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Abstract
Background/Aims: Connective tissue growth factor (CCN2) is a matricellular protein that plays
a role in hepatic stellate cell (HSC)-mediated fibrogenesis. The aim of this study was to investigate
the regulation by CCN2 of cell survival pathways in primary HSC.

Methods: Primary HSC were obtained by in situ enzymatic perfusion of rat liver. NF-κB activation
was assessed by immunoblotting for IκBα phosphorylation and degradation and by NF-κB p50 or
p65 nuclear accumulation. NF-κB DNA-binding activity was determined by gel mobility shift assay
while NF-κB response gene expression was evaluated using a luciferase reporter. Cell viability was
assessed by Trypan blue staining or ATP luminescent assay while apoptosis was evaluated by
caspase-3 activity.

Results: CCN2 induced IκBα phosphorylation and degradation as well as nuclear accumulation of
NF-κB. Activated NF-κB comprised three dimers, p65/p65, p65/p50 and p50/p50, that individually
bound to DNA-binding sites and subsequently triggered transcriptional activity. This was confirmed
by showing that CCN2 promoted activity of a NF-κB luciferase reporter. CCN2 promoted survival
of serum-starved HSC and protected the cells from death induced by blocking the NF-κB signaling
pathway using Bay-11-7082, a specific inhibitor of IκBα phosphorylation.

Conclusion: CCN2 contributes to the survival of primary HSC through the NF-κB pathway.

Introduction
Hepatic stellate cells (HSC) are the primary targets of
fibrogenic stimuli in the injured liver. During the develop-
ment of fibrosis, HSC undergo a transition from resting
vitamin A-rich cells to an activated myofibroblastic phe-
notype characterized by loss of vitamin A, expression of α-

smooth muscle actin, enhanced proliferation and
increased production of various extracellular matrix com-
ponents [1-4]. Activation of HSC has been identified as a
central event in hepatic fibrosis and is regulated by a wide
variety of molecules including cytokines, cell-surface
receptors, signal transduction molecules and factors that
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regulate HSC gene expression at the transcriptional and
post-transcriptional levels [3-6].

Connective tissue growth factor (CCN2, also known as
CTGF) is a cysteine-rich matricellular protein that regu-
lates cell adhesion, migration, proliferation, survival, and
differentiation [7]. It has fibrogenic properties in vitro and
is over-expressed in many fibrotic lesions, including those
of the skin, lung, kidney and liver [8-12]. CCN2 produc-
tion is enhanced during progressive activation of primary
rat HSC in vitro as well as by transforming growth factor-β
[11-13]. CCN2 induces migration, proliferation and
adhesion of HSC as well as enhanced expression of type I
collagen [14-19].

Transcription factor NF-κB is a key regulator of the
growth, differentiation, and fate of mammalian cells [20].
NF-κB exists in virtually all cell types and represents a fam-
ily of inducible transcription factors that are activated by
a variety of stimuli including viral infection, lipopolysac-
charide, oxidative stress, and cytokines [21]. The active
form of NF-κB is found in the nucleus as either a het-
erodimer or a homodimer composed of five members of
the Rel family of proteins (p65, p50, p52, c-Rel, and RelB)
[20]. It has recently been reported that transcriptional
repressor CBF1 plays a key role in regulating NF-κB activ-

ity through its interaction with a dual NF-κB/CBF1-bind-
ing site in the IκBα promoter [22,23]. IκBα regulates NF-
κB activity by directly interacting with the transcriptional
factor to form inactive complexes that are located to the
cytoplasm. Following specific signaling, phosphorylation
of IκBα at serine 32 and 36 by IκB kinase leads to its ubiq-
uitinylation and degradation by the proteasome, and
transport of active NF-κB to nucleus [24]. Active NF-κB is
involved in the expression of numerous cytokines, acute
phase response proteins, adhesion molecules and Rel/IκB
proteins [20]. Also, when NF-κB activation is prevented or
inhibited, cells undergo enhanced apoptosis showing that
active NF-κB exerts a cytoprotective role by inhibiting
apoptosis [25].

Several studies have compared NF-κB activity in quiescent
versus activated HSC [26-28]. NF-κB activity is increased
in cultured activated HSC but it is not required for either
cell proliferation or the process of activation. In contrast,
active NF-κB plays an important role in preventing apop-
tosis of activated HSC [26,29]. Understanding mecha-
nisms of HSC survival may provide the basis for novel
anti-fibrotic therapies that focus on the ability to clear
activated HSC from the liver by inducing them to undergo
apoptosis. Since the principal CCN2 receptor on HSC is
integrin αvβ3 [19], which is intimately associated with
HSC survival [30], we have investigated the role of CCN2
in NF-κB activation and HSC survival.

Results
CCN2 induces phosphorylation of IκBα and translocation 
of NF-κB
In most cell types, NF-κB is found in the cytoplasm as an
inactive dimer bound to one of the IκB inhibitory proteins
(IκBα, IκBβ, or IκBγ) that mask its nuclear localization
signal. As assessed by Western blotting of cytoplasmic
protein extracts day 4 primary HSC, phospho-IκBα was
elevated while total IκBα was decreased following stimu-
lation by CCN2 (Figure 1A), indicating that CCN2 could
induce IκBα phosphorylation and degradation. Addition-
ally, following CCN2 stimulation, levels of p65 and p50
were reduced in the cytoplasm but increased in the
nucleus (Figure 1B), consistent with the notion that
CCN2-induced IκBα phosphorylation and degradation
was associated with translocation of cytoplasmic NF-κB to
the nucleus.

CCN2 promotes NF-κB DNA binding activity
To further explore whether active NF-κB can bind to its
target DNA sequence and activate gene transcription in
response to CCN2 stimulation, NF-κB DNA binding activ-
ity was determined by EMSA following incubation of HSC
nuclear protein extracts with 32P-labeled NF-κB oligomers
containing NF-κB/CBF1 binding sites. Two complexes
were significantly enhanced by CCN2, reaching a plateau

Effect of CCN2 on stimulation of IκBα phophorylation and NF-κB translocationFigure 1
Effect of CCN2 on stimulation of IκBα phophoryla-
tion and NF-κB translocation. Freshly isolated rat HSC 
were cultured for 24 h in 5% FBS DMEM and for another 48 
h in serum-free medium. The cells were harvested following 
incubating the cells for 30 min in the absence or presence of 
100 ng/ml CCN2, and nuclear extracts were prepared. 
Western blot analysis shows that CCN2 induces IκB phos-
phorylation and degradation (A) and translocation of the NF-
κB subunits p65/p50 from cytoplasm to nucleus (B).
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Modulation of NF-κB DNA binding activity by CCN2Figure 2
Modulation of NF-κB DNA binding activity by CCN2. HSC were harvested at the desired time points after treatment 
with or without 100 ng/ml CCN2. 6 µg nuclear protein extract were used in 20 µl reactions, containing 0.2 ng 32P-labeled dou-
ble strand NF-κB oligonucleotides. Reactions were fractioned through a nondenaturing 4% polyacrylamide gel. (A) Complex 1 
(p65/p50) and complex 2 were enhanced after stimulation with CCN2. "Ctrl" represents a reaction lacking nuclear extract. (B) 
Bay11-7082 inhibited complex formation when added prior to CCN2 treatment ("Bay 11 + CCN2") but not when added sub-
sequent to a 1 hour pretreatment with CCN2 ("CCN2 + Bay11"). (C) A supershift assay was performed by incubating pre-
assembled gel shift assay complexes containing 8 µg nuclear extract with either 2 µg normal rabbit IgG or 2 µg anti-NF-κB anti-
body prior to separation through 8% polyacrylamide gel, showing that CCN2 stimulates the formation of an anti-p65/p65/anti-
p50/p50/NF-κB oligonucleotide (S1) and an anti-p65/p65/NF-κB oligonucleotide (S2) supershift complexes. (D) A gel shift assay 
was performed following pre-incubating the nuclear extracts with either 32P-labeled p50/p65 site mutant oligonucleotides or 
CBF-1 site mutant oligonucleotides.
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about 30 min after CCN2 addition (Fig. 2A). The NF-κB
inhibitor, Bay11-7082, prevented complex formation
when added to the cells prior to CCN2 treatment but not
when added after CCN2 treatment (Figure 2B). As shown
in Figure 2C, active NF-κB induced by CCN2 comprised
three separate dimers (p65/p65, p65/p50 and p50/p50)
based on the fact that a supershift (S1) was obtained with
anti-p65 and anti-p50 antibodies with the concomitant
disappearance of all three bands and that a supershift (S2)
with anti-p65 antibody was associated with loss of the top
two bands. Three dimers of NF-κB induced by CCN2 were
also demonstrated following incubation of the nuclear
extract with a CBF-1 mutant oligonucleotide probe but

not with a p50/p65 mutant oligonucleotide probe (Figure
2D). These results indicate that CCN2 induces activation
of NF-κB and its assembly into three dimers that individ-
ually bind to NF-κB DNA binding site.

Effect of CCN2 on expression of NF-κB target genes
To explore the effect of CCN2 on transcriptional signaling
by NF-κB, day 4 primary HSC cultures were transfected
with luciferase reporter genes driven by either a minimal
promoter alone (pTA) or together with four tandem cop-
ies of the NF-κB DNA binding sites (pNF-κB) that were
identical to those used for the EMSA studies. pNF-κB gen-
erated 1.5-fold higher luciferase activities than pTA in
HSC, whereas, the luciferase activities of pNF-κB in the
cells following stimulation with CCN2 were 13-fold
higher than control cells (Figure 3A). CCN2-mediated ele-
vation of pNF-κB luciferase activity was completely abro-
gated by treatment of the cells with Bay11-7082, a specific
inhibitor of IκBα phosphorylation (Figure 3B), suggesting
that CCN2 modulates the transcriptional and transla-
tional event of NF-κB target genes via NF-κB signaling
pathway.

CCN2 sustains HSC survival through NF-κB signaling 
pathway
To examine the effect of CCN2 on the fate of HSC, day 4-
primary HSC cultures were treated with or without CCN2
for 24 h. Cell viability was determined by Trypan blue
exclusion or by luminescent assessment of cellular ATP
levels. As shown in Figures 4A and 4B, each assay showed
that HSC viability was significantly elevated by CCN2. To
determine if the NF-κB pathway was involved in this
effect, Bay11-7082 was added to HSC cultures. As men-
tioned above, when added prior to CCN2, the inhibitor
completely blocked the ability of CCN2 to stimulate NF-
κB DNA binding activity whereas it had little inhibitory
effect on DNA binding activity in cells that has been pre-
treated with CCN2 (Figure 2B). While Bay11-7082 inhib-
ited cell survival as expected, it had little inhibitory effect
in cells that had been pre-treated with CCN2 (Figure
4A,B), consistent with the data shown in Figure 2B and
supportive of the notion that prior stimulation of NF-κB
by CCN2 was sufficient to overcome the effects of subse-
quently blocking NF-κB with Bay 11. Similarly, Bay-11-
induced caspase-3 activity in HSC was reduced as much as
25% in CCN2-stimulated cells, consistent with the ability
of CCN2 to rescue cells from apoptosis (Figure 4C).

Collectively, these data suggest that CCN2 is a survival fac-
tor for HSC and that survival is regulated via NF-κB sign-
aling.

Discussion
CCN2 has emerged as a key mediator of fibrosis in both
acute and chronic diseases [8-12]. In the liver, CCN2

Effect of CCN2 on expression of NF-κB response genesFigure 3
Effect of CCN2 on expression of NF-κB response 
genes. (A) Freshly isolated rat HSC were placed in 12-well 
plates, transfected with 1 µg pTA-Luc or pNF-κB-Luc, and 
then incubated for another 24 h in the absence or presence 
of 100 ng/ml CCN2. (B) Transfected cells were pre-treated 
with 10 µM Bay11-7082 for 30 min and cultured for another 
24 h in the absence or presence of 100 ng/ml CCN2. **P < 
0.01 vs. pNF-κB-Luc; ##P < 0.01 vs. pNF-κB-Luc + CCN2.
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expression is associated with hepatic fibrosis in both
human subjects and animal models [10-12,14,17,31].
CCN2 appears to be directly involved in HSC biology as it
is produced as a function of activation or exposure the
cells to various fibrogenic stimuli including transforming
growth factor-β, platelet-derived growth factor, alcohol
and acetaldehyde [14]. Additionally, CCN2 promotes
HSC adhesion, migration, proliferation, and synthesis of
collagen type I [14,19], all of which are properties of acti-
vated HSC. [1-4,32]. Activation of HSC is regulated by sev-
eral soluble factors, including growth factors, cytokines,
and products of oxidative stress, as well as by extensive
changes in the composition and organization of the extra-
cellular matrix. HSC activation has previously been linked
to activation of NF-κB while over-expression of IκBα in
HSC has been shown to suppress NF-κB activation [26-
29]. Our data show that serum-starved day 4 HSC demon-
strate very low levels of nuclear NF-κB and no detectable
DNA-binding activity. Following CCN2 stimulation, a
marked nuclear translocation of NF-κB was evident along
with a persistent DNA binding activity of its three dimers,
and an induction of IκBα phosphorylation and degrada-
tion. Collectively, these data show that CCN2 activates the
NF-κB signaling pathway in HSC. Moreover, as assessed
using a NF-κB reporter construct, we showed that NF-κB
response gene expression is induced by CCN2 in day 4
cultured HSC and support previous findings that NF-κB
response genes are induced in activated HSC [26,29].

Apoptosis has been described as the nexus between liver
injury and fibrosis [33] and increasing evidence suggests
that NF-κB is involved in survival pathways in multiple
hepatic cell types. For example, NF-κB prevents hepato-
cyte apoptosis following liver regeneration or exposure to
tumor necrosis factor-α [34-36]. In addition, NF-κB also
protects hepatocarcinoma cells or activated HSC from
apoptosis [26,29,37]. Consistent with this latter observa-
tion, we showed that CCN2 promoted HSC survival and
that NF-κB was involved in the response as shown by the
finding that pretreatment of HSC with CCN2 protected
the cells from Bay11-7082-induced decreased cell survival
and increased caspase-3 activity.

The ability of CCN2 to sustain HSC survival supports pre-
vious observations showing that CCN2 is a survival factor
for other cell types such as endothelial cells or chicken
embryo fibroblasts [38,39]. Additionally, the related mol-
ecule, CCN1 (also known as CYR61) promotes anti-apop-
totic pathways when over-expressed in breast cancer
MCF7 cells in an integrin-dependent manner [40], con-
sistent with the recognition of integrins as signaling recep-
tors for CCN proteins [41]. In the case of HSC, the
principal CCN2 receptor is integrin αvβ3 [19] which trans-
duces survival signals in activated HSC [30] as well as dur-
ing angiogenesis, wound healing, osteoporosis, and

Effect of CCN2 in sustaining HSC survivalFigure 4
Effect of CCN2 in sustaining HSC survival. Freshly iso-
lated rat HSC were cultured in 6-well plates in 5% FBS 
DMEM for 24 h, followed by serum deprivation for 48 h. The 
cells were cultured for another 24 h in the absence or pres-
ence of 100 ng/ml CCN2 ("CCN2"). In the CCN2 protection 
assay, the cells were incubated with 10 µM Bay11-7082 for 
24 h alone ("Bay11") or following pre-treatment of the cells 
with CCN2 for 1 h ("CCN2+Bay11"). For the Bay11 blocking 
assay, the cells were pre-treated with Bay11-7082 for 30 min 
and cultured for another 24 h in the presence of 100 ng/ml 
CCN2 ("Bay11+CCN2"). At the end of incubation time 
period, (A) cells were trypsinized and survival was deter-
mined by Trypan blue exclusion, or (B) cell viability was also 
quantified by measurement of the fluorescence intensity 
using CellTiter-Glo™ reagent, or (C) cell apoptosis was 
assessed by measurement of caspase-3 activity at 405 nm 
using a luminescence assay kit. *P < 0.05 vs. control; #P < 
0.05 vs. CCN2 group; **P < 0.01 and * P < 0.05 vs. Bay11-
7082 group.
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tumor metastasis [42-51]. Apoptosis in HSC is inhibited
by engagement of integrin αvβ3 [30] and disruption of
integrin-mediated HSC adhesion leads to induction of
apoptosis [52]. Since expression of CCN2 and integrins is
enhanced during HSC activation and liver fibrosis [53-
57], persistence of the activated fibrogenic phenotype in
HSC may occur, at least in part, by NF-κB survival path-
ways that are triggered via the binding of CCN2 to its
integrin αvβ3 receptor.

Activation of HSC is also associated with the expression of
death receptors such as Fas and TRAIL-R2, suggesting that
HSC fate is likely determined by a balance between sur-
vival and apoptotic stimuli [33]. For example, HSC
undergo apoptosis following treatment with nerve growth
factor, a response that is due to the expression of the p75
nerve growth factor receptor [58] which has recently been
implicated as a CCN2 signaling molecule in kidney
mesangial cells [59]. Furthermore, pro-apoptotic effects of
CCN2 have been reported in vascular smooth muscle cells
and breast cancer cells, although the underlying mecha-
nisms have yet to be understood [60-62]. Thus, depend-
ing on the presence and activity of its cognate cell surface
receptors and their associated signaling pathways, CCN2
may be able to drive either apoptosis or survival in HSC.
This points to a complex scenario whereby CCN2 may
exert apparently opposing or contradictory effects on HSC
viability, and future investigations will need to clarify this
issue. Nonetheless, clinical fibrosis is now regarded as a
largely reversible process that is strongly linked to apopto-
sis of activated HSC [33,63] and our data showing that
CCN2 can promote HSC survival via NF-κB provide sup-
port for the development of new anti-fibrotic strategies
that target CCN2, its receptors, or its signaling pathways.

Conclusion
In addition to promoting HSC fibrogenesis [17], CCN2
confers a survival advantage on HSC which is attributable,
at least in part, to its ability to activate NF-κB signaling
pathways in the cells.

Methods
Isolation and culture of HSC
In a protocol approved by the Institutional Animal Care
and Use Committee of Children's Research Institute,
Columbus, OH, primary HSC were isolated from normal
male Sprague-Dawley rats as described [19]. Cells were
grown in Dulbecco's modified Eagle's medium (DMEM;
Gibco, Grand Island, NY, USA) supplemented with 10%
fetal bovine serum (FBS), 100 U/ml penicillin and 100
µg/ml streptomycin. Cells were placed in 20 × 100 mm
cell culture dishes (Falcon; Becton Dickinson, Franklin
Lakes, NJ, USA) for nuclear extraction, 6-well tissue cul-
ture plates (Falcon) for Western blot and for cell viability
assays, 12-well tissue culture plates (Falcon) for luciferase

reporter gene transfection. The cells were then cultured
DMEM/5% FBS for 24 h, followed by serum-free medium
for 48 h. On day 4, the cells were treated with or without
100 ng/ml CCN2, and harvested at the desired time
points. Human recombinant 38 kDa CCN2 was produced
in a Chinese hamster ovary cell expression system as
described [15].

Electrophoretic mobility shift assay (EMSA)
Nuclear extracts were prepared as described [64]. 32P-end-
labeled double-stranded oligonucleotide probes used in
this study comprised either wild type NF-κB oligonucle-
otide (sense: 5'-tgaggggactttcccagg-3'), p50/p65 mutant
oligonucleotide (sense: 5'-tgaggcgactttcccagg-3') or CBF1-
mutant oligonucleotide (sense: 5'-tgaggggacttcccgagg-3')
[23]. The double-stranded NF-κB oligmers were used in
nuclear protein-DNA binding reactions (20 µl volume) in
which 1 µg poly dI:dC and 6 µg nuclear protein extract
were incubated for 20 min at 4°C prior to addition of 0.2
ng 32P-labled double-stranded oligonucleotide for 30 min
at 4°C. The contents of each tube were electrophoresed on
non-denaturing 4% polyacrylamide gels which were then
dried and analyzed by autoradiography. Supershift assays
were performed by incubating pre-assembled gel shift
assay complexes containing 8 µg nuclear extract with
either 2 µg rabbit normal IgG, 2 µg rabbit polyclonal anti-
p65 NF-κB IgG or/and 2 µg rabbit polyclonal anti- p50
NF-κB IgG (Santa Cruz Biotechnology Inc, CA, USA) for 2
h at 4°C before electrophoresis. The samples were then
electrophoresed on 8 % polyacrylamide gels [65].

Transfections and luciferase assay
HSC were transfected with pNF-κB-Luc or pTA-Luc con-
trol vector using Superfect transfection reagent (QIAGEN,
Valencia, CA, USA) under serum-free conditions for 3 h.
The transfected cells were incubated for another 24 h in
the absence or presence of 100 ng/ml CCN2. After nor-
malization of transfection efficiency by β-galactosidase
expression, luciferase enzyme activity was then quantified
using a reporter assay kit (Clontech, Palo Alto, CA, USA).

SDS-PAGE and immunoblotting
25 µg cytoplasmic or nuclear extracts (see above) were
subjected to SDS-PAGE in 5–15% gradient gels at 120 V
for 1.5 h. Proteins were transferred to nitrocellulose mem-
branes which were individually incubated with 1:500
dilutions of rabbit anti-IκBα, -phospho-IκBα, -NF-κB
p65, or -NF-κB p50 polyclonal IgG (Santa Cruz Biotech-
nology Inc, CA, USA) in 5% nonfat milk TBST for 24 h at
4°C. The filters were then incubated with 1:1000 dilu-
tions of HRP-conjugated goat anti-rabbit IgG for 1 h at
room temperature. The membrane was washed exten-
sively before detection using chemiluminescence.
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Cell viability assay
Freshly isolated HSC were placed in 6-well tissue culture
plates and incubated in DMEM/5% FBS for 24 h followed
by serum-free medium for 48 h. The cells were incubated
for an additional 24 h in the absence or presence of 100
ng/ml CCN2. In CCN2 protection assays, 10 µM Bay11-
7082 was added to the medium either alone or following
treatment of the cells with CCN2 for 1 h. At the end of the
incubation period, the cells were trypsinized, mixed 1:1
with Trypan Blue solution (Sigma) and counted within 3
minutes under light microscopy using a hemocytometer.

In an alternative approach for measurement of cell viabil-
ity, the CellTiter-Glo™ Luminescent assay kit was
employed to assess the relative levels of cellular ATP. At
the end of the incubation period, cells were treated with
CellTiter-Glo™ reagent according to the manufacturer's
instructions. Fluorescence was measured using black/clear
tissue culture plates (BD Biosciences, Bedford, MA, USA).
Cell viability was quantified by measurement of the sam-
ple fluorescence intensity at 560EX/590EM.

Caspase-3 activity assay
Freshly isolated HSC were placed in 12-well tissue culture
plate, and incubated in DMEM/5% FBS for 24 h followed
by serum-free medium for 48 h. The cells were incubated
for an additional 24 h in the presence or absence of 100
ng/ml CCN2. 10 µM Bay11-7082 was added to the
medium either alone or following treatment the cells with
CCN2 for 1 h. Protein extracts were prepared following
manufacturer's instructions. Caspase-3 activity was meas-
ured using an assay kit (Promega, Madison, WI, USA) in
which cell extracts were mixed with Ac-DEVD-pNA sub-
strate for 1-hour incubation at 30°C in 96-well microtiter
plates prior to colorimetric measurement of p-nitroani-
lide product at 405 nm.

Statistical analysis
Data are presented as mean ± SE. Differences were ana-
lyzed statistically with paired sample student's t-test.
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