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Abstract: Feed efficiency (FE) is an economically important trait. Thus, reliable predictors would
help to reduce the production cost and provide sustainability to the pig industry. We carried out
metabolome-transcriptome integration analysis on 40 purebred Duroc and Landrace uncastrated
male pigs to identify potential gene-metabolite interactions and explore the molecular mechanisms
underlying FE. To this end, we applied untargeted metabolomics and RNA-seq approaches to the
same animals. After data quality control, we used a linear model approach to integrate the data and
find significant differently correlated gene-metabolite pairs separately for the breeds (Duroc and
Landrace) and FE groups (low and high FE) followed by a pathway over-representation analysis.
We identified 21 and 12 significant gene-metabolite pairs for each group. The valine-leucine-isoleucine
biosynthesis/degradation and arginine-proline metabolism pathways were associated with unique
metabolites. The unique genes obtained from significant metabolite-gene pairs were associated with
sphingolipid catabolism, multicellular organismal process, cGMP, and purine metabolic processes.
While some of the genes and metabolites identified were known for their association with FE, others are
novel and provide new avenues for further research. Further validation of genes, metabolites,
and gene-metabolite interactions in larger cohorts will elucidate the regulatory mechanisms and
pathways underlying FE.
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1. Introduction

Feed represents about 60–70% of total pork production costs in modern pig production. Thus,
to decrease costs and increase profitability, it is pivotal to identify feed efficient (FE) animals [1].
However, due to the polygenic architecture of FE, individual pigs in a herd exhibit considerable
variation in FE despite belonging to similar genetic background and environment [2]. Considering this
variation, different methods have been proposed and widely used to measure the FE, including feed
conversion ratio (FCR) and residual feed intake (RFI) [1,3]. FCR is the ratio of feed intake (FI) per
unit body weight gain and is affected by many factors such as breed, sex, diet, and environmental
conditions [4,5]. Pigs with low FCR are considered high FE and vice-versa. RFI estimates the difference
between actual and expected FI predicted on production traits as average daily gain (ADG) [6].
Since FCR considers both FI and weight gain, and FCR is also one of the critical predictors of FE,
it suggests that feed efficient pigs may possess different physiological-biochemical profiles compared
to the inefficient ones [2].

Based on the advances in omics technologies, several approaches have been adopted to shed light
on the genetic mechanisms underlying FE in pigs. Among these omics technologies, transcriptomics
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and metabolomics have provided tools to elucidate the molecular basis of FE. While transcriptomics
allows us to have a transcriptional snapshot of genes underpinning the phenotype under investigation,
metabolomics bridges the gap between genotype and phenotype. Recently, an increasing number
of metabolomic studies have reported the role of metabolites in economically important traits [7],
such as meat quality [8,9], pre-slaughter stress [10], and FE [3]. Likewise, several transcriptomic studies
have pointed out candidate genes underpinning FE and other related-traits such as immune response,
growth, and metabolism in pigs [11–13].

Recently, we have investigated RNA-seq data on the 41 Danish production pigs that underwent
feed efficiency and performance testing trials to identify differentially expressed genes and gene
networks and reported 13 genes as potential biomarkers for feed efficiency [14]. Despite the new
insights into key genes and molecular mechanisms reported in these studies, these approaches rely
solely on data from a single biological layer. It has been shown that the integration of transcriptomics
datasets with genomic and other omics datasets (systems genomics) increases the power to detect
causal and regulatory factors and molecular pathways underlying complex phenotypes or diseases in
animals [15,16].

To gain further insights into biochemical aspects of complex traits, data integration analysis
has emerged as a fruitful tool, unveiling potential biomarkers via integration of metabolomics and
transcriptomics [17]. By the development of analytical technologies for data integration, the assessment
of system-wide changes of transcript levels as surrogate measurements of metabolic rearrangements
can be widely assessed. Metabolite-transcript co-responses using combined profiling can yield vital
information on the complex biological regulation of the trait. Transcriptome-metabolome integration
is a powerful combination as the metabolome is affected by the phenotypic measurements to which
the global measures of transcriptome can be anchored [18]. Therefore, herein, we integrated data
from metabolome-transcriptome approaches to unveil the unique gene-metabolite pairs. To this end,
we adopted a two-step framework, as follows: (1) we first employed the numerical integration of
gene-metabolite levels to identify gene-metabolite interaction pairs separately for the breeds (Duroc
and Landrace) and FE groups (low and high FE) using IntLIM R-package; (2) next, a knowledge-based
integration approach based on pathway over-representation analysis was used to reveal the underlying
pathways in each group (breed-specific and FE-specific). To the best of our knowledge, this is the first
study of its kind to ever combine high throughput metabolomics data with RNA sequence based gene
expression data in pigs to unravel the missing links between genes and metabolites and to shed light
on the molecular basis that characterizes the specific differences based on breed and feed efficiency.

2. Results

2.1. Descriptive Statistics and Linear Model Analysis for genes and Metabolites

The data on 749 metabolites and 25,880 genes from 40 samples were generated using untargeted
metabolomics and transcriptomic approaches, respectively. We utilized data of 405 annotated
metabolites (see methodology) for further analysis. For the transcriptomic data generated on
25,880 genes, we analyzed the data for each of the two groups (breed-specific and FE-specific),
as described in the methodology. The genes with a gene count <1 were removed, resulting in 20,233 genes
for both the groups. The gene count data for each group (breed-specific and FE-specific) was normalized,
and the linear model was fitted into the data as given in the methodology. The genes were also
screened for their chromosomal information from the Ensembl Sus scrofa database. After normalization,
removal of values < 0 and obtaining the gene chromosomal location information, 17,726 (breed-specific),
and 17,697 (FE-specific) genes were retained in each group. As a quality control for IntLIM, we filtered
out genes with the lowest 5% of the variation, which gave 16,839 genes (breed-specific) and 16,812 genes
(FE-specific) that were subjected to IntLIM analysis. A schematic representation of the study design
and analysis steps are given in Figure 1. We performed the PCA analysis (Figure S1) on the filtered
metabolome-transcriptome data, which included 405 metabolites, and 16,839 genes (breed-specific),
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and 16,812 genes (FE-specific). The results of PCA analysis for the metabolites-genes based on breed
and FE groups are shown in Figure S1.
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Figure 1. Schematic representation of the study design and analysis steps.

2.2. Gene Metabolite Interaction of Breed-Specific and FE-Specific Groups

From the IntLIM analysis, we identified gene-metabolite pairs that have a strong association
with respect to the breed (Duroc and Landrace) and FE (low and high FE) groups. For the
breed-specific groups, all possible combinations of gene-metabolite pairs (6,819,795 model runs)
were evaluated, using Duroc and Landrace as the breed-group. Based on this approach, we identified
21 gene-metabolite associations (false discovery rate—FDR adjusted p-value ≤ 0.1 and correlation
difference effect size > 0.1) (Table 1). Clustering these pairs by the direction of association (positive
and negative correlations) within each breed group revealed two major clusters (Figure 2a) in each
breed. First, the Duroc correlated/Landrace anti-correlated cluster consists of seven gene-metabolite
pairs (three unique metabolites and five unique genes) with a high positive correlation in Duroc
and low or negative correlation in Landrace (Figure 2a). Second, the Duroc anti-correlated/Landrace
correlated cluster consists of 14 gene-metabolite pairs (10 unique metabolites and nine unique
genes) with relatively high negative correlations in Duroc and positive correlations in Landrace.
The two top-ranked gene-metabolite pairs (ranked in descending order of absolute value of Spearman
correlation difference between Duroc and Landrace) in the Duroc correlated and anti-correlated
clusters were ENSSSCG00000028124 (SNRPN)—Rhodamine B (Figure 2b) and ENSSSCG00000000401
(GLS2)—cystathionine ketimine (Figure 2c) respectively. SNRPN and Rhodamine B are positively
correlated in Duroc (r = 0.7) but negatively correlated in Landrace (r = −0.5) (Figure 2b). GLS2 and
cystathionine ketimine are negatively correlated in Duroc (r = −0.9), but positively correlated in
Landrace (r = 0.2) (Figure 2c).

Similarly, we used IntLIM for the FE-specific group and evaluated all possible combinations of
gene-metabolite pairs (6,808,860 models), with low and high FE as a binary phenotype. With this
approach, we identified 12 FE-specific gene-metabolite correlations (FDR adjusted interaction
p-value ≤ 0.1, and a Spearman correlation difference > 0.1) involving eight unique gene and metabolites
each (Table 2). The heat map with gene-metabolite Spearman correlation for low and high FE group
showed a clear separation between the two groups (Figure 3a). The high FE-correlated cluster of
12 gene-metabolite pairs (eight unique genes and metabolites with high correlations in high-FE
groups) were negatively correlated with the low-FE group. The two gene-metabolite pairs (ranked in
descending order of absolute value Spearman correlation difference between high and low FE group)
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in high-FE correlated clusters were ENSSSCG00000025106 (THNSL2)—pyrocatechol (Figure 3b) and
ENSSSCG00000036609 (TBXT)—ketoleucine (Figure 3c), respectively. Both pairs showed a positive
correlation in high-FE group (r = 0.6, r = 0.5) while showed a negative correlation in the low-FE group
(r = −0.7, r = −0.3) (Figure 3b,c).Metabolites 2020, 10, 275 5 of 19 
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Figure 2. Results of IntLIM applied to breed-specific groups. (a) Clustering of 21 identified
gene-metabolite pairs (FDR adjusted p-value of interaction coefficient < 0.1, Spearman correlation
difference > 0.1 in Duroc and Landrace breeds, (b) Gene-metabolite difference in ENSSSCG00000028124
(SNRPN)—rhodamine B (FDR adjusted p-value = 0.1, Duroc Spearman correlation = 0.7,
Landrace Spearman correlation = −0.5), (c) Gene-metabolite difference in ENSSSCG00000000401
(GLS2)—cystathionine ketimine (FDR adjusted p-value = 0.01, Duroc Spearman correlation = −0.9,
Landrace Spearman correlation = 0.2).
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Figure 3. Results of IntLIM applied to FE-specific groups. (a) Clustering of 12 identified gene-metabolite
pairs (FDR adjusted p-value of interaction coefficient < 0.1, Spearman correlation difference > 0.1 in high
and low FE groups, (b) Gene-metabolite difference in ENSSSCG00000025106 (THNSL2)—Pyrocatechol
(FDR adjusted p-value = 0.06, High-FE Spearman correlation = 0.6, Low-FE Spearman correlation =

−0.7), (c) Gene-metabolite difference in ENSSSCG00000036609 (TBXT)—ketoleucine (FDR adjusted
p-value = 0.08, High-FE Spearman correlation = 0.5, Low-FE Spearman correlation = −0.3).
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Table 1. Gene-metabolite interaction pairs from IntLIM for the breed-specific groups.

Metabolite_Name Ensembl ID Gene Name Duroc_cor Landrace_cor Abs diff.corr Pval FDRadjPval

Rhodamine B ENSSSCG00000028124 SNRPN 0.776224 −0.54242 −1.31864 3.11 × 10−7 0.1
L-glutamic acid 5-phosphate ENSSSCG00000010274 SGPL1 0.888112 −0.21456 −1.10267 1.57 × 10−7 0.09

Cystathionine ketimine ENSSSCG00000010274 SGPL1 0.874126 −0.18719 −1.06132 2.67 × 10−7 0.1
Cystathionine ketimine ENSSSCG00000040110 Novel_gene 0.923077 −0.11385 −1.03692 1.08 × 10−8 0.02

L-glutamic acid 5-phosphate ENSSSCG00000038948 ETS2 0.895105 −0.11002 −1.00512 2.66 × 10−8 0.02
L-glutamic acid 5-phosphate ENSSSCG00000040110 Novel_gene 0.937063 0.010947 −0.92612 1.48 × 10−9 0.01
L-glutamic acid 5-phosphate ENSSSCG00000014632 FAM160A2 0.951049 0.229885 −0.72116 1.09 × 10−7 0.08

Aloesol ENSSSCG00000004128 ZC2HC1B −0.22767 0.048714 0.276385 4.33 × 10−7 0.1
Theogallin ENSSSCG00000026442 FAM163B −0.29772 0.45156 0.749284 1.69 × 10−7 0.09

Fenamiphos ENSSSCG00000018649 Novel_gene −0.68652 0.093596 0.780112 3.44 × 10−7 0.1
Taraxacolide 1-o-b-d-glucopyranoside ENSSSCG00000026442 FAM163B −0.27321 0.648057 0.921262 1.55 × 10−7 0.09

Proanthocyanidin a2 ENSSSCG00000033688 ZDHHC22 −0.63047 0.32567 0.956144 4.20 × 10−7 0.1
Fenamiphos ENSSSCG00000040467 Novel_gene −0.67251 0.288998 0.961504 2.25 × 10−8 0.02

L-glutamic acid 5-phosphate ENSSSCG00000000401 GLS2 −0.85315 0.109469 0.962616 1.80 × 10−7 0.09
Paracetamol sulfate ENSSSCG00000000401 GLS2 −0.94406 0.038314 0.98237 2.87 × 10−7 0.1

L-glutamic acid 5-phosphate ENSSSCG00000034989 LRRTM2 −0.83916 0.15052 0.989681 2.17 × 10−8 0.02
Cystathionine ketimine ENSSSCG00000034989 LRRTM2 −0.79021 0.204707 0.994917 2.53 × 10−8 0.02

Ketoleucine ENSSSCG00000026442 FAM163B −0.5289 0.466886 0.995783 1.19 × 10−8 0.02
Ganoderenic acid e ENSSSCG00000034200 SEC22C −0.85315 0.288998 1.142145 3.47 × 10−7 0.1

Cystathionine ketimine ENSSSCG00000000401 GLS2 −0.93007 0.249042 1.179112 2.92 × 10−9 0.01
Ganoderenic acid e ENSSSCG00000037595 Novel_gene −0.85315 0.449371 1.302517 2.26 × 10−7 0.1

Duroc_cor: Spearman correlation in Duroc; Landrace_cor: Spearman correlation in Landrace; Abs diff.corr: the absolute difference in correlation between Duroc and Landrace; Pval:
p-value (p < 10−7 was selected as the cut-off value); FDRadjPval: FDR adjusted p-value.

Table 2. Gene-metabolite interaction pairs from IntLIM for the FE-specific groups.

Metabolite_Name Ensembl ID Gene Name High_cor Low_cor Abs diff.corr Pval FDRadjPval

Pyrocatechol ENSSSCG00000025106 THNSL2 0.66996 −0.73284 −1.4028 4.72 × 10−8 0.06
2-pyrocatechuic acid ENSSSCG00000025106 THNSL2 0.645257 −0.68137 −1.32663 7.13 × 10−8 0.08

Ketoleucine ENSSSCG00000017043 RNF145 0.548419 −0.75735 −1.30577 2.17 × 10−7 0.1
Ketoleucine ENSSSCG00000025106 THNSL2 0.498024 −0.58088 −1.07891 1.19 × 10−7 0.10
Theogallin ENSSSCG00000036609 TBXT 0.727273 −0.35049 −1.07776 2.87 × 10−8 0.05

Neodiospyrin ENSSSCG00000029077 TUBAL3 0.608696 −0.46814 −1.07683 2.63 × 10−8 0.05
Theogallin ENSSSCG00000025106 THNSL2 0.4417 −0.6152 −1.0569 2.52 × 10−7 0.1

Proanthocyanidin a2 ENSSSCG00000008938 ENAM 0.37954 −0.60539 −0.98493 1.99 × 10−7 0.1
Ketoleucine ENSSSCG00000036609 TBXT 0.557312 −0.3701 −0.92741 8.78 × 10−8 0.08

Adrenochrome ENSSSCG00000038441 Novel_gene 0.171485 −0.58088 −0.75237 1.71 × 10−8 0.05
Proanthocyanidin a2 ENSSSCG00000019329 U2 0.052384 −0.66176 −0.71415 1.11 × 10−8 0.05

Levulinic acid ENSSSCG00000009250 PRKG2 0.075117 −0.54902 −0.62414 1.93 × 10−7 0.1

High_cor: Spearman correlation in high FE group; Low_cor: Spearman correlation in low FE group; Abs diff.corr: the absolute difference in correlation between the high and low FE group;
Pval: p-value (p < 10−7 was selected as the cut-off value); FDRadjPval: FDR adjusted p-value.
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2.3. Pathway and Gene Ontology Over-Representation Analysis

We identified the pathways associated with the unique metabolites in each cluster identified
from breed-specific (21) and FE-specific (12) interactions. The three unique metabolites from Duroc
correlated/Landrace anti-correlated clusters were associated with arginine and proline metabolism
(p-value = 0.02). Furthermore, the ten unique metabolites from Duroc anti-correlated/Landrace
correlated cluster were associated with valine-leucine-isoleucine biosynthesis (p-value = 0.01) and
valine-leucine-isoleucine degradation (p-value = 0.07) along with arginine and proline metabolism
(p-value = 0.07). The eight unique metabolites from high-FE correlated/low-FE anti-correlated
cluster were associated with valine-leucine-isoleucine biosynthesis (p-value = 0.01) and degradation
(p-value = 0.07). The pathways associated with the metabolites in breed-specific and FE-specific
clusters for unique metabolites are given in Supplementary Table S1a.

Unique and mappable genes from each group (breed-specific—each cluster, and FE-specific)
were screened by using GeneMania to generate a composite functional association network that
includes all the evidence of co-functionality. From the breed-specific group, unique genes (4 genes)
from Duroc correlated/Landrace anti-correlated cluster (Table 1) mapped to 20 genes based on
co-functionality from GeneMania (Table S1b). The gene-ontology enrichment analysis of the
identified 24 genes (unique genes from Table 1 and co-functional genes from GeneMania) revealed
enrichment of the regulation of hemopoiesis, response to thyroid hormone, and the sphingolipid
catabolic process (Table S1c). These genes were enriched for the sphingolipid metabolism KEGG
pathway (adjusted p-value corrected with Bonferroni step down ≤ 0.05) (Supplementary Table S1d).
Unique and mappable genes (6 genes) identified from Duroc anti-correlated/Landrace correlated
cluster (Table 1) were co-functional with 20 genes based on GeneMania (Table S1b). The gene ontology
enrichment analysis of these 26 genes (unique genes from Table 1 and co-functional genes from
GeneMania) revealed the ER to Golgi vesicle-mediated transport and membrane fusion (Table S1c)
as an enriched biological process. Butanoate metabolism, alanine-aspartate-glutamate metabolism,
and valine-leucine-isoleucine degradation were significantly enriched KEGG pathways from the Duroc
anti-correlated/Landrace correlated cluster (Supplementary Table S1d). Similarly, from the FE-specific
group, unique mapped genes (7 genes) from high-FE correlated/low-FE anti-correlated clusters (Table 2)
were co-functional with 20 genes identified from GeneMania (Table S1b). These genes were involved
with the cGMP metabolic process, purine nucleotide biosynthesis, and phosphorus-oxygen lyase
activity pathways (Table S1c). The top significant KEGG pathway enriched was the cGMP-PKG
signaling pathway (Supplementary Table S1d).

3. Discussion

FE is an important quantitative trait, which quantifies the efficiency of nutrient conversion from
the feed to a tissue that is of nutritional and economic significance [19]. Understanding the molecular
mechanisms underlying FE will be advantageous in the efficient selection of pigs and benefit the pig
producers. In the Danish pig industry, Duroc is the most popularly used terminal sires in combination
with crossbred Landrace X Yorkshire breeds [20], so the selection pressures for FE in Duroc is higher
as compared to Landrace. Thus, in the current study, we attempted to identify the gene-metabolite
interactions specific to each breed. FE is a complex trait influenced by environmental and health factors
and involves many organs. Skeletal muscle, being the largest organ in the body, is an essential location
for the metabolism of carbohydrates and lipids [21,22]. It plays a significant role in the utilization
and storage of energy acquired from the feed. Thus, understanding the difference in the regulatory
processes from a divergent FE group will add a layer of knowledge to the understanding of biological
mechanisms involved with this complex trait.

A plethora of metabolome and transcriptome studies for FE in pigs are reported [3,9,10,12].
However, to the best of our knowledge, markers from the integration of metabolome and transcriptome
in Duroc and Landrace pigs has not been done before. Herein, we unveiled the gene-metabolite
relationships that are phenotype dependent. This approach highlighted molecular functions and
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pathways that are strongly evidenced by the integration study. Evaluating phenotype-specific
relationships between metabolites and genes assists us to elucidate novel co-regulation patterns
that would not be identified by single approaches. In the current study, we integrated untargeted
metabolomic and transcriptomic data. We used a numerical data integration approach that employed
the integration of a linear model (IntLIM package) to predict metabolite levels from gene-expression in
a phenotype dependent manner [23].

We attempted to identify the breed-specific and FE-specific gene-metabolite pairs in the current
study. The PCA analysis showed a difference in the expression of genes in Duroc and Landrace.
However, PCA for the FE group did not exhibit significant clusters between groups, which may be
due to the small sample size evaluated here. With our current metabolome-transcriptome analysis,
we identified 21 gene-metabolite breed-specific pairs and 12 gene-metabolite FE-specific pairs.

3.1. Breed-Specific Pathway Analysis

In the breed-specific analysis, two clusters were identified between Duroc and Landrace
breeds. The Duroc correlated/Landrace anti-correlated cluster associated L-glutamic acid 5-phosphate
metabolite with the FAM160A2, ENSSSCG00000040110, ETS2, and SGPL1 genes; cystathionine ketimine
metabolite with ENSSSCG00000040110 and SGPL1 genes and Rhodamine B with the SNRPN genes.
The arginine and proline metabolism pathways were associated with the unique metabolites from this
cluster. The gene ontology enrichment analysis of the unique genes identified from this cluster with the
co-functional genes found enrichment for the multicellular organismal process, sphingolipid catabolic
process, regulation of hemostasis, and coagulation pathways. Sphingolipid metabolism associated with
the SGPL1 and GBA genes was identified as the top KEGG pathway. SGPL1 (sphingosine-1-phosphate)
catalyzes the final step of the sphingolipid pathway by irreversibly converting sphingosine-1-phosphate
(S1P) to its by-products [24], thereby regulating S1P. S1P plays a role as a muscle trophic factor
by activating quiescent muscle stem cells (satellite cells) for efficient skeletal muscle repair and
regeneration [25]. The role of FE on skeletal muscle mass was well established from previous studies
wherein the improvement of muscle properties and an increase in muscle mass is attributed by
selection for low RFI in pigs [26]. S1P is also reported to trigger glutamate secretion and potentiates
depolarization-evoked glutamate secretion [27]. Glutamic acid has been found to play a crucial role in
FE as it improves the FE of weaned piglets [28]. This supports the results in the current study where
SGPL1 was associated with L-glutamic acid 5-phosphate as a significant gene-metabolite pair. A brief
overview of the role of SGPL1 in sphingolipid-metabolism regulating FE is given in Figure 4. Therefore,
further investigation of SGPL1-L-glutamic acid 5-phosphate gene-metabolite pair, which was positively
correlated with Duroc while negatively correlated with Landrace concerning FE traits, could be a major
avenue for breed-specific research and its effect on FE and meat quality traits.
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A previous study showed the SNRPN gene (small nuclear ribonucleoprotein polypeptide N) was
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ubiquitously expressed in pigs [29]. Small nuclear ribonucleoproteins and heterogeneous small nuclear
riboproteins play roles in nucleolar ribosomal RNA (rRNA) and messenger RNA (mRNA) synthesis
in conjunction with spliceosome activity responsible for cleaving on introns from the pre mRNA
molecule [30]. Furthermore, in a study of FE in broiler chickens, a high FE phenotype exhibited
enrichment of ribosome assembly including small nuclear ribonucleoprotein, as well as nuclear
transport and protein translation processes than low FE phenotype [31].

The Duroc anti-correlated/Landrace correlated cluster identified aloesol—ZC2HC1B,
Proanthocyanidin a2—ZDHHC22; fenamiphos metabolite with ENSSSCG00000040467,
ENSSSCG00000018649 gene; ganoderenic acid e metabolite with ENSSSCG00000037595 and
SEC22C genes; FAM163B gene with taraxacolide 1-o-b-d-glucopyranoside, theogallin, and ketoleucine
metabolites; LRRTM2 gene with cystathionine ketimine and L-glutamic acid 5-phosphate metabolites
and GLS2 gene with L-glutamic acid 5-phosphate, cystathionine ketimine, and paracetamol sulfate
metabolites. One of the significant pathways in Landrace correlated cluster was valine, leucine,
and isoleucine degradation which included the ABAT and ACADS genes (co-functional genes)
identified in the current study. Valine, leucine, and isoleucine are branched-chain amino acids (BCAA)
and have a crucial role in protein synthesis and energy production [32]. The degradation of BCAA can
be glucogenic (valine), ketogenic (leucine and isoleucine), or both (isoleucine). The end products from
their degradation, succinyl-CoA and/or acetyl-CoA can enter the tricarboxylic acid (TCA) cycle for
energy generation and gluconeogenesis or may act as precursors for lipogenesis and ketone body
production through acetyl-CoA and acetoacetate [33]. Glucose metabolism and the TCA pathway in
the skeletal muscle is a key pathway regulating FE traits in pigs [34]. In an interesting proteomic
study involving glucose metabolism and the TCA cycle reported earlier, the proteins catalyzing the
conversion of glucose to pyruvate and oxaloacetate were up-regulated in high-FE pigs while those
involved in the conversion of pyruvate to lactate or acetyl-CoA were down-regulated in high-FE
pigs [34]. This resulted in inhibition of the TCA cycle in high-FE pigs due to the down-regulation of
key catalytic proteins [34]. Thus, the pathway identified with BCAA in the current study may cause
differences in FE concerning specific breed as evident from the indirect link with TCA and FE (Figure 5).
The BCAA also affects protein synthesis, as reported earlier in a study with reduced degradation of
rat skeletal muscle proteins [35]. Additionally, leucine activates mTOR signaling, one of the central
regulators of cell growth and metabolism along with an increase in fatty acid oxidation. With all
these supporting facts of BCAA regulating cellular metabolism, protein, and fatty acid degradation,
which are also key factors influencing FE, the role of the valine-leucine-isoleucine pathway in FE
cannot be overlooked. Furthermore, this pathway has been found over-represented in a GWAS study
for RFI in beef cattle [36] and pigs [3].
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We identified the alanine-aspartate-glutamate metabolism KEGG pathway involving the GLS2
and ABAT genes within the Duroc anti-correlated/Landrace correlated cluster. GLS2 is a mitochondrial
glutaminase that catalyzes glutamine to glutamate which is further converted to a-ketoglutarate,
an important substrate for the citric acid cycle to produce ATP in mitochondria. Glutamate is also a
precursor of reduced glutathione (GSH), an important antioxidant molecule, and a scavenger for ROS
(Reactive oxygen species) [37]. ROS are regulated by FE related traits as reported from the previous
studies, higher levels of ROS production and oxidized mitochondrial proteins have been found in
the muscle of low FE chickens [38] while in pigs, ROS production in mitochondria was higher in
semitendinosus muscle of less efficient pigs selected for high RFI compared to high efficient pigs (low
RFI) [39]. GLS2 interacted with L-glutamic acid 5-phosphate and cystathionine ketimine metabolites as
identified from Duroc anti-correlated/Landrace correlated clusters (Figure 5).

The unique metabolites identified in the breed-specific clusters were also previously reported
in another study for the metabolomic analysis of FE related traits in Duroc and Landrace [3].
The breed-specific unique metabolites such as aloesol and ketoleucine affected FE in Duroc [3].
In contrast, rhodamine B, taraxacolide 1-o-b-d-glucopyranoside, and ganoderenic acid were underlying
testing daily gain (TDG) in Duroc [3]. Theogallin and ketoleucine were involved with TDG and daily
gain (DG) in Duroc and Landrace and RFI in Duroc [3]. L-glutamic acid 5-phosphate, cystathionine
ketimine, and paracetamol sulfate were associated with FE and RFI in Landrace [3]. It is worth
highlighting the interaction of metabolites L-glutamic acid 5-phosphate and cystathionine ketimine
identified in this study. While these metabolites interact with the SGPL1 gene as identified in the Duroc
correlated cluster, on the contrary, they interact with the GLS2 gene in the Landrace correlated cluster.
Both SGPL1 and GLS2 were in the top significant pathways in their respective cluster. Therefore,
these gene-metabolite interactions which are highly specific to breed differences open up the avenues
for further research to extrapolate differences in FE related traits concerning breeds.

3.2. cGMP-PKG Pathway Involved with FE-Specific Analysis

In the FE-specific analysis, we found 12 significant gene-metabolite pairs. The gene-metabolite pairs
in high-FE correlated/low-FE anti-correlated cluster were TBXT gene with theogallin and ketoleucine
metabolites; THNSL2 gene with pyrocatechol, 2-pyrocatechuic acid, ketoleucine, and theogallin
metabolites; TUBAL3 gene with neodispyrin metabolite, RNF145 gene with ketoleucine metabolite,
ENAM gene and U2 snRNA with proanthocyanidin a2 metabolite, ENSSSCG00000038441 gene
with adrenochrome metabolite, and PRKG2 gene with levulinic acid metabolite. The pathway
analysis with the unique metabolites identified from high-FE correlated/low-FE anti-correlated
clusters was over-represented for valine-leucine-isoleucine biosynthesis and degradation pathway.
The unique mapped genes and co-functional genes were enriched for the following biological processes:
lyase activity, cGMP metabolic process, phosphorus-oxygen lyase activity, and cyclic purine nucleotide
metabolic process. cGMP-PKG, purine metabolism, and renin secretion were the KEGG pathways
identified in this cluster. The cGMP pathways were also identified in the studies reported earlier with
FE related traits with pigs [40] and beef cattle [41]. The PRKG2 gene, one of the main predictors for
cGMP pathways and also identified in this study, encodes the serine/threonine-protein, which binds to
inhibits the activation of several receptor tyrosine kinases and is a regulator of the intestinal secretion,
bone growth, and renin secretion (https://www.ncbi.nlm.nih.gov/gene/5593). PRKG2 encodes for CGKII
(guanosine 3,5-cyclic monophosphate (cGMP)-dependent protein kinase II) and is abundantly expressed
in intestinal epithelium. CGKII relays signaling through a membrane-associated, cGMP-producing
enzyme, guanylyl cyclase (GC). The catalytic activity of this receptor-enzyme is triggered by two
locally produced ligands, the peptides guanylin and uroguanylin [42]. The GC is activated by nitric
oxide (NO) and catalyzes the conversion of intracellular guanosine-5′-triphosphate (GTP) to cyclic
guanosine-3’,5’-monophosphate (cGMP). This enzyme has two forms: a membrane protein and a
soluble form with specific kinetic properties and tissue distributions. The soluble GC (sGC) form is
a heterodimeric protein consisting of α (α1 and α2,) and β (β1 and β2) subunits encoded by distinct
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genes [43]. An alpha subunit of guanylyl cyclase, GUCY1A2 and a beta subunit GUCY1B3 was
identified as co-functional genes in the current study and were involved with cGMP, phosphorus
metabolic process, nitrogen metabolic process pathways as identified in the current study. Uroguanylin
is a gastrointestinal hormone primarily involved in fluid and electrolyte handling. It has recently
been reported that prouroguanylin, secreted postprandially, is converted to uroguanylin in the brain
and activates the receptor guanylate cyclase-C (GC-C) to reduce food intake in mice [44]. Reduced
FI is a characteristic feature for the selection of the pigs known for high FE [1]. The overview of the
mechanism involving the cGMP-PKG pathway and its role in FE is given in Figure 6.
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A positive correlation between FI and plasma cholesterol levels is previously established in
pigs [45]. RNF145, which was positively correlated in the high-FE cluster participates in key signaling
pathways of cholesterol homeostasis [46]. RNF145 expression is induced in response to LXR activation
and high-cholesterol diet feeding [46]. Transduction of RNF145 into mouse liver inhibits the expression
of genes involved in cholesterol biosynthesis and reduces plasma cholesterol levels. On the other hand,
its inactivation increases cholesterol levels both in the liver and plasma [46]. In this study, RNF145 was
identified with ketoleucine as a significant gene-metabolite pair in this cluster (Figure 6). Ketoleucine is
an abnormal metabolite that arises from the incomplete breakdown of branched-chain amino acids
(https://hmdb.ca/metabolites/HMDB0000695). Ketoleucine is regulated by branched-chain α-keto acid
dehydrogenase. Studies reported that the branched-chain α-keto acid dehydrogenase catalyzes the
irreversible oxidative decarboxylation of all three branched-chain keto acids (BCKA) derived from
branched-chain amino acids (BCAA), i.e., α-ketoisocaproate (ketoleucine) [47]. They demonstrated
changes in BCKA activity that showed a significant alteration in BCAA and protein metabolism during
starvation in rats [47]. BCAA also plays a crucial role in FE by regulating energy homeostasis in
addition to lipid and protein metabolism as reported in pigs [48].

Apart from RNF145, gene-metabolite interaction of ketoleucine with TBXT and THNSL2 was
also identified in this study. THNSL2 was reported among the top 40 significantly differentially
expressed genes of characterized proteins between high- and low-ADG steers from a liver transcriptome
profiling of beef cattle [49]. This gene has also been associated with abdominal and visceral fat in
humans based on GWAS [50]. An interaction of proanthocyanidin a2 with ENSSSCG00000019329
(U2 snRNA) was also identified with low but positive correlation with high-FE cluster while a
negative correlation with the low-FE cluster. U2 spliceosomal snRNAs are the molecules found in
the major spliceosomal machinery of all eukaryotic organisms and affect their gene expression [51].
U2 snRNA plays a central role in the splicing of mRNA precursors by regulating a dynamic set of
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RNA-RNA base-pairing interactions [52]. From the previously reported studies, the role of precursor
mRNA in gene expression has been established as it removes the intronic sequence from immature
RNA, leading to a production of mature mRNA that might differ in function [53]. Regulation of
pre-mRNA splicing by nutrients modulates the carbohydrate and lipid metabolism [53]. U2 interacts
with proanthocyanidin a2 in the current study. Proanthocyanidin a2 is an antioxidant and has a
broad spectrum of biologic properties against oxidative stress [54]. Proanthocyanidin significantly
increased the activity of antioxidant enzymes such as superoxide dismutase, glutathione peroxidase,
and catalase [54]. The role of antioxidant activity with FE was reported earlier in beef cattle as low
feed efficient steers had greater superoxide dismutase and glutathione peroxidase activity than the
high feed efficient ones, potentially using a greater proportion of energy [55]. Thus, as evident from all
these facts, the potential role of proanthocyanidin a2–U2 interaction in high-FE pigs identified in the
current study might be interesting to explore.

The gene-metabolite pairs identified in the present study over-represented some pathways that
have been reported to have a role in FE related traits. Some of the genes identified are novel and
were not included in the pathway analysis. Since these gene-metabolite pairs selected have a highly
significant correlation with respect to each study group, a detailed study of these genes and metabolites
are needed to better understand their role in FE related-traits. Further studies on the identified
gene-metabolite pairs may assist in the discovery of biomarkers as these significant pairs identified
directly reflect the phenotype as revealed by the candidate gene-expression with the downstream
metabolite differences in pigs with low and high FE groups.

4. Materials and Methods

4.1. Data Resource and Phenotype Generation

The pigs used in this experiment were raised at the pig testing station “Bøgildgård” operated
by SEGES within Landbrug and Fødevarer (L&F: Danish Agriculture and Food Council). Pigs were
ad libitum fed and free water supplied. The authors of this study were not responsible for animal
husbandry, diet, and care as the testing station is a facility within the Danish breeding program run by
SEGES. The initial bodyweight of the pigs before the testing period was approximately 7 kg, followed
by a 5-week acclimatization phase. For the phenotypic traits, we calculated FCR and RFI, as reported
in our previous study [40]. We considered the same classification of animals in this study as efficient
and inefficient (low and high FCR, respectively), as previously reported [40]. The classification was
done by selecting pigs that were one standard deviation above or below the mean FCR for each breed
as previously reported.

4.2. Gene Expression Profile, Metabolite Profile, and Data Analyses

For transcriptome analysis, we collected psoas major muscle from 40 purebred uncastrated male
pigs from two breeds comprising of 12 Danbred Duroc and 28 Danbred Landrace. The tissue samples
were preserved in RNAlater (Ambion, Austin, TX, USA) immediately post-slaughter and stored at
−25 ◦C until subsequent analysis. Total RNA isolation and sequencing were carried out by BGI
Genomics. Paired-end sequencing (100 bp) was performed on the BGISEQ-500 platform after Oligo dT
library preparation. Read quality control, mapping, and gene counts were reported elsewhere [14].
Lowly expressed genes were filtered out, and the gene counts normalization was carried out by
applying the variance stabilizing transformation (VST) function from DeSeq2 [56].

To identify significant gene-metabolite pairs, we analyzed the data considering two approaches,
i.e., breed-specific (Duroc-Landrace) and FE-specific (low-high FE groups). Thus, we fitted a linear
model for adjusting the read counts with the covariates using the Limma R package [57]. For adjusting
the data to identify breed-specific differences, we adopted the following model:

yi jkl = µ+ Fi + R j + Ak + Pl + εi jkl
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where yi jkl: is the normalized read counts; µ: is the intercept; Fi: is the fixed effect of the FE group
(two levels, high and low); R j: is the covariate for the RIN values; Ak: is the covariate for the animal’s
slaughter age, in days; Pl: is the fixed effect of the pen (8 levels); εi jkl: is the random residual effect
associated with each observation.

To identify differences between high and low FE groups, the breed effect was added in the linear
model, as follows:

yi jkl = µ+ Bi + R j + Ak + Pl + εi jkl

where yi jkl: is the normalized read counts; µ: is the intercept; Bi: is the fixed effect of the breed (two
levels, Duroc and Landrace); R j: is the covariate for the RIN values; Ak: is the covariate for the animal’s
slaughter age, in days; Pl: is the fixed effect of the pen (eight levels); εi jkl: is the random residual effect
associated with each observation.

Regarding the identification of the metabolites, we used an untargeted metabolomic approach,
as reported elsewhere [3]. In summary, 5 mL of blood samples at two-time points were collected
from jugular venipuncture of each non-fasted pig into the EDTA tubes and immediately placed on
ice. The plasma samples extracted from 109 animals (59 Duroc and 50 Landrace) were subjected to
metabolomics analysis, as described in a previous study [3]. The metabolite data from this study were
accessed using MetaboLights accession ID MTBLS1384 with a link: https://www.ebi.ac.uk/metabolights/
MTBLS1384. Due to the need for paired data to carry the integrative analysis, only those samples with
both metabolite and RNA-Seq data were used herein. The metabolite data from time-point two in
40 pigs were log-normalized before fitting into a linear model. Only those with the relative standard
deviation > 0.15 were used based on the raw counts. As proposed for the RNA-seq, we adjusted
the log-normalized metabolite data considering both approaches. First, the following model was
employed for the breed-specific analysis:

mi jkl = µ+ Fi + D j + Ak + Pl + εi jkl

where mi jkl: is the is the log-normalized concentration of each metabolite (n = 749); µ: is the intercept;
Fi: is the fixed effect of the FE group (two levels, high and low); D j: is the fixed effect of the batch for
metabolomic analysis (two levels); Ak: is the covariate for the sampling age, in days; Pl: is the fixed
effect of the pen (8 levels); εi jkl: is the random residual effect associated with each observation.

For the FE-specific group approach, we fitted the data as follows:

mi jkl = µ+ Bi + D j + Ak + Pl + εi jkl

where mi jkl: is the is the log-normalized concentration of each metabolite (n = 749); µ: is the intercept;
Bi: is the fixed effect of the breed (two levels, Duroc and Landrace); D j: is the fixed effect of the batch
for metabolomic analysis (two levels); Ak: is the covariate for the sampling age, in days; Pl: is the fixed
effect of the pen (8 levels); εi jkl: is the random residual effect associated with each observation.

The metabolites were annotated with HMDB (Human metabolome database) based on library
search of the masses in HMDB with a mass uncertainty of 0.005 Da or 5 ppm. Those metabolites that
did not correspond to HMDB entries were left unannotated and removed from the analysis.

4.3. Integration of Transcriptomic and Metabolomic Data Based on the Linear Model

To uncover the complex relationship between metabolites and genes, we adopted a linear model
framework using the IntLIM (Integration of Linear model) R-package (version 0.1.0) (https://github.com/

mathelab/IntLIM) [23]. The IntLIM approach allows us to integrate the metabolomic-transcriptomic
data considering a case-control design. Thus, as initially proposed, we compared the breeds (Duroc
vs. Landrace) and the FE groups (low and high FCR animals). As a quality control step from IntLIM,
we filtered out genes with the lowest 5% of the variation. Gene and metabolite exploratory analyses
were performed by applying Principal Component Analysis to identify breed- and FE-specific clusters.

https://www.ebi.ac.uk/metabolights/MTBLS1384
https://www.ebi.ac.uk/metabolights/MTBLS1384
https://github.com/mathelab/IntLIM
https://github.com/mathelab/IntLIM
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The linear model for data integration is given as described in the following equation:

m = β1 + β2g + β3p + β4(g : p) + ε

where m: is the log-normalized metabolite abundance; β1 : is the intercept; β2g: is the normalized and
adjusted gene expression level; β3p: is the phenotype (FE group—high and low FE; or breed—Duroc and
Landrace); β4(g : p) : is the interaction between gene expression and phenotype; ε: is the residual effect
associated with each observation (ε = N(0, σ)).

A statistically significant two-tailed p-value of the gene-phenotype (g-p) interaction indicates the
difference in the phenotype of FE groups (high and low) or breed (Duroc and Landrace) calculated by
the slope relating gene-expression and metabolite abundance [23]. The two-tailed p-value indicates
that the slope relating gene-expression and metabolite abundance is different from one phenotype
compared to the other. Thus, it was used to identify gene-metabolite associations that are specific to a
particular phenotype (breed—Duroc and Landrace, FE—low and high). We calculated the absolute
difference in the Spearman correlation identified from IntLIM between the FE and breed groups to find
the significant (p < 10−7) gene-metabolite pairs. The absolute difference between the FE group was
estimated as (rLow_cor − rHigh_cor) where (rHigh_cor) is the correlation given for a gene-metabolite pair
in high-FE group (Table 2) while (rLow_cor) is the correlation given for a gene-metabolite pair in the
low-FE group (Table 2). The absolute difference in the correlation between the breeds was estimated as
(rLandrace_cor − rDuroc_cor), where, (rDuroc_cor) is the correlation for a given gene-metabolite pair in Duroc
(Table 1) while (rLandrace_cor) is the correlation for a gene-metabolite pair in Landrace (Table 1).

4.4. Pathway Over-Representation Analysis

In the breed-specific and FE-specific group, the same metabolite can be related to more than
one gene and vice-versa. So, we screened for the common metabolites and genes in the group
and referred them as unique metabolites and unique genes respectively in this study. We analyzed
the unique metabolites in each group (breed-specific and FE-specific) using Metaboanalyst 4.0
(www.metaboanalyst.ca) [58]. We used three parameters for the pathway analysis: the pathway
library, algorithm for pathway over-representation analysis, and algorithm for topological analysis.
For the current study, we selected the Homo sapiens (KEGG) pathway library to estimate the importance
of the compound in a given metabolic pathway. For pathway over-representation and topology
analysis, we used the hypergeometric test and relative-betweenness centrality algorithm, respectively,
to measure the connections with the other nodes, including the number of shortest paths going through
the node of interest.

Regarding the unique mapped (with chromosomal location information) genes, we carried out
a co-functionality analysis using GeneMANIA [59] (www.genemania.org). GeneMANIA considers
our query list of unique genes identified in each cluster (breed-specific and FE-specific) and
allows us to predict the co-functional genes underlying similar functions. Thus, we analyzed
the unique genes in each cluster (breed-specific—Duroc correlated cluster, and Duroc anti-correlated
cluster, FE-specific—High-FE correlated cluster) to identify the co-functional genes in each cluster.
Next, we used the unique genes, as well as the co-functional genes in each cluster of each group,
to identify the GO terms using GOrilla (Gene ontology enrichment analysis and visualization tool)
(http://cbl-gorilla.cs.technion.ac.il/) [60]. To this end, the Homo sapiens were used as the reference,
and the entire set of identified and annotated genes in this study (n = 15,187 genes) was used as a
background. Over-representation KEGG pathway analysis with the unique and co-functional genes
in each cluster was performed using ClueGO version 2.5.4 [61] to cluster redundant terms with a
kappa score of 0.4 and S. scrofa annotation as the background. The pathways were selected after
filtering for group p-value corrected with Bonferroni step down ≤ 0.05 and those with at-least two
over-represented genes.

www.metaboanalyst.ca
www.genemania.org
http://cbl-gorilla.cs.technion.ac.il/
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5. Conclusions

This study applied a novel approach for metabolome-transcriptome data integration using the
linear model unveiling potential gene-metabolite pairs affecting the biological processes related to FE
in pigs. To the best of our knowledge, this is the first study to report the gene-metabolite interaction
mechanisms that may determine nutrient partitioning and energy utilization and hence affect FE in pigs.
The approach followed here provided many interesting genes and metabolites with significant p-values.
While some of the metabolites and genes identified were known with their association for FE, others are
novel and provide new avenues for further research. The unique metabolites were associated with
valine-leucine-isoleucine biosynthesis/degradation and arginine-proline metabolism. The unique genes
enriched for sphingolipid metabolism, valine-leucine-isoleucine degradation, alanine-aspartate-glutamate
pathway (breed-specific), and cGMP-PKG signaling pathway (FE-specific). Further validation of genes,
metabolites, and gene-metabolite interactions in a cohort with more animals with additional features
such as alteration in dietary components, farm variations, and other environmental effects would help
to establish a framework for future FE prediction using metabolomics biomarker profiles that could be
practical to use in large populations other than genomic profiling. More data would also make it possible
to model the complex relations in gene-metabolite profiles over time more accurately and will help to
elucidate the regulatory mechanisms affecting the pathways underlying FE.

Supplementary Materials: The following are available online at http://www.mdpi.com/2218-1989/10/7/275/s1,
Figure S1: The principal component analysis of metabolites and genes. A and B: PCA plot of genes and metabolites,
respectively, in (1) Duroc and (2) Landrace; C and D: PCA plot of genes and metabolites, respectively, in high and
low feed efficient groups, Table S1: Pathways enriched by unique gene-metabolite pairs. Spreadsheet tabs are
divided into (a) metabolite enrichment analysis results by Metaboanalyst; (b) list of the co-functional genes by
GeneMania; (c) gene ontology pathways enriched by Gorilla; (d) KEGG pathways enriched by ClueGO.
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