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Abstract
Background: Premature discontinuation and other forms of noncompliance with treatment assignment can complicate
causal inference of treatment effects in randomized trials. The intent-to-treat analysis gives unbiased estimates for causal
effects of treatment assignment on outcome, but may understate potential benefit or harm of actual treatment. The cor-
responding upper confidence limit can also be underestimated.
Purpose: To compare estimates of the hazard ratio and upper bound of the two-sided 95% confidence interval from
causal inference methods that account for noncompliance with those from the intent-to-treat analysis.
Methods: We used simulations with parameters chosen to reflect cardiovascular safety trials of diabetes drugs, with a
focus on upper bound estimates relative to 1.3, based on regulatory guidelines. A total of 1000 simulations were run
under each parameter combination for a hypothetical trial of 10,000 total subjects randomly assigned to active treatment
or control at 1:1 ratio. Noncompliance was considered in the form of treatment discontinuation and cross-over at speci-
fied proportions, with an assumed true hazard ratio of 0.9, 1, and 1.3, respectively. Various levels of risk associated with
being a non-complier (independent of treatment status) were evaluated. Hazard ratio and upper bound estimates from
causal survival analysis and intent-to-treat were obtained from each simulation and summarized under each parameter
setting.
Results: Causal analysis estimated the true hazard ratio with little bias in almost all settings examined. Intent-to-treat
was unbiased only when the true hazard ratio = 1; otherwise it underestimated both benefit and harm. When upper
bound estimates from intent-to-treat were �1.3, corresponding estimates from causal analysis were also �1.3 in almost
100% of the simulations, regardless of the true hazard ratio. When upper bound estimates from intent-to-treat were
\1.3 and the true hazard ratio = 1, corresponding upper bound estimates from causal analysis were �1.3 in up to 66%
of the simulations under some settings.
Limitations: Simulations cannot cover all scenarios for noncompliance in real randomized trials.
Conclusion: Causal survival analysis was superior to intent-to-treat in estimating the true hazard ratio with respect to
bias in the presence of noncompliance. However, its large variance should be considered for safety upper bound exclu-
sion especially when the true hazard ratio = 1. Our simulations provided a broad reference for practical considerations
of bias–variance trade-off in dealing with noncompliance in cardiovascular safety trials of diabetes drugs. Further
research is warranted for the development and application of causal inference methods in the evaluation of safety upper
bounds.
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Introduction

Noncompliance with randomly assigned treatment is
commonly encountered in randomized clinical trials1

and pragmatic trials.2 The intent-to-treat (ITT) analysis
compares randomization groups as randomized, and
gives unbiased estimates for causal effects of treatment
assignment on outcome, but ITT ignores compliance
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information. When compliance is not perfect, the aver-
age causal effect of random treatment assignment may
differ from that of non-random receipt of treatment.
Although generally endorsed as conservative in esti-
mating efficacy (i.e. underestimation of benefits), ITT
may also underestimate harm in safety endpoints.3–5 Of
particular concern is that the upper confidence limit
may also be underestimated. In the interest of better
understanding and possibly protecting patient safety,
the causal effect of actual exposure to treatment on an
adverse outcome among the treated or among those
who would comply with treatment may be of primary
interest. For example, if an ITT analysis estimated an
increased risk of cardiovascular event of up to 20%
(i.e. upper bound = 1.2 for the risk ratio) for a drug
treatment, based on a clinical trial with 40% of patients
not taking the assigned treatment, the true risk may
well exceed 30% among patients who actually took it.
In practice, it would be useful to understand not just
‘‘up to 20% increased risk for all patients who are pre-
scribed the drug,’’ but also ‘‘up to 30% increased risk
for patients who take the drug as prescribed.’’

Causal inference methods have been developed,
which can be applied to evaluate potential safety upper
bound in randomized trials with noncompliance.3

However, practical application of such methods for this
purpose is still limited, compared to other alternatives
to ITT such as per protocol, as-treated and/or on-
treatment analysis,6 as well as various modified ITT
analyses.7 These other alternative analysis methods
may be biased due to post-randomization unmeasured
confounding or selection bias8 in the relationship
between noncompliance and the outcomes of interest,
that is, factors that affect compliance may also be inde-
pendently related to outcomes.9,10 For example, previ-
ous clinical trials have found that in placebo arms,
patients with poor adherence, compared with patients
with good adherence, had higher risk of cardiovascular
events.11–14

The cardiovascular safety of new therapies to treat
type 2 diabetes provides an interesting context for the
evaluation of safety upper bound in clinical trials with
noncompliance. Although lowering of HbA1c (the pri-
mary efficacy endpoint) reflects a beneficial effect on
the immediate clinical consequences of diabetes, and is
reasonably expected to reduce the long-term risk of
microvascular complications (e.g. retinopathy, nephro-
pathy), concerns about cardiovascular safety remain.15

To exclude an unacceptable cardiovascular risk of new
type 2 diabetes therapies, the US Food and Drug
Administration guidelines require that the upper bound
of the two-sided 95% confidence interval for the esti-
mated risk ratio be less than 1.3 for major adverse car-
diovascular events (MACE), which should include
cardiovascular mortality, myocardial infarction, and
stroke.15 A number of large clinical trials of diabetes
drugs are being conducted mainly for this purpose.16–19

Two of these studies20,21 published results recently;
both reported approximately 20% premature disconti-
nuation during the trials, and both met the required
upper bound of \1.3 by ITT analysis. Although some
noncompliance in these trials is probably inevitable, it
is unknown what impact such noncompliance may
have on the cardiovascular safety upper bound evalua-
tion, and whether ITT or various alternative analyses
may address noncompliance appropriately. Potential
advantages and limitations of these alternative analyses
also need to be better understood.

We conducted a simulation study, using cardiovas-
cular safety trials for type 2 diabetes therapies as a
motivating example to (1) evaluate point estimates of
cardiovascular risk by ITT and causal inference meth-
ods and (2) compare ITT and causal analyses with
respect to the estimated 95% upper confidence limit
(safety upper bound), specifically whether the estimated
upper bound is above or below the threshold of 1.3
under various noncompliance conditions.

Methods

We simulated a cardiovascular safety trial for a
hypothetical type 2 diabetes therapy with 10,000 total
subjects randomly assigned to either the treatment or
control arm in 1:1 ratio. Cox proportional hazards
models were used in the ITT analysis of time to first
occurrence of MACE, the outcome of interest. The
hazard ratio (HR) was the primary measure of treat-
ment effect. Follow-up was administratively censored
when a total of 611 MACE had occurred, to reflect the
common use of event-driven trials (i.e. trials in which
the duration of study follow-up is not fixed in advance
but depends on the number of MACE). The number
611 was chosen to give 90% power for excluding an
upper bound of 1.3 for the two-sided 95% confidence
interval if the underlying true HR = 1, comparing
treatment to control. We also explored a fixed follow-
up of 3 years for the hypothetical trial.

Because of our interest in potential harm for patients
who would comply with their prescribed treatment, we
focused on estimating causal treatment effects that
would have been observed under perfect compliance.
Using terminology from principal stratification,22 we
considered three types of potential compliance/non-
compliance behaviors: (1) compliers would always take
the assigned treatment (or control) throughout the trial,
and causal effect (benefit or harm) of the treatment is
defined for compliers; (2) always-takers would fully
comply with the treatment when assigned to it, but
would cross-over to the treatment if assigned to control;
(3) never-takers would stop the assigned treatment pre-
maturely before the end of trial, but would fully comply
when assigned to control. We did not consider defiers,
who would take the active treatment if assigned to
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control, but would not take the active treatment if
assigned to it. For lack of a better term, we used
‘‘never-takers’’ to include not only subjects who would
truly never take the assigned treatment (no exposure at
all), but also those who may take the assigned treatment
initially but would not adhere to it throughout the trial
(partial compliance). That is, cross-over (from control
to active treatment) noncompliance is captured by
‘‘always-takers’’, while premature discontinuation of
the active treatment at the beginning of or during the
trial is captured by ‘‘never-takers’’.

In practice, the control regimen to be compared with
the active treatment of interest may be placebo or stan-
dard therapies. In this study, we assumed that the con-
trol regimen per se had no effects on MACE, although
never-takers themselves may have a different risk of
MACE compared with compliers. This assumption
essentially provided a single reference level against
which the risk of MACE for the active treatment is
compared, consistent with the practice where one new
type 2 diabetes drug is compared with alternative stan-
dard therapies as control. For example, if the control
regimen is placebo on the background of metformin
plus glimepiride, it may be assumed that the risk of
MACE remains largely unchanged (from some baseline
level that may be different from that of compliers) for a
patient who discontinues glimepiride, or who takes gli-
pizide instead. By randomization, the distribution of
trial participants with each type of potential compliance
was expected to balance across the treatment and con-
trol groups. However, the compliance type of all indi-
viduals is not identifiable in a particular trial. For
example, an always-taker assigned to the treatment arm
cannot be distinguished from a complier as both would
exhibit perfect compliance in that trial. Likewise, a
never-taker assigned to the control arm cannot be dis-
tinguished from a complier assigned to control. To
cover a broad range of noncompliance reported in clini-
cal trials of type 2 diabetes drugs (see Appendix 2,
available online),23–26 the following triples were used to
specify the proportions of compliers, never-takers, and
always-takers, respectively: h80%, 20%, 0%i, h60%,
40%, 0%i, h80%, 10%, 10%i, and h60%, 20%, 20%i
(the proportions must sum to 1 because we assumed
that all trial participants fall into one of these three
categories). By randomization, each set of these triples
was equally applied across the treatment and control
groups.

We considered both all-or-none27 and partial com-
pliance. In all-or-none compliance, a never-taker
assigned to treatment would fail to take the treatment
at the very beginning of the trial (time zero), whereas
an always-taker assigned to control would initiate
treatment at time zero. In partial compliance, a never-
taker may initially take the assigned treatment but
would discontinue prematurely (before the occurrence
of MACE or end of trial). Likewise, an always-taker

assigned to the control arm may cross-over anytime
during the follow-up and remain on treatment for the
rest of the trial. In partial noncompliance, the timing of
treatment discontinuation or cross-over was assumed
to be uniformly distributed over potential (or counter-
factual) time to MACE. Potential time to MACE was
assumed to follow a Weibull distribution with survival
function exp(–lta), where l is the scale parameter and
a is the shape parameter (see Appendix 1). The Weibull
distribution was chosen because it satisfies both the
proportional hazards assumption and the accelerated
failure time assumption. The Weibull parameters were
chosen to reflect an initial annual cardiovascular risk
of about 2% among type 2 diabetes, which rose during
follow-up with increasing age and duration of dia-
betes.28,29 We chose a common a = 1.22 for all subjects,
l0 = 0.024 for untreated compliers, and l1 = l0*HR
for treated compliers, where HR was the true causal HR
comparing treatment with control and took on values of
0.9, 1, or 1.3 (see Appendix 3a-3c (available online) for
supplemental analyses when HR = 1.1 or 1.2). We let
the Weibull scale parameters for the untreated never-
takers and untreated always-takers be l0*RRn and
l0*RRa, respectively, where RRn and RRa denote the
risk ratio for MACE of never-takers and always-takers,
respectively, compared with compliers in the absence of
treatment. Previous clinical trials have reported about
50% lower risk of cardiovascular events associated with
good versus poor placebo adherence;11–14 therefore, we
chose RRn = 1 or 2 and RRa = 1 or 2.

For simplicity, we assumed no latency or carry-over
of treatment effects so that a change in treatment (dis-
continuation or cross-over) led to an immediate change
in hazard/survival probability that corresponded to the
‘‘current’’ exposure to treatment or control.

In ITT analyses, we fit both Cox proportional
hazards and Weibull survival models to estimate the
effects of treatment using an indicator variable for ini-
tial random assignment of treatment or control. The
estimates for the shape parameter a from the Weibull
survival models were also saved for use in subsequent
analyses (i.e. converting time ratio (TR) to HR esti-
mates) during the simulations.

In causal survival analysis, we employed two meth-
ods described heuristically below (see Kim and White,30

Loeys and Goetghebeur,31 Robins and Tsiatis32 and
White et al.33 for technical details).

The first method estimated Compliers PROPortional
Hazards Effect of Treatment (‘‘C-PROPHET’’).30,31

Briefly, this method assumes all-or-none compliance,
with only compliers and never-takers, but no always-
takers (as would be the case in most pre-approval drug
trials when the control group has no access to the treat-
ment), and no effect on outcome by randomization per
se. The causal HR of the treatment for compliers can-
not be directly estimated because compliers cannot all
be identified (explained above). However, because
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never-takers assigned to the treatment arm can be iden-
tified, their proportion and Kaplan–Meier survival
function can both be estimated. Likewise, the Kaplan–
Meier survival function for treated compliers can be
estimated from the treatment arm. The survival func-
tion for untreated compliers can then be derived under
an assumed HR. Given all these, the expected number
of events on the control arm can be predicted using the
mixture of survival functions of never-takers and
untreated compliers. The solution for the causal HR is
found iteratively by matching the predicted with the
observed number of events on the control arm.

The second method estimated the causal survival
TR under a structural nested accelerated failure time
(SNAFT) model.32,33 Suppose the observed event time
for a patient was t = t0 + t1, where t0 and t1 were the
lengths of time that the patient spent off and on treat-
ment before the event, respectively. The parameter TR
relates t with a potential or counterfactual event time
u = t0 + t1/TR that would have been observed in the
absence of treatment and represents a factor by which
time to MACE is changed by treatment. By randomiza-
tion, TR is estimated iteratively as the value at which
the counterfactual failure time without treatment is
balanced between the treatment and control groups
according to the log-rank test. For Weibull distribu-
tions, HR = (1/TR)a so that the causal HR can be
estimated by plugging in the TR and a (from ITT anal-
ysis) estimates.

Under all-or-none compliance, both methods are
applicable and both are consistent. We only present
results from C-PROPHET under this scenario because
the HR was directly estimated (not converted from
TR) and because variance from C-PROPHET was uni-
formly smaller than (although similar in magnitude to)
that from the SNAFT method in our simulations and
in previous studies.31 For partial compliance or treat-
ment cross-over, only the SNAFT method was applica-
ble and applied.

We ran 1000 simulations (hypothetical trial data
generation and analysis) under each combination of the
parameters and summarized results across these 1000
sets of analyses. All simulations were conducted in
STATA�, v12.1, College Station, Texas. HR point esti-
mates and confidence limits from ITT and causal sur-
vival analyses were summarized on the natural-log
(denoted ‘‘ln’’) scale by mean, standard deviation, med-
ian, 25th and 75th percentiles, as well as minimum and
maximum. Bias in point estimates was defined as the
difference between the mean of ln(estimated HR) and
ln(true HR). For simplicity and for practical purposes,
bias of small magnitude (absolute value � 0.009) from
the simulations was considered as negligible. For exam-
ple, when the true HR = 1, any estimated HR between
0.991 and 1.009 would meet this condition with a rela-
tive bias of \1% on the original HR scale. Simplified
box-plots showing key statistics (median, 25th and 75th

percentiles, 1.5 times above and below interquartile
range, as well as the minimum and maximum) of the
HR point estimates are presented on the original scale.
HR upper bound estimates from each simulation were
also recorded as �1.3 or \1.3. The percentage of times
out of 1000 simulations that the upper bound estimates
from ITT and causal survival analysis were in agree-
ment (both �1.3 or both \1.3) or disagreement (one
�1.3 whereas the other \1.3 or vice versa) was plotted
using bar charts.

Although our simulation parameters (including sam-
ple size) were chosen to reflect situations in cardiovas-
cular safety trials of type 2 diabetes treatment,16–19

additional parameter settings were explored (including
different sample sizes, various allocation ratios for
treatment and control, different proportions of com-
pliers, never-takers, and always-takers, different seeds
for random number generation in STATA�, and differ-
ent HR and Weibull parameters) on a post hoc basis to
assess the generalizability of our study findings. Since it
is impractical to cover all interesting scenarios in one
simulation study,34 we discuss some additional situa-
tions not represented in our simulations later in the
article.

See Appendix 4 (available online) for STATA� pro-
grams and supplemental results.

Results

Point estimates

Box-plots for HR point estimates are shown in Figures
1 and 2.

Results from the ITT analyses were as expected.
Bias = 0 when the true HR = 1 (i.e. treatment had no
effects on MACE). Bias \0 when the true HR .1, and
bias .0 when the true HR \1, therefore ITT underes-
timated both harm and benefits. This is seen as the
medians shifted toward the null value of 1. Note that
although only medians were displayed in the box-plots,
the corresponding mean estimates were virtually identi-
cal to the medians in all simulations (data not shown).

From causal survival analysis, bias = 0 in all pre-
specified scenarios except for one, which assumed the
true HR = 1.3, all-or-none compliance with 40% of
subjects being never-takers, who had a risk ratio = 2
for MACE compared with untreated compliers (Figure
1, lower left). Using various random seeds under this
parameter setting, we consistently observed bias of
about 0.02, with an estimated HR between 1.32 and
1.33. In addition to post hoc explorations, bias from
causal survival analysis was also slightly .1% of the
true HR for all-or-none compliance under more
extreme conditions, such as when never-takers had a
risk ratio of �2.5 for MACE compared with untreated
compliers or when the proportion of never-takers was
�60% (results not shown).
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Upper bound

Figures 3 and 4 display the percentage of times out of
1000 simulations when the upper bound estimates from
ITT and causal analysis were in agreement (both �1.3

or both \1.3) or disagreement (\1.3 from ITT,
whereas �1.3 from causal analysis). There was practi-
cally no disagreement (0%) from causal analysis when
ITT upper bound was �1.3.

Figure 1. Comparing intent-to-treat (ITT) with causal survival analysis in hazard ratio (HR) point estimates (no always-takers).
Simplified box-plots show the median, 25th and 75th percentiles, 1.5 times above and below interquartile range of the HR point estimates. Limited by

the graphical scale and space, the minimum and maximum (shown by stars) of HR estimates are not displayed for all scenarios, but all numerical

results are provided in the Appendix 3a-3c (available online). Causal analysis (shown with top-filled boxes) was based on the method of Loeys (2003).

Compliance proportions: h80%, 20%, 0%i for 80% compliers and 20% never-takers; h60%, 40%, 0%i for 60% compliers and 40% never-takers. RRn

denotes risk ratio for major adverse cardiovascular events (MACE) comparing untreated never-takers to untreated compliers.
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When ITT upper bound is \1.3, the percentage of
times causal upper bound is �1.3 depended upon the
true HR and other parameters. Causal analysis

disagreed with ITT upper bound of \1.3 more often
when never-takers had greater baseline risk of MACE
than compliers (RRn = 2) than otherwise (RRn = 1),

Figure 2. Comparing intent-to-treat (ITT) with causal survival analysis in hazard ratio (HR) point estimates (with always-takers).
Simplified box-plots show the median, 25th and 75th percentiles, 1.5 times above and below interquartile range of the HR point estimates. Limited by

the graphical scale and space, the minimum and maximum (shown by stars) of HR point estimates are not displayed for all scenarios, but all numerical

results are provided in the Appendix 3a-3c (available online). Causal analysis (shown with top-filled boxes) was based on the method of Robins

(1991). Compliance proportions: h80%, 10%, 10%i for 80% compliers, 10% never-takers, and 10% always-takers; h60%, 20%, 20%i for 60% compliers,

20% never-takers, and 20% always-takers. RRn denotes risk ratio for major adverse cardiovascular events (MACE) comparing untreated never-takers

and untreated compliers; RRa denotes risk ratio for MACE comparing untreated always-takers with untreated compliers.
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but less often in partial compliance compared with all-
or-none compliance. For example, with a true
HR = 1.3 and 80% compliers, causal analysis dis-
agreed with ITT upper bound of \1.3 in 12.5% and
6.2% of the 1000 simulations corresponding to
RRn = 2 and 1, respectively.

When the true HR = 1.3, the overall probability of
ITT upper bound of �1.3 was high (.80%) in most
scenarios, except for when it was 62% under all-or-
none compliance with 40% never-takers, who had

twofold baseline risk of MACE compared with com-
pliers (RRn = 2, Figure 3). Both ITT and causal upper
bound were \1.3 in roughly 3% of simulations.
Therefore, when treatment truly elevated risk of
MACE above the threshold of 1.3, as set forth by regu-
latory guidelines, ITT could show this by estimating
upper bound as �1.3 with a high probability. Causal
analysis shows this above and beyond ITT (when ITT
upper bound is \1.3) by up to an additional 12% of
the time (RRn = 2), so that the chance of passing the
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regulatory hurdle, despite having a true HR of 1.3, was
roughly 3%. In contrast, when the true HR = 1, ITT
and causal upper bound were both �1.3 in roughly
10% of the 1000 simulations, while causal upper bound
was �1.3 and ITT upper bound was \1.3 for 36%
(RRn = 2) and 21% (RRn = 1) of the times.
Therefore, even when the true HR = 1, causal analysis
alone could suggest an unacceptable risk of MACE for
the treatment 46% of the time (RRn = 2). When the
true HR = 0.9, ITT upper bound is �1.3 in less than
2% of the simulations, while causal upper bound is

�1.3 and ITT upper bound is \1.3 in 20% (RRn = 2)
and 7% (RRn = 1) of simulations. Therefore, when
treatment actually lowered the risk of MACE, the
chance of causal or ITT upper bound of �1.3 was not
excessively high (although 20% is non-trivial).

Discussion

We evaluated the potential impact of noncompliance in
randomized trials on safety upper bound evaluation,
using simulations to reflect common scenarios in
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cardiovascular safety studies for type 2 diabetes drug
development. For sufficiently powered studies, the
probability of correctly excluding upper bound of 1.3
by ITT analysis was good when the true HR = 1.3 in
most of these scenarios. Although causal survival anal-
ysis consistently estimated the true HR, the variance
was large and the probability of suggesting upper
bound of �1.3 was high, especially when the true
HR = 1.

Although causal survival analysis improved safety
upper bound exclusion above ITT when the true
HR = 1.3, it could lead to ‘‘over-correction’’ with a
large probability of causal upper bound of �1.3 when
the true HR = 1. This mainly resulted from a large
variance of the causal analysis methods. Part of this
large variance may be explained by the reduced sample
size of compliers for inferring complier-treatment
effects, but part of it may be inherent in the methods
themselves. The relative contribution of these sources is
unknown, and we are not aware of an established mini-
mum variance that can be achieved for the causal esti-
mators in general, except under particular settings.35

Although the variance of causal upper bound estimates
was similar when the true HR = 1 to that when the
true HR = 1.3 (other parameters equal), the practical
impact on the percentage of times causal upper bound
is �1.3 when the true HR = 1 is a legitimate concern.
A ‘‘ceiling’’ effect might explain this different impact,
with more ‘‘room’’ (i.e. percentage) left for causal esti-
mates to disagree with ITT when the true HR = 1
than when the true HR = 1.3. Although a relative
large variance, by itself, would not preclude application
of a method, the usual trade-off between variance and
bias needs careful consideration. Further research is
warranted to try to reduce the variance associated with
bias correction.

Our observation of the large variance in the causal
inference estimates is consistent with previous studies.
For example, instrumental variable (IV) estimates were
shown to have a larger variance compared with per pro-
tocol or as-treated analyses.36 Although we did not con-
sider covariate adjustment (not yet implemented in the
C-PROPHET or SNAFT STATA� modules), it can
reduce bias and improve precision for both causal and
alternative methods.36

We took the principal stratification approach22 to
noncompliance in clinical trials because our focus was
potential harmful effects on compliers. However, this
approach has its limitations, for example, the compliers
are generally not distinguishable from always-/never-
takers in observed data.37,38 Some simplifying assump-
tions may also be needed for its application. For
example, we assumed that standard type 2 diabetes
therapies had no effects on MACE (at least for the trial
duration) so that the active treatment can be compared
with a common reference level. This assumption may
hold approximately because standard type 2 diabetes

therapies have not demonstrated significant cardio-
protective effects.39 If one is convinced of any differen-
tial effects among these standard therapies on the risk
of MACE, additional principal strata may be necessary
to account for never-takers who take these different
standard therapies or none at all. Although the assump-
tion of no defiers appears to be suitable for most dia-
betes trials, Bayesian inference methods40 may be
applied in situations when there are defiers.

Other causal inference methods to address trial non-
compliance may include IV survival analysis,41 iterative
parameter estimation algorithm,42 and parametric
randomization-based methods.37 Some of these meth-
ods have been compared with the two methods (C-
PROPHET and SNAFT) employed here by simulations
for addressing treatment switching43 and time-varying
noncompliance38 in randomized trials. The choice of a
particular method should take into consideration the
type of noncompliance, distributional assumptions, and
bias–variance trade-off, as well as other relevant issues.
If the overall average causal treatment effect is of inter-
est, linear programming methods can be used to derive
nonparametric bounds in clinical trials with noncompli-
ance.44 We employed the two methods based on their
relatively simple assumptions (both taking advantage
of baseline randomization to address noncompliance)
and ease of implementation. If one is able to justify the
(strong) assumption of no unmeasured confounding
during study follow-up (essentially sequential randomi-
zation at baseline and beyond, such as with adequate
data collection and covariate adjustment), marginal
structural models may also be applied.5

Our choice of HR as the outcome measure of interest
and simulation parameters were guided by cardiovascu-
lar safety studies for diabetes drugs.23–25 We note that
formal dedicated cardiovascular safety trials for some
of the type 2 diabetes drugs are still ongoing,17–19 and
final results are not yet available. We simulated a single
large trial of 10,000 subjects (reflecting the overall large
sample size required); however, we note that a meta-
analysis of multiple controlled trials is acceptable by
regulatory guidelines,15 and may be necessary in prac-
tice. One approach to safety evaluation that accounts
for different noncompliance across multiple trials is to
apply causal inference methods on individual studies
first and then summarize over the compliance-adjusted
HR. Bayesian methods for meta-analysis using genetic
IVs21 may be useful if they can be adapted for survival
analysis.

While we only simulated Weibull survival distribu-
tions, the C-PROPHET31 method performed well (in
terms of bias and coverage) under survival distributions
that satisfied either proportional hazards (piecewise
exponential) or accelerated-failure-time (log-normal)
assumptions or both (exponential distribution). The
SNAFT model is semi-parametric and can model vari-
ous distributions including log-normal, log-logistic,
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inverse Gaussian, and gamma. We did not consider
these alternative distributions, but note that underlying
assumptions for any particular distribution should be
checked and alternatives sought if violations of the
assumptions (e.g. proportional hazards) are of concern.
We did not consider additional complexities in
causal survival analysis, such as treatment-by-covariate
interaction,45 switching to non-trial treatment,46 non-
administrative censoring and other reasons for discon-
tinuation (e.g. rescue therapy, intolerance or adverse
events), more than two dosing and/or treatment arms
(including active comparators), and missing data.
Therefore, further research is needed to guide the prac-
tical application of various methods and techniques for
safety upper bound evaluation.
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