critical for various cellular processes,
ncluding DNA replication, repair, spatiotemporal gene ex-
ression patterning and transposable element silencing ( 1–3 ).
hromosome conformation capture (3C), coupled with next-
eneration sequencing (e.g. Hi-C ( 4 ), Hi-Chromatin Immuno-
recipitation (ChIP) ( 5 ), ChIA-PET ( 6 ), Capture-C ( 7 ), Cap-
ure Hi-C ( 8 ), 4C ( 9 ), 5C ( 10 ) or in situ Hi-C ( 11 ), have
merged as powerful tools to interrogate 3D chromatin bi-
logy in a high-throughput fashion. These methods have led
o systematic insights into the hierarchical organization of
hromatin, including the identification of A / B compartments
 4 ), Topologically Associated Domains (TADs) ( 12 ) and chro-
atin loops in the form of enhancer-promoter interactions

EPIs) ( 5 ). In animals, TAD and chromatin loop formation is
argely facilitated by the CTCF-cohesin complex, which binds
NA to physically clamp down chromatin and force loop ex-

rusion ( 11 ). Although the general principles of chromatin or-
anization are conserved, plants are distinct, in which they
ack CTCF proteins. Perhaps, as a result, TAD structures dis-
lay less defined boundaries and are often indistinguishable
rom local A / B compartments, particularly in large and com-
lex plant genomes ( 13 ). How plants initiate and stabilize
D chromatin interactions remains poorly understood. Sev-
ral studies point to an enrichment of particular transcription
actor (TF) families at loop anchors ( 14 ), which has led to
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the hypothesis that TFs mediate loop formation through pro-
cesses like dimerization ( 15 ,16 ). Hence, the presence of spe-
cific TF binding motifs may be an important determinant of
3D chromatin interactions. Testing this hypothesis in a high-
throughput manner is experimentally challenging. Moreover,
additional DNA sequence features, beyond known TF bind-
ing motifs, may be important contributors to loop formation
but remain difficult to identify. Machine learning (ML) meth-
ods trained on 3C data in animals have emerged as power-
ful tools to dissect the DNA sequence grammar underlying
chromatin biology. Deep Learning (DL) models, in particu-
lar, have demonstrated remarkable success in predicting 3D
chromatin contacts directly from DNA sequences ( 17 ), with
prediction accuracies larger than 70%. The power of these
models is that they can be combined with in silico mutage-
nesis, where arbitrary DNA sequence mutations are induced
and evaluated for their impact on looping probabilities. This
approach provides a framework to systematically screen ge-
netic variants underlying agronomically important complex
traits that have been mapped to (distal) cis -regulatory ele-
ments ( 18 ). Examples of such traits in maize include tb1 ( 19 ),
ZmCCT9 , Vgt1 , prol1.1 , and UPA2 ( 20 ,21 ). Such knowl-
edge can generate concrete hypotheses for experimental val-
idation using genome editing and / or present novel breeding
targets. Harnessing DL models for studying plant chromatin
biology is a promising goal. However, models trained on an-
imal data perform poorly when applied to plants, yielding
prediction accuracies as low as 0.1% (see SI material). This
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enomics and Bioinformatics. 

ons Attribution-NonCommercial License 
ial re-use, distribution, and reproduction in any medium, provided the 
up.com for reprints and translation rights for reprints. All other 
ink on the article page on our site—for further information please contact 

https://doi.org/10.1093/nargab/lqae123
https://orcid.org/0000-0002-8200-9388
https://orcid.org/0000-0003-4822-3214
https://orcid.org/0000-0002-9828-3373
https://orcid.org/0009-0008-6077-299X
https://orcid.org/0000-0001-9100-8320
https://orcid.org/0000-0001-7538-6663
https://orcid.org/0000-0002-7962-2907


2 NAR Genomics and Bioinformatics , 2024, Vol. 6, No. 3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

observation points to fundamental differences in the type of
DNA sequence features that predict chromatin looping, and
suggests that DL models need to be trained directly on plant
genomic data to optimize performance. Here we implement
such an approach. Using maize ( Zea mays ) as an experimen-
tal system, we developed GenomicLinks, a DL model capa-
ble of predicting 3D chromatin interactions from DNA se-
quences with high accuracy. Leveraging high-quality Hi-ChIP-
seq dataset for training, we integrated the most successful
architectural features from DL models used in the animal
field. The model combines dual convolutional neural net-
works (CNNs) with a long short-term memory (LSTM) net-
work, enabling the identification of spatial and sequential as-
pects of chromatin interactions. The application of Genomi-
cLinks, coupled with a TF-centered in silico mutagenesis ap-
proach, revealed binding motifs of specific TF classes as cru-
cial predictors of chromatin looping. We were able to validate
these predictions with single-cell co-accessibility data from
nine different maize genotypes that harbor natural mutations
in these TF binding motifs. GenomicLinks is currently im-
plemented as an open-source web tool at genomiclinks.com ,
which should facilitate its wider use among plant researchers.

Material and methods 

Hi-ChIP data collection 

To construct a high-quality dataset of true chromatin interac-
tions, we obtained Hi-ChIP data for the histone modifications
H3K4me3 (associated with transcriptional activation) and
H3K27me3 (associated with transcriptional repression) from
Ricci et al. (2019) ( 18 ). These particular histone modifications
were selected because they are the only ones published and
are well-known markers of active promoters and enhancers
(H3K4me3) and repressive chromatin (H3K27me3), respec-
tively. These datasets were generated through an initial Hi-C
process, followed by ChIP, using antibodies against H3K4me3
(indicative of transcriptional activity) and H3K27me3 (indica-
tive of transcriptional suppression), while excluding regions
characteristic of constitutive heterochromatin ( 22–24 ). The
Hi-ChIP raw data were processed using the HiC-pro pipeline
(version 2.8.054) ( 25 ) and mapped to Zea mays B73 refer-
ence genome (version 4) ( 26 ), where alignments with a MAPQ
score greater than five were retained. ChIP-seq pulldown effi-
ciency was assessed through the analysis of dangling-end and
self-ligation read pairs. Loop detection was performed using
FitHiChIP ( 27 ) with valid read pairs, applying a 5 kb bin
size, adjusting for coverage bias and setting a false discovery
rate threshold of less than 0.01 to distinguish H3K4me3 and
H3K27me3 Hi-ChIP loops. The sequenced data were also fil-
tered to include only interactions with a minimum genomic
distance of 20 kb and a maximum genomic distance of 2 Mb.

Data preprocessing 

To enhance accuracy and ensure our model’s comparability
with similar deep learning frameworks ( 17 ,28 ), we refined
FitHiChIP’s original 5 kb anchor definitions to 2.5 kb re-
gions centered on each anchor’s midpoint, to improve com-
putational efficiency. Nucleotide sequences for these 2.5 kb
windows were extracted from the Zea mays B73 reference
genome (version 4) ( 26 ) for deep learning analysis. These se-
quences, encompassing 101,172 anchor pairs, constituted our
set of true positive interactions and were labeled as ‘1’. To cre-
ate the negative training set, we started with the positive set 
and permuted the anchor positions, ensuring that the negative 
set covered the same genomic space as the positive set for bi- 
ological relevance. We kept a similar distance distribution of 
negative and positive samples. To improve the model’s ability 
to distinguish between positive and negative sets, we further 
adjusted the positions of each permuted anchor pair by ran- 
domly shifting it 5–25 base pairs left or right and labeled them 

as ‘0’. We found that permuting anchor pairs without these 
additional bp shifts result in no learning progress. This sug- 
gests that the model learns sequence features that determine 
the potential of two genomic regions to interact rather than 

the 3D interaction architecture itself. Some alternative meth- 
ods in the literature ( 29 ) opted to define negative sets by ex- 
tracting random anchor sequences from the reference genome.
In heterochromatin-rich genomes, like that of maize, this lat- 
ter strategy runs into the danger that the models learn DNA 

features that distinguish euchromatin from heterochromatin,
rather than interacting from non-interaction regions, and was 
therefore not employed here. Next, we combined our positive 
and negative training sets to form the ‘complete training set’ 
(N = 202 344). This complete set was shuffled to ensure that 
the order of the anchor pairs does not bias the model dur- 
ing training. Finally, one-hot encoding was applied to the 2.5 

kb anchor pairs in the complete training set to convert the A,
T, C and G nucleotide sequence into a binary matrix repre- 
sentation. These binary matrices, along with their labels, were 
stored in the H5 file format, making it compatible with Ten- 
sorFlow ( 30 ) and Keras ( 31 ) for data handling during training.

Model architecture and training process 

We developed a dual CNN architecture to independently an- 
alyze each anchor, followed by an LSTM layer (see Figure 1 ).
This configuration has proven successful in animal systems 
( 32–36 ). Our model takes two 2.5kb input anchor sequences 
as input, representing potential genomic interaction sites. The 
architecture employs a one-dimensional CNN with two con- 
volutional layers, featuring filter sizes of 256 and 512, and 

kernel sizes of 64 and 32. These layers extract high-level fea- 
tures from the input sequences ( 37 ), which are then processed 

by max-pooling layers for dimensionality reduction. Subse- 
quently, the outputs were concatenated and fed into one bidi- 
rectional LSTM layer, comprising 256 units. This LSTM layer 
effectively captures long-range dependencies within the input 
sequences ( 38 ). The final prediction was obtained through a 
dense layer with 512 units and a sigmoid activation function.
To enhance generalization and prevent overfitting, we incor- 
porated batch normalization and dropout layers. The opti- 
mization process utilizes the Adam optimizer with a learning 
rate of 1e-4, guided by the binary cross-entropy loss function.
The entire architecture was implemented using the Tensor- 
Flow ( 30 ) and Keras ( 31 ) libraries ( jlab github ). The model 
summary, including detailed parameter configurations, is pro- 
vided in supplementary materials ( Supplementary Figure S1 ).
During the training process, we continually monitored various 
statistical metrics. One crucial metric is specificity at a given 

sensitivity threshold for the validation set. This metric mea- 
sures the model’s ability to correctly classify negative samples 
while maintaining a specified level of sensitivity. We utilized 

the EarlyStopping callback with patience of 10 epochs to en- 
sure training halts when performance plateaus or deteriorates.
ModelCheckpoint was employed to save the model weights 

https://genomiclinks.com
https://github.com/jlab-code/GenomicLinks/
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Figure 1. Workflow of GenomicLinks deep learning for predicting chromatin interactions in the maize genome. ( A ) GenomicLinks was trained on Hi-ChIP 
data to predict 3D chromatin interactions from DNA sequence features flanking chromatin interaction sites (anchors). The trained model accepts any 2.5 
kb anchor pairs as input and outputs an interaction probability p 1 . ( B ) SNIPER is an in silico mutagenesis software extension embedded in the 
GenomicLinks frame w ork. SNIPER can introduce t argeted sequence mut ations in selected anchor pairs and resupplies these to GenomicLinks for 
e v aluation. GenomicLinks uses the mutated anchor pairs to assess chromatin loop st abilit y, yielding interaction probabilities p 1 for the original 
sequences and p 2 for the mutated ones. This approach provides a setup to test the impact of specific genetic variants on chromatin loop st abilit y. 

o  

i  

i  

t  

f  

a  

r

I

T  

w  

t  

t  

S  

t  

W

F  

i  

o  

c  

t  

(  

g  

p  

M  

G

E
s

T  

(  

p  

e
4  

W  

t  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

nly if they outperform the previous best epoch. The train-
ng process spanned 100 epochs, with each epoch compris-
ng a batch size of 100 samples. We used the Adam optimizer
o minimize the binary cross-entropy loss, a common choice
or binary classification tasks ( 39 ). Detailed training logs and
ccess to saved model weights can be found in our GitHub
epository ( jlab github ). 

n silico mutagenesis of TFBS 

o enable automated, targeted in silico mutagenesis of TFBS
ithin loop anchors, we introduce SNIPER, an extension of

he GenomicLinks toolkit, designed to analyze sequence fea-
ures influencing genomic interactions ( jlab github , Figure 1 B).
NIPER provides a targeted and a genome-wide mode for in-
egrating in silico mutations, deletions or motif replacements.

eb server implementation 

or web server implementation, a combination of Java script-
ng, PERL, HTML, CSS and PHP was employed, all running
n an Apache server utilizing the Hypertext Transfer Proto-
ol (HTTP). The front end of the web interface was writ-
en in JAVA scripts, PHP and HyperText Markup Language
HTML). We utilized PHP and PERL for scripting common
ateway interfaces and web–server interactions due to the
latform independence and open-source nature of Apache,
ySQL and PHP technologies. A step-by-step user guide for
enomicLinks and SNIPER can be found in the SI materials. 

valuation of TFBS on chromatin looping using in 

ilico mutagenesis 

o determine the impact of transcription factor binding sites
TFBS) on Hi-ChIP loops, we used SNIPER to scan and re-
lace nucleotides within any identified TFBS motifs, based on
xact matches to the consensus sequence from JASPAR ( 40–
6 ) database, with an ‘N’ to denote an unknown nucleotide.
e assessed the impact of these modifications by comparing

hem with original predictions. Anchor pairs with a probabil-
ity drop of more than 50% post-modification were classified
as ’Relevant Anchor Pairs’ (RAPs), and their associated mo-
tifs were termed ‘relevant motifs’. Focusing on chromosome 1
as a test case, we identified 670 RAPs, encompassing 25 287
unique sequences with an average motif length of 8.5 base
pairs. For comparison, we created a set of Control Anchor
Pairs based on control motifs, which had minimal impact on
loop probability, under comparable conditions of count and
motif length. Notably, these control motifs were more preva-
lent, occurring in 2623 Control Anchor Pairs. 

Validation of in silico predictions using maize 

genetic variation data 

We process single nucleotide variant (SNV) data from the
maize 282 diversity panel ( 47 ). The complete SNV dataset
comprised approximately 2.2 million single nucleotide poly-
morphisms (SNPs) or indels, exclusively for chromosome 1.
To prepare the dataset for GenomicLinks analysis, we up-
dated the Hi-ChIP anchor pairs for each of the 278 maize in-
bred lines. We extracted DNA sequences from the reference
genome and incorporated mutations as specified by the SNV
matrix. Mutations were updated accordingly; unknown nu-
cleotides (‘N’) were encoded as a uniform distribution vector
(0.25, 0.25, 0.25 and 0.25) ∧ T, while deletions (‘D’) were rep-
resented by a zero vector (0, 0, 0 and 0) ∧ T. It is important
to note that insertions (‘I’) were excluded from this process.
We applied GenomicLinks to predict chromatin interactions
within chromosome 1 for all 278 samples, creating a matrix
of dimensions 278 x 16 410. 

Validation of in silico predictions using maize 

single-cell co-accessibility data 

To further validate the in silico predictions that specific SNVs
affect chromatin loop probabilities, we analyzed single-cell
A T AC-seq data ( 48 ) for 10 genotypes apart of the maize 282
diversity panel (B73 (reference), B97, CML103, CML52, KI3,
Ky21, M162W , M37W , OH7B and Oh43), and processed the

https://github.com/jlab-code/GenomicLinks/
https://github.com/jlab-code/GenomicLinks/
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Figure 2. GenomicLinks user interface. ( A ) The GenomicLinks web portal interface for uploading BEDPE files, currently supporting Zea mays with 
options for reference genome versions v4 or v5. ( B ) Display of the input format required, and the output generated by GenomicLinks, adding predicted 
interaction probabilities (prob) and interaction presence (inter) for chromatin anchor pairs ( s 1 , e 1 and s 2 , e 2 ). ( C ) Display of the input format required and 
the output generated by GenomicLinks, adding predicted interaction probabilities (prob) and interaction presence (inter) for chromatin anchor pairs ( s 1 , e 1 
and s 2 , e 2 ). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

sequenced outputs as previously described ( 49 ). To identify re-
gions of co-accessibility as a proxy for chromatin interactions,
we first partitioned the nuclei by accessible chromatin regions
(ACRs) matrix to restrict the analysis to each genotype in iso-
lation. Nuclei from a single genotype were then aggregated in
X pseudocells using k nearest neighbors, where X is an integer
determined as the number of nuclei from the focal genotype
divided by k, and k is an integer of the square root of the total
number of nuclei from the focal genotype. Tn5 integrations
per pseudocell across all ACRs were then scaled per million
using the function cpm from the R package, edgeR ( 50 ). Ini-
tial values of co-accessibility between ACRs were estimated
as Spearman Correlation Coefficients across pseudocells, con-
ditioning ACRs to be less than 500-kb and more than 2-kb
apart. We assessed whether co-accessibility values dropped in
anchor pairs, whose SNVs in RAPs were predicted to result
in a loss of interaction probability. As a control, we assessed
decreases in co-accessibility values in RAPs, where SNVs did
not lead to predicted losses in interaction probabilities. 

Results 

Description of GenomicLinks 

GenomicLinks is an open-source web tool designed to predict
3D chromatin interactions from DNA sequence in maize. Ge-
nomicLinks builds on a deep learning model, comprising two
CNNs and LSTMs and has been trained on curated maize Hi-
ChIP data (Figure 1 and Material and methods). Users can
upload a pair (or multiple pairs) of genomic sequences in ei-
ther FASTA or BEDPE formats. These inputs are automati-
cally processed and submitted to the trained model for inter-
action predictions. GenomicLinks outputs interaction proba-
bilities for each sequence pair from the BEDPE files or with
each individual sequence pair from FASTA files (Figure 2 ). 

Comparative benchmarking of GenomicLinks 

We evaluated GenomicLinks’ classification performance us-
ing standard metrics (Figure 3 ). The evaluation used the
complete training data, including 101 172 true positive and
an equal number of true negative interactions. This dataset
was divided into training (80%, 161 875 samples), valida-
tion (10%, 20 234 samples) and test (10%, 20 234 samples)
sets. We obtained the following classification performance: ac-
curacy: 0.848, sensitivity (Recall): 0.853, specificity: 0.843,
F1-score: 0.848, precision: 0.844, ROC AUC: 0.925, and
AUPRC: 0.926). As there are currently no published DL mod-
els for predicting chromatin interactions in plant genomes,
we sought to compare these classification statistics with those 
of other models that have been developed for similar pur- 
poses in other systems, for example, for the prediction of EPIs 
in human cell lines. These comparisons are summarized in 

Supplementary Table S1 . We found that GenomicLinks’ per- 
formance matches or exceeds that of similarly structured mod- 
els such as SPEID, SEPT and CLNN-loop, even if the latter had 

been trained and tested on the same cell line, which tends to 

yield the best results. Applying models trained on other species 
or different cell lines to our maize data without retraining and 

adjusting the model architecture is impractical. For instance,
applying the human-trained DeepMILO, designed for evalu- 
ating non-coding variant impacts on CTCF / cohesin-mediated 

insulator loops, correctly predicts only 0.1% of maize Hi- 
ChIP loops, corresponding to 144 out of 101 172 loops (see 
SI material). 

In silico predictions of TF-mediated 3D chromatin 

contacts 

We set out to identify specific DNA sequence features underly- 
ing our DL predictions. Several studies have pointed to an en- 
richment of particular classes of TFs at loop anchors ( 15 ,16 ).
This has led to the hypothesis that TFs may mediate loop for- 
mation through processes like dimerization / protein interac- 
tions ( 51 ). To test whether the presence of TFBS in loop an- 
chors contribute to our predictions, we applied SNIPER to 

perform a TF-centered in silico mutagenesis (see Material and 

Methods). Focusing on chromosome 1 as a test case, we se- 
lected anchor pairs, whose 3D interactions were supported 

empirically by Hi-ChIP data as well as computationally by Ge- 
nomicLinks (N = 16 083 out of 16 410). Utilizing the JASPER 

database, we identified all high-confidence TFBS for maize (82 

000) within these sequences and applied SNIPER for targeted 

deletions of these sites (see Material and Methods and Fig- 
ure 1 B). We observed that all anchor pairs contained at least 
one TFBS, with over 95% of these anchors having less than 

20% of their base pairs overlapping TFBSs. The mutated se- 
quences were then re-analyzed using GenomicLinks for inter- 
action prediction. Our analysis identified a subset of approx- 
imately 4% of anchor pairs (678 out of 16 083), where TFBS 
deletions led to a strong probability shift of at least 50%, in- 
dicating a shift from interacting to non-interacting state. We 
refer to this subset as RAPs. This results highlights cases where 
removal of only approximately 205-bp motif sequence from 

5-kb loop anchors (on average) are sufficient to compromise 

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae123#supplementary-data
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Figure 3. GenomicLinks performance statistics and impact analysis of in silico mutagenesis of TFBSs. ( A ) Performance metrics, including accuracy, 
sensitivit y, specificit y, F1-score, precision and AUC values. ( B ) Left: Distribution of TFBS motif classes within all 16 410 Hi-ChIP anchor pairs on 
chromosome 1 of the B73 reference genome. Right: Distribution TFBS motif classes within anchor pairs predicted to lose interaction after remo v al of 
TFBS, with bHLH (y ello w) and Other C4 zinc finger factors (pink) significantly affecting loop st abilit y. ( C ) Histogram displaying the effect of in silico TFBS 
motif knockout on interaction probability: original (blue) versus collapsing interactions (green), alongside control scenarios (red / orange) verifying the 
specificity to the targeted TFBS motifs and their position. 
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ooping probabilities. For comparison, we also included two
enchmark scenarios into our analysis. In the first, we intro-
uced random SNPs, matching the total base pairs of all mo-
ifs within each anchor. In the second, we randomly reposi-
ioned deleted motif segments within the anchor sequence (see
igure 3 C). No loss of interaction probabilities could be de-
ected in the two control benchmark scenarios (Figure 3 C),
hus providing additional evidence that these motif sequences
rive the predictions. Further examination of the frequency
istribution of specific TF classes in the RAPs compared with
ll loops revealed significant shifts in class distribution (see
igure 3 B). The most significant changes were found for the
P2 / EREBP and Basic helix-loop-helix ( bHLH ) classes ( χ2 =
7.21, df = 6, P = 1.85e-23), with the AP2 / EREBPs showing
 substantial depletion in the RAPs (all loops: 72.8%, RAPs:
2%), and the bHLH s an enrichment (all loops: 8.7%; RAPs:
8.7%). Interestingly, in mammals, members of the bHLH
lass have been shown to cooperate with histones to facili-
ate DNA access ( 52 ) and contribute to the 3D rewiring of
hromatin architecture during cell lineage transitions ( 53 ). 

atural mutations in TFBS lead to predicted losses 

n 3D chromatin contacts 

he above analysis demonstrated that in silico deletions of
ntire TFBS can lead to a loss of predicted chromatin in-
eractions in a subset of regions. In natural settings, com-
lete deletions of TFBS are less common than SNVs in the
orm of SNPs or small indels. We asked if naturally occur-
ing SNVs among maize inbred lines in these TFBS are suffi-
ient to compromise predicted looping probabilities. To assess
his, we screened genotype data from 9 maize NAM founder
ines and retained only those RAPs that contained at least one
NPs or small indels in a TFBS (Material and methods, Figure
 A). Depending on the NAM line, this resulted in 172–551
APs (average of 487) on chromosome 1 for downstream
nalysis Figure 4 B. Employing SNIPER (see Figure 1 B), we
eplaced the B73 sequence in each TFBS with the SNP / indel
enotype of the respective NAM line. On average, this trans-
ated to only 4.9 bp being substituted in a total of 205 bp of
FBS space per anchor pair (i.e. 2.39% of the TFBS space, see
upplementary Figure S2 ). After re-applying GenomicLinks to
the SNV substituted RAPs, we found that 13% (average of 65
RAPs) exhibited a drop in predicted interaction probability
of at least 10%, thus demonstrating considerable sensitivity
to minor genetic variation (Figure 4 C). 

Single-cell co-accessibility validates predicted 

interaction losses 

To empirically validate our predicted interactions losses in
the 487 RAPs, we analyzed single-cell A T AC-seq data for 10
NAM lines ( 48 ), and quantified chromatin co-accessibility,
which has been widely used as a proxy for chromatin inter-
actions (see Material and Methods) ( 54 ). As a control, we
performed the same quantification in RAPs where SNP / indels
mutations had no predicted effect on looping. We found that
RAPs that exhibited reduced loop stability as a result of
SNP / indel mutations within TFBS also showed a correspond-
ing decrease in co-accessibility strength across cells compared
to the B73, with B97 being the exception (Pooled genotype
test, χ2 = 7.89 , df = 1, P = 5.0e-03, Figure 4 E–G). A sim-
ilar trend was observed when comparing the number of co-
ACRs instead co-accessibility strength (Pooled genotype test,
Fisher’s Exact Test = 0.82, P = 1.05e-02), which indicated
that TFBS-associated SNPs / indels also reduced the extent of
open chromatin in the RAPs. 

Predicting the impact of genetic variation on 

chromatin looping in 277 maize inbred lines 

We sought to extend our genotype-based predictions of dif-
ferential chromatin looping to the panel of 277 maize diverse
inbred lines ( 47 ), which has become an important genomic
resource in maize. To that end, we identified all APs genome-
wide containing published SNVs (101 172 APs genome-wide).
This analysis yielded a large matrix of individual loop pre-
dictions (277 × 101 172). We identified significant variabil-
ity in loop stability across anchor pairs among genotypes
( Supplementary Figure S3 , Figure 5 B). Interestingly, certain
genotypes displayed a general trend toward loop loss (e.g.
NC328, CI66 and A641), with an average loop stability of
only 76% genome-wide. As a control, we examined a spe-
cific anchor pair on chromosome 1 surrounding the tb1 

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae123#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1103/nargab/lqae123#supplementary-data
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Figure 4. Validating GenomicLinks predictions using natural genetic variation and single cell A T AC-seq data. ( A ) Workflow diagram illustrating the 
process for extracting RAPs from Hi-ChIP sequenced data on chromosome 1 of Zea mays B73 . APs are categorized based on their loop st abilit y after 
silico test remo v al of TFBS motifs. Further analysis mutates SNVs across 10 genotypes to these APs, we call them ‘SNP -APs ’. Evaluation of ‘SNP -APs ’ 
re v eals a higher occurrence of collapsing loops in those with reduced coACR counts and increased co-accessibility differences relative to the B73 
reference. ( B ) Predicted probability drops of APs post-TFBS silico test removal indicate a majority of stable loops, defined by a drop of less than 50% 

from the original loop prediction f or B73. ( C ) P redicted probability drops of rele v ant APs post-SNV silico test mutation show a delineation between stable 
and collapsing loops, now with a tighter 10% cutoff from the original prediction for B73. ( D ) Distribution of co-ACR count differences for all SNP-APs 
relative to B73 , highlighting those with a positive difference (labeled green) for further loop analysis. ( E ) Distribution of average co-accessibility 
differences for all SNP-APs compared to B73 , highlighting those below the 10th percentile (labeled green) for further loop analysis. ( F ) Normalized 
analy sis f or all genotypes re v eals that collapsing loops more frequently occur than stable ones in SNP-APs with positive co-ACR count differences (green 
subset from panel D). ( G ) Normalized analysis across all genotypes indicates that collapsing loops are more frequent than stable ones in SNP-APs with 
co-accessibility differences below the 10th percentile (green subset from panel E), though B97 deviates from this trend. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

locus, which is a well-characterized distal cis -regulatory ele-
ment known to form stable loops in modern maize ( 18 , 19 , 55 ).
Indeed, despite the presence of genetic variation around this
locus, with some genotypes showing base substitution in up
to 454 bp within this anchor pair, loop probability remained
consistently high ( > 99%) in all 277 inbred lines (Figure 5 A).
Our complete computational predictions could be tested in fu-
ture empirical studies of the diversity panel using a combina-
tion of targeted QTL mapping and population-level single-cell
co-accessibility and / or HiC data. Overall, our results demon-
strate that GenomicLinks learned meaningful DNA sequence
features predictive of chromatin looping in maize, and that
the model can be used to test the impact of specific genomic
variants on chromatin looping. 

Discussion 

Deep learning models like GenomicLinks have the potential
to reveal complex and nested sequence motifs and genomic
features responsible for the 3D structure of chromatin, which
traditional sequence-based methods might miss. This compu- 
tational framework enables an in-depth analysis of how ge- 
netic variants influence chromatin loop stability, a key factor 
in gene regulation. Additionally, it facilitates the exploration 

of regulatory variations associated with complex traits and in- 
vestigates how non-coding loci, through physical interactions 
with distal genes, could modify gene expression patterns and 

influence phenotypic outcomes. Yet GenomicLinks has sev- 
eral limitations that are inherent to the ‘black box’ nature of 
deep learning models. The model’s decision-making process 
is usually obscured by the complex interplay of millions of 
parameters across its node and layer architecture. The nested 

neural structure with its nonlinear operations between each 

layer makes it challenging to directly interpret how it evalu- 
ates and integrates local and distal genomic features. We al- 
ready introduced a way to try to interpret DL decisions: in 

silico mutagenesis, where we strategically change sequences 
to observe how such changes impact model predictions. This 
method can be useful to identify crucial sequence features 
for the model’s decisions, labeling significant genomic regions 
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Figure 5. Impact of genetic variation on chromatin looping. ( A ) Interaction probabilities for anchor pairs in the region chr1:270276250-270488750, 
including the tb1 locus, across 277 maize inbred lines, demonstrating consistent loop st abilit y for tb1. ( B ) Interaction probabilities visualized for 10 
randomly selected anchor pairs across all 10 chromosomes, illustrating variability in chromatin loop st abilit y. T he analy sis re v eals genotypes with a higher 
tendency to lose loop st abilit y (right), identifies regions that consistently exhibit stable interactions and pinpoints anchor pairs prone to collapse across 
almost all genotypes. 
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or chromatin interaction predictions. In the context of deep
earning analysis, this approach is known as input perturba-
ion, which systematically tests the model’s sensitivity and re-
iance on specific input features. To further address the ‘black
ox’ nature of deep learning models, class activation mapping
CAM) provides a more direct method for visualizing influen-
ial input segments. CAM produces heat maps that highlight
hich parts of the input significantly influence the model’s
ecisions, offering insights into the impactful regions within
he input sequence for specific anchor pairs. However, CAM’s
tility is primarily limited to the convolutional layers, and it
oes not adequately address the complexities introduced by
STM layers, which are crucial for capturing long-distance de-
endencies within the chromatin. Therefore, while CAMs can
e valuable for in-depth analysis of particular anchor pairs,
hey are less effective for comprehensive analysis across large
atasets. Based on work in animals, it is unlikely that Genomi-
Links can be directly applied to other plant species without
e-training ( 56 ,57 ). However, transfer learning is a promising
trategy to mitigate this limitation. The concept of transfer
earning involves retraining the model, initially trained on a
pecific species like Zea mays , on new datasets from differ-
nt species. This process allows the model to adapt, learning
oth species-specific features and universal chromatin organi-
ation principles. Furthermore, it provides a method for esti-
ating the proportion of chromatin features that are universal

ersus those that are genome-dependent by comparing mod-
els trained directly on various species and those adapted via
transfer learning. 

Data availability 

The data and code supporting the findings of this study are
available at the following locations: - The GenomicLinks soft-
ware and all associated scripts can be accessed at our GitHub
repository: https:// github.com/ jlab-code/ GenomicLinks Al-
ternatively: https:// doi.org/ 10.6084/ m9.figshare.25771830.
v2 . The following accession numbers have been used in this
study: Hi-ChIP data: GSE120304, scA T AC data: GSE155178
and NAM coACRs data: GSE165787. 

Supplementary data 

Supplementary Data are available at NARGAB Online. 
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