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Abstract: Our work aimed to differentiate 20 aberrantly methylated miRNA genes that participate
at different stages of development and metastasis of ovarian carcinoma (OvCa) using methylation-
specific qPCR in a representative set of clinical samples: 102 primary tumors without and with
metastases (to lymph nodes, peritoneum, or distant organs) and 30 peritoneal macroscopic metastases
(PMM). Thirteen miRNA genes (MIR107, MIR124-2, MIR124-3, MIR125B-1, MIR127, MIR129-2,
MIR130B, MIR132, MIR193A, MIR339, MIR34B/C, MIR9-1, and MIR9-3) were hypermethylated
already at the early stages of OvCa, while hypermethylation of MIR1258, MIR137, MIR203A, and
MIR375 was pronounced in metastatic tumors, and MIR148A showed high methylation levels
specifically in PMM. We confirmed the significant relationship between methylation and expression
levels for 11 out of 12 miRNAs analyzed by qRT-PCR. Moreover, expression levels of six miRNAs
were significantly decreased in metastatic tumors in comparison with nonmetastatic ones, and
downregulation of miR-203a-3p was the most significant. We revealed an inverse relationship between
expression levels of miR-203a-3p and those of ZEB1 and ZEB2 genes, which are EMT drivers. We
also identified three miRNA genes (MIR148A, MIR9-1, and MIR193A) that likely regulate EMT–MET
reversion in the colonization of PMM. According to the Kaplan–Meier analysis, hypermethylation of
several examined miRNA genes was associated with poorer overall survival of OvCa patients, and
high methylation levels of MIR130B and MIR9-1 were related to the greatest relative risk of death.

Keywords: ovarian carcinoma; metastatic primary tumors; peritoneal metastases; miRNA genes;
DNA methylation; gene expression; overall survival

1. Introduction

Ovarian carcinoma (OvCa) is the most aggressive tumor among malignant neoplasms
of the female reproductive system, and, in terms of mortality, it takes first place among
oncogynecological diseases in the world [1,2]. OvCa is one of the hardest to detect cancers
because it develops asymptomatically up to the advanced stages with extensive metasta-
sis [3,4]. Extensive metastatic dissemination probably takes place because it occurs mainly
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in the peritoneum, which does not require tumor cells to overcome intravasation and
extravasation. Although hematogenous and lymphogenous metastasis is also inherent in
OvCa, peritoneal carcinomatosis dominates [5]. Early metastasis into the abdominal cavity
with the flow of peritoneal fluid leads to the gradual formation of malignant ascites, which,
along with tumor cells, contain tumor-associated immune and endothelial cells as well
as tumor-associated fibroblasts [6]. All this creates a unique microenvironment that pro-
motes the progression of OvCa, suppression of the immune system, and the development
of chemotherapy resistance. The predominance of intraperitoneal metastasis makes the
progression of OvCa unique, different from the classical and more studied hematogenous
and lymphogenous metastasis, which is characteristic of most types of tumors [7,8].

Specific genes and signaling pathways, as well as epigenetic regulatory mechanisms,
which include miRNAs, are involved in ensuring the pathogenesis and metastasis of
OvCa [3,4]. MiRNAs play a critical role in cell cycle regulation, cell differentiation, prolifer-
ation, motility, adhesion, apoptosis, angiogenesis, stem cell function, stress response, and
other fundamental biological processes associated with the development and progression of
neoplasms. They can inhibit the expression of tumor-associated genes and function as both
tumor suppressors and oncogenes. Numerous and convincing data on the role of miRNAs
and their target genes in the pathogenesis and metastasis of OvCa were obtained [3,9–11].

It was noted that miRNA genes can be silenced by hypermethylation of promoter CpG
islands, like protein-coding genes, and that the percentage of genes deregulated by aberrant
methylation is significantly higher among miRNA genes than protein-coding genes [12]. We
previously identified a group of hypermethylated miRNA genes in breast cancer and OvCa
and showed their relationship with metastasis [13,14]. The present work was aimed at
identifying miRNA genes specifically involved in the regulation of various stages of OvCa
pathogenesis and metastasis. A detailed study of the methylation and expression levels of
20 miRNA genes in a representative set of 102 primary ovarian tumors and 30 peritoneal
macroscopic metastases allowed us to identify a group of miRNA genes whose methylation
was significantly associated with the onset of oncogenesis and specifically differentiate
miRNAs involved in the regulation of metastasis at the stage of primary tumors and the
stage of formation of secondary tumors (peritoneal macroscopic metastases) in OvCa.

2. Results
2.1. Aberrant Methylation of 20 miRNA Genes in the Development of Primary Tumors and
Metastasis in Ovarian Cancer

Methylation levels of 20 miRNA genes were evaluated in a representative set of
102 primary ovarian tumors (primary tumors of OvCa patients without and with metas-
tases), 83 matched histologically normal ovarian tissues, 30 peritoneal macroscopic metas-
tases, and 15 ovarian tissue samples from post-mortem “donors” without cancer in anam-
nesis. The results are presented in Figure 1.

As can be seen from Figure 1, a highly statistically significant (p < 0.001, FDR = 0.01)
increase in the methylation level of 18 out of 20 miRNA genes was observed in OvCa
passing from control samples (15 and 83 samples) to primary ovarian tumors (102) and
peritoneal macroscopic metastases (30): MIR107, MIR124-1, MIR124-2, MIR124-3, MIR125B-
1, MIR1258, MIR127, MIR129-2, MIR130B, MIR132, MIR137, MIR148A, MIR193A, MIR339,
MIR34B/C, MIR375, MIR9-1, and MIR9-3, while the MIR191 gene had a highly statistically
significant (p < 0.001, FDR = 0.01) decrease in the methylation level. The methylation level
increase of the MIR203A gene, considered in this way, turned out to be statistically insignificant.

The change in the methylation level of the majority of analyzed genes tended to be
gradual from normal tissues to primary tumors and metastases. Special attention was
drawn to the sharp increase in the methylation level of MIR148A during the transition from
primary tumors to peritoneal macroscopic metastases (Figure 1).

Data on the methylation level increase of most miRNA genes in primary ovarian
tumors (102 samples) compared to matched histologically normal tissues (83) are also
shown in Figure 2 in the form of heatmaps.
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Figure 1. Methylation levels of 20 miRNA genes in 15 control samples (Donor), 83 histologically nor-
mal ovarian tissues of OvCa patients (Norm), 102 primary ovarian tumors (Tumor), and 30 peritoneal
macroscopic metastases (PMM).

Figure 2. Heatmaps showing methylation levels of 20 miRNA genes in 83 samples of histologically
normal ovarian tissues (left) and 102 samples of primary ovarian tumors (right). Samples are
presented along the Y-axis, light green—low methylation level, dark green—high methylation level.
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From an examination of Figure 2, it is quite obvious that the methylation level of
most miRNA genes under study was strongly increased in primary ovarian tumors in
comparison with matched histologically normal tissues.

Next, we wanted to distinguish between miRNA genes associated with the onset of
OvCa pathogenesis and those associated with the metastasis. First, we analyzed the data on
methylation levels of 20 miRNA genes only in primary ovarian tumors of patients without
metastases (52 samples) and matched histologically normal tissues (43) (Figure 3).

Figure 3. Methylation levels of 20 miRNA genes in 52 primary ovarian tumors of patients without
metastases (Tumor) and 43 matched histologically normal ovarian tissues (Norm).

As can be seen from Figure 3, a highly statistically significant (p ≤ 0.002, FDR = 0.05)
association with the onset of OvCa pathogenesis was shown for 13 out of 20 miRNA
genes: MIR107, MIR124-2, MIR124-3, MIR125B-1, MIR127, MIR129-2, MIR130B, MIR132,
MIR193A, MIR339, MIR34B/C, MIR9-1, and MIR9-3. Attention was drawn to the absence
of a statistically significant relationship with the early (premetastatic) stages of OvCa
development for three genes: MIR148A, MIR203A, and MIR375 (Figure 3). For four miRNA
genes (MIR124-1, MIR1258, MIR137, and MIR191), the association with the early stages
was much less statistically significant (0.002 < p < 0.05) than with the OvCa pathogenesis as
a whole (compare Figures 1 and 3).

Next, it was of interest to study whether there are specific differences in methylation
levels of any of the miRNA genes under study between primary tumors of patients without
metastases (52 samples) and those of patients with metastases (50). So, we compared these
two groups and the results of the analysis can be found in Figure 4.
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Figure 4. Methylation levels of 20 miRNA genes in 52 primary ovarian tumors of patients without
metastases (No) and 50 primary ovarian tumors of patients with metastases (With).

The increase in the methylation level of 14 out of 20 miRNA genes (MIR107, MIR124-2,
MIR125B-1, MIR1258, MIR127, MIR129-2, MIR130B, MIR137, MIR193A, MIR203A, MIR339,
MIR375, MIR9-1, and MIR9-3) was highly associated (p≤ 0.005, FDR = 0.05) with metastatic
primary ovarian tumors (Figure 4). It is interesting to note that high methylation levels of
MIR1258, MIR137, MIR203A, and MIR375 were almost exclusively revealed in metastatic
primary tumors and practically not observed at the early stages of OvCa pathogenesis.
We nearly did not detect methylation of the MIR148A gene in 102 primary tumors (both
metastatic and nonmetastatic), however, this gene was highly hypermethylated in peri-
toneal macroscopic metastases (Figures 1–4).

Thus, methylation levels of MIR1258, MIR137, MIR203A, and MIR375 may be sug-
gested as specific biomarkers of OvCa dissemination; and MIR148A—as a specific biomarker
of peritoneal macroscopic metastases.

2.2. Relationship of Methylation of Examined miRNA Genes with the Clinical Stage and
Histological Grade of Ovarian Cancer

Methylation levels of 20 miRNA genes were compared between the early stages of
OvCa and the late ones. Hypermethylation of 13 miRNA genes was shown to be associated
with more advanced stages (III + IV versus I + II) of OvCa (Figure 5). Comparison of a
group of 14 miRNA genes whose methylation in primary tumors was associated with
metastasis (Figure 4) and a group of 13 genes whose methylation was associated with
advanced stages (Figure 5) revealed an overlap of 12 common genes: MIR107, MIR124-2,
MIR125B-1, MIR1258, MIR127, MIR129-2, MIR130B, MIR137, MIR339, MIR375, MIR9-1, and
MIR9-3. A specific difference was identified for three genes: methylation of MIR193A and
MIR203A was less statistically significantly (p = 0.038 and p = 0.099 respectively) associated
with advanced clinical stages and, on the contrary, methylation of MIR34B/C was highly
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statistically significantly (p < 0.001, FDR = 0.01) associated with stages III/IV of OvCa
(compare Figures 4 and 5).

Figure 5. Hypermethylated miRNA genes associated with advanced clinical stages of OvCa. The set
of OvCa samples included 29 samples of stages I + II and 73 samples of stages III + IV.

It is worth emphasizing that the overlap of 12 genes indicated the importance of com-
mon genes and common processes in the metastasis of primary tumors and the progression
of the disease stage.

Further, we searched for miRNA genes whose methylation level changes were sig-
nificantly associated with the histological grade of primary ovarian tumors. Only four
genes (MIR129-2, MIR130B, MIR9-1, and MIR9-3) were found to be statistically significantly
(p ≤ 0.006, FDR = 0.05) associated with the OvCa histological grade, judging by the level of
their methylation (Figure 6).

Figure 6. Hypermethylated miRNA genes associated with ovarian tumor grade. The sample set
included: G1—9 samples, G2—27 samples, and G3—59 samples.

Thus, among 14 miRNA genes involved in the processes of cell metastasis in primary
ovarian tumors, 12 genes were also associated with an advanced clinical stage and only
four genes with a histological grade.
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2.3. Hypermethylated miRNA Genes Specifically Involved in the Formation of Macroscopic
Metastases in the Peritoneum of Ovarian Cancer Patients

We paid special attention to the effect of hypermethylated miRNA genes on the transi-
tion from primary metastatic tumors to formed macroscopic peritoneal metastases (Figure 7).

Figure 7. Methylation levels of miRNA genes in 30 peritoneal macroscopic metastases (PMM) and
50 primary tumors of OvCa patients with metastases (With).

As follows from Figure 7, the formation of peritoneal macroscopic metastases was
highly associated with hypermethylation of the MIR148A gene, while this gene did not
increase the methylation level either at the early premetastatic stages of OvCa develop-
ment or at the stages of the metastatic process in primary ovarian tumors (compare with
Figures 1–4). It is noteworthy that methylation of the MIR148A gene did not accompany
either an increase in the clinical stage of OvCa or an increase in the histological grade
(compare with Figures 5 and 6). It can be concluded that hypermethylation of the MIR148A
gene is a highly significant factor in the colonization of peritoneal metastases. Moreover,
among the 20 studied miRNA genes, hypermethylation of the MIR148A gene was the only
factor that highly statistically significantly (p < 0.001, FDR = 0.01) promoted the formation
of secondary tumors.

In addition, in peritoneal metastases, we observed a significant decrease in methylation
levels of MIR193A (p = 0.04) and MIR9-1 (p = 0.007, FDR = 0.05), which were significantly
hypermethylated both at the stage of the onset of primary ovarian tumors and at the
stage of their metastasis. This phenomenon may be associated with a partial reversal of
epithelial–mesenchymal transition (EMT) into mesenchymal–epithelial transition (MET) in
secondary tumors, which may be associated with the loss of methylation by these genes.

2.4. The Functional Significance of Methylation of Examined miRNA Genes in the Regulation of
Their Expression in Ovarian Cancer

The functional role of aberrant methylation of miRNA genes was tested by the effect of
methylation on the expression of 12 miRNAs in 47 paired (tumor/normal) ovarian samples.
The data on changes in the levels of 12 miRNAs in primary tumor samples are shown
in Figure 8.

As can be seen from Figure 8, seven miRNAs statistically significantly (p < 0.001,
FDR = 0.01) reduced expression in primary tumors, namely, miR-125b-5p, miR-127-5p,
miR-129-5p, miR-132-3p, miR-137-3p, miR-193a-5p, and miR-339-3p. These data were in
good agreement with the data on hypermethylation of genes encoding these miRNAs in
primary ovarian tumors.

Furthermore, the relationship between methylation and expression of 12 miRNAs was
characterized using a correlation plot and Spearman’s correlation coefficient (rs, Figure 9).
Only for miR-191-5p, the correlation of expression levels with methylation levels was not
statistically significant.
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Figure 8. Changes in the levels of 12 miRNAs in 47 primary tumors relative to matched histologically
normal tissues; (a) heatmap (blue color—decrease in expression, red color—increase in expression);
(b) expression box plots and the significance of the changes.

Figure 9. Significant negative correlation between the levels of methylation and expression for
11 miRNA genes in primary ovarian tumors (47 paired samples). The correlation plot is shown on the
left (blue circles—negative correlation, red circles—positive correlation, size and brightness of circles
represent the degree of correlation). On the right, Spearman’s correlation coefficients (rs) and their
statistical significance (p) are shown for pairs of aberrantly methylated miRNA genes and miRNAs
with altered expression levels.

As can be seen from Figure 9, a statistically significant negative correlation (rs was in
the range from −0.38 to −0.56, p ≤ 0.01, FDR = 0.05) between levels of methylation and
expression was shown for 11 miRNAs (miR-124-3p, miR-125b-5p, miR-127-5p, miR-129-
5p, miR-132-3p, miR-137-3p, miR-148a-3p, miR-193a-5p, miR-203a-3p, miR-339-3p, and
miR-375-3p), and highly statistically significant negative correlation (rs was in the range
from −0.44 to −0.56, p < 0.001, FDR = 0.01) for 7 of them (miR-125b-5p, miR-127-5p, miR-
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129-5p, miR-137-3p, miR-148a-3p, miR-203a-3p, and miR-339-3p). This result indicated the
functional significance of hypermethylation in downregulation of miRNA genes in OvCa.

2.5. Comparison of Expression Levels of 12 miRNAs in Primary Tumors of Ovarian Cancer
Patients without and with Metastases and in Macroscopic Peritoneal Metastases

Heatmaps were constructed, reflecting the expression levels of 12 miRNAs in primary
tumors of OvCa patients without and with metastases relative to matched histologically
normal tissues (Figure 10).

Figure 10. Heatmaps of relative expression levels of 12 miRNAs in nonmetastatic primary ovarian
tumors ((a), 22 samples, tumor/norm) and metastatic ones ((b), 25 samples, tumor/norm). Samples
are presented along the Y-axis, blue—expression decrease, red—expression increase.

Heatmaps (Figure 10) clearly showed a pronounced decrease in expression in most
studied miRNAs in primary tumors of patients with metastatic OvCa.

As can be seen from Figure 11, there was a statistically significant (p < 0.05) decrease
in the expression level of six miRNAs in metastatic primary tumors in comparison with
nonmetastatic ones. Moreover, the decrease was highly statistically significant for miR-
125b-5p and miR-339-3p (p ≤ 0.006, FDR = 0.05) and the most statistically significant for
miR-203a-3p (p = 0.001, FDR = 0.01).

Figure 11. The effect of metastasis on the miRNA expression level in primary tumors of OvCa
patients. Data for six miRNAs with a statistically significant decrease in the expression level in
25 samples of primary tumors of patients with metastases (With) in comparison with 22 samples of
primary tumors of patients without metastases (No) are shown.
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The strongest decrease in miR-203a-3p expression in primary tumors of patients with
metastases corresponded to a sharp appearance of hypermethylation of the MIR203A gene
exclusively in primary tumors of patients with metastases. Thus, hypermethylation of the
MIR203A gene may be a very useful biomarker of metastatic primary ovarian tumors.

The analysis of expression levels of 12 miRNAs in nine peritoneal macroscopic metas-
tases relative to nine matched samples of primary tumors was carried out (Table 1).

Table 1. Comparison of the expression level of 12 miRNAs in nine peritoneal macroscopic metastases
(PMM) and nine matched primary tumors.

miRNA Tissue Samples 1st Quartile Median 3rd Quartile

miR-124-3p primary tumor –2.46 0.54 3.28
PMM –2.60 –0.21 2.12

miR-127-5p primary tumor –3.16 –2.07 –0.24
PMM –5.70 –2.56 –0.97

miR-129-5p primary tumor –2.04 –1.76 –1.33
PMM –3.46 –2.37 –1.98

miR-132-3p primary tumor –1.79 –1.64 –0.57
PMM –5.54 –3.40 –0.16

miR-191-5p primary tumor –0.78 0.40 0.99
PMM –1.40 –0.29 0.03

miR-193a-5p primary tumor –3.01 –2.21 –1.61
PMM –4.06 –2.35 –1.98

miR-125b-5p primary tumor –4.33 –2.25 –0.61
PMM –4.53 –1.93 –0.81

miR-137-3p primary tumor –3.51 –2.21 0.74
PMM –4.28 –3.11 –0.56

miR-203a-3p primary tumor –3.43 –0.90 1.17
PMM –3.43 –1.21 –1.10

miR-375-3p primary tumor –5.03 –1.26 3.25
PMM –3.94 –2.35 –0.61

miR-148a-3p primary tumor –0.94 –0.70 0.42
PMM –2.91 –1.45 –0.38

miR-339-3p primary tumor –1.35 –1.21 0.43
PMM –1.74 –1.11 –0.95

Note: Expression levels are given relative to histologically normal tissues of the same patients; PMM—peritoneal
macroscopic metastases.

We noted a twofold drop in the median expression level of miR-148a-3p (from –0.70 to
–1.45) that was consistent with the data on a sharp increase in the methylation level of the
MIR148A gene during the transition from primary metastatic tumors to peritoneal macro-
scopic metastases (see Figure 7). Although the analysis of expression was not statistically
confirmed owing to the small set of samples, it is possible to suggest a specific role for
inactivating methylation of the MIR148A gene in the formation of secondary tumors. In
addition, the decrease in the methylation level of two miRNA genes, MIR193A (p = 0.04)
and MIR9-1 (p = 0.007, FDR = 0.05), which were hypermethylated in primary tumors,
was found in secondary tumors that may suggest the involvement of MIR148A, MIR193A,
and MIR9-1 genes in the regulation of partial reversion EMT-MET during colonization of
secondary ovarian tumors in the peritoneum.

2.6. Reverse Relationship between Expression Levels of miRNA-203a-3p and ZEB1 and ZEB2
Genes in Ovarian Cancer

Data on the significant hypermethylation of the MIR203A gene in primary ovarian
metastatic tumors and almost complete absence of MIR203A methylation in tumors of
OvCa patients without metastases, which were in full agreement with the most significant
decrease in the expression level of this gene in metastatic primary tumors, indicated the
role of this miRNA in the initial stage of metastasis. This result was consistent with the
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data on the participation of miR-203a-3p in suppression of the EMT in OvCa cell cultures
SKOV3 and OVCAR3 and the Xenograft mouse model [15].

As known, the hallmarks of EMT in cancer are the upregulation of N-cadherin and
the downregulation of E-cadherin. Transcription factors ZEB1 (Zinc finger E-box binding
homeobox 1) and ZEB2 (Zinc finger E-box binding homeobox 2) specifically bind to multiple
enhancer boxes (E-boxes) located within the transcription regulatory regions of the E-
cadherin gene, and their interaction inhibits E-cadherin expression and, in this way, ZEB1
and ZEB2 genes serve as key drivers of EMT in multiple human cancers [16,17].

According to the TargetScan 7.2 database, both sites of ZEB1 and ZEB2 that matched
miR-203a-3p represented 8-mer in conserved 3′-untranslated regions (3′-UTRs) of the genes.
Such locations of base pairing indicated the inhibitory properties of miR-203a-3p for target
gene expression. From 608 cases of OvCa in The Cancer Genome Atlas database (TCGA-OV
data set), we selected 583 cases with primary ovarian tumors (35% were from patients
with metastases, this number was close to the histological characteristics of our cohort)
and compared expression levels of ZEB1, ZEB2, and miR-203a-3p in this sample set with
their expression levels in normal samples from the GEO database. Expression of both ZEB1
and ZEB2 was differential in OvCa samples (TCGA vs. GEO, p < 0.05) and present in all
analyzed tumor and normal tissues. MiR-203a-3p expression was dysregulated (p < 0.05)
and was detected in 98% of tumor samples and 97% of normal ovarian tissue samples.

To define the association between miR-203a-3p and the ZEB1 and ZEB2 genes, we
performed expression analysis in a subset of 26 paired OvCa samples (all samples that
were available at the time of this part of the study) using qPCR and calculated correlation
coefficients between expression levels for two miRNA–mRNA pairs (Figure 12).

Figure 12. Negative correlation between the levels of miR-203a-3p and mRNA of ZEB1 and ZEB2
(26 paired samples were analyzed, marked in Supplementary Table S1).

Spearman’s correlation coefficients for both pairs, ZEB1/miR-203a-3p and ZEB2/miR-
203a-3p, were negative: –0.41 and –0.45 (p = 0.04 and 0.02 respectively). These data
suggested direct or indirect interactions of miR-203a-3p with mRNA of ZEB1 and ZEB2
genes, and further supported the involvement of miR-203a-3p in EMT.
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2.7. Effect of Aberrant Methylation of Examined miRNA Genes on the Survival of Patients with
Ovarian Cancer

To assess the clinical significance of 20 aberrantly methylated miRNA genes, the
relationship between their methylation levels and patient survival was studied. The results
of the ROC analysis are shown in Table 2.

Table 2. The relationship between methylation levels of miRNA genes and overall survival of OvCa
patients according to the ROC analysis.

Gene AUC 95% CI Cutoff The Significance Level
(Area = 0.5) Sn Sp

MIR107 0.66 0.56–0.76 >18.89 0.004 53.7 75.9
MIR124-1 0.59 0.49–0.69 >11.24 0.124 53.7 68.5
MIR124-2 0.56 0.45–0.66 >7.19 0.345 78.1 44.4
MIR124-3 0.62 0.51–0.72 >34.97 0.043 41.5 79.6

MIR125B-1 0.64 0.53–0.73 >6.00 0.017 92.7 33.3
MIR1258 0.61 0.51–0.71 >7.96 0.051 78.1 48.2
MIR127 0.50 0.40–0.61 >5.29 0.959 73.2 37.0

MIR129-2 0.55 0.45–0.66 >36.87 0.385 53.7 66.7
MIR130B 0.68 0.57–0.77 >37.96 0.003 43.9 90.7
MIR132 0.55 0.45–0.66 ≤11.25 0.374 65.9 53.7
MIR137 0.50 0.40–0.61 >0.34 0.991 85.4 3.7

MIR148A 0.52 0.41–0.62 >29.58 0.763 26.8 87.0
MIR191 0.58 0.47–0.68 >6.77 0.199 61.0 61.1

MIR193A 0.62 0.51–0.71 >32.33 0.052 65.9 59.3
MIR203A 0.54 0.43–0.64 >32.26 0.560 36.6 74.1
MIR339 0.57 0.47–0.68 >43.76 0.231 45.0 75.0

MIR34B/C 0.67 0.56–0.76 >12.79 0.003 65.9 68.5
MIR375 0.61 0.50–0.71 >14.95 0.064 56.1 64.8
MIR9-1 0.67 0.56–0.76 >55.43 0.004 46.3 85.2
MIR9-3 0.62 0.52–0.72 >21.89 0.046 61.0 70.4

Note: AUC—area under curve, Sn—sensitivity, Sp—specificity.

Using the ROC analysis, seven hypermethylated miRNA genes (MIR107, MIR124-3,
MIR125B-1, MIR130B, MIR34B/C, MIR9-1, and MIR9-3) were identified as significantly
associated with shorter overall survival in OvCa patients. Using the cutoff values in
Table 2, it was possible to construct Kaplan–Meier curves for evaluation of patient survival
under different methylation levels of the miRNA genes. A comparison of Kaplan–Meier
curves with miRNA gene methylation above/below cutoff values using a log-rank test
demonstrated an association of overall survival with the methylation of 13 miRNA genes
(Figure 13).

Thus, according to the Kaplan–Meier analysis, methylation levels of 13 miRNA
genes (MIR107, MIR124-1, MIR125B-1, MIR1258, MIR129-2, MIR130B, MIR148A, MIR191,
MIR193A, MIR34B/C, MIR375, MIR9-1, and MIR9-3) were significantly associated with the
survival of patients with OvCa. Fisher’s exact test and Cox proportional hazards model
were additionally used to identify the miRNA genes most reliably associated with survival
and to obtain their quantitative estimates. The results are presented in Table 3.

Analysis of the obtained results allowed us to determine genes significantly associated
with patient survival according to all criteria used: MIR107, MIR125B-1, MIR130B, MIR9-1,
and MIR9-3. Among them, hypermethylation of MIR130B and MIR9-1 genes led to the
highest relative risk of death.



Int. J. Mol. Sci. 2022, 23, 1300 13 of 22

Figure 13. The Kaplan–Meier curves with miRNA gene methylation higher/lower cutoff values.



Int. J. Mol. Sci. 2022, 23, 1300 14 of 22

Table 3. The relationship between methylation levels of miRNA genes and overall survival of ovarian
cancer patients according to the Fisher’s exact test and Cox proportional hazards model.

Gene,
MIR

Frequency of
Methylation Level

Higher/Lower Cutoff
Value for Living

Patients

Frequency of
Methylation Level

Higher/Lower Cutoff
Value for Deceased

Patients

Fisher’s
Exact

Test, p

Cox
Regr., p

Odds Ratio/
95% CI

Relative Risk/
95% CI

107 13/41 22/19 0.005 0.008 3.65/1.52–8.76 2.23/1.28–3.87
124-1 17/37 22/19 0.037 0.004 2.52/1.09–5.84 1.70/1.05–2.77
124-2 30/24 32/9 0.030 0.134 2.84/1.14–7.09 1.40/1.05–1.87
124-3 11/43 17/24 0.040 0.038 2.77/1.12–6.87 2.04/1.07–3.86

125B-1 36/18 38/3 0.003 0.006 6.33/1.72–23.3 1.39/1.13–1.71
1258 28/26 32/9 0.010 0.306 3.30/1.33–8.22 1.51/1.11–2.04
127 34/20 30/11 0.378 0.178 1.60/0.66–3.89 1.16/0.88–1.53

129-2 18/36 22/19 0.060 0.124 2.32/1.00–5.34 1.61/1.00–2.58
130B 5/49 18/23 0.0002 0.003 7.67/2.53–23.2 4.74/1.92–11.71
132 25/29 27/14 0.065 0.645 2.24/0.97–5.17 1.42/0.99–2.04
137 52/2 35/6 0.072 0.528 0.22/0.04–1.18 0.89/0.77–1.02

148A 7/47 11/30 0.115 0.020 2.46/0.86–7.05 2.07/0.88–4.87
191 21/33 25/16 0.040 0.037 2.46/1.07–5.65 1.57/1.04–2.37

193A 22/32 27/14 0.022 0.063 2.81/1.21–6.52 1.62/1.09–2.39
203A 14/40 15/26 0.273 0.416 1.65/0.68–3.97 1.41/0.77–2.58
339 15/39 19/22 0.084 0.188 2.25/0.95–5.28 1.67/0.97–2.87

34B/C 17/37 27/14 0.002 0.141 4.20/1.77–9.96 2.09/1.33–3.28
375 19/35 23/18 0.060 0.077 2.35/1.02–5.41 1.59/1.01–2.51
9-1 8/46 19/22 0.001 0.017 4.97/1.88–13.1 3.13/1.52–6.42
9-3 16/38 25/16 0.003 0.025 3.71/1.57–8.75 2.06/1.28–3.32

3. Discussion

This work identified aberrantly methylated miRNA genes specifically associated
with different steps of OvCa pathogenesis and metastatic spread. As mentioned above,
in addition to hematogenous and lymphogenous metastasis, in OvCa, dissemination
of metastases to the peritoneum is observed, which is recognized as dominant in this
disease [5–8]. In connection with these data, methylation levels of 20 miRNA genes were
characterized in a representative set of 102 primary tumors, including 52 tumors of patients
without metastases and 50 tumors of patients with metastases, as well as 30 macroscopic
peritoneal metastases.

As a main result, it was shown that different groups of miRNAs were involved in
different stages of OvCa pathogenesis and metastatic spread. Among them, MIR1258,
MIR137, MIR203A, and MIR375 were the most specific. Hypermethylation of these four
miRNA genes was associated with the onset of the metastatic process in primary tumors,
while hypermethylation of the MIR148A gene was specifically associated with the formation
of secondary tumors in the peritoneum.

In a subset of 47 paired OvCa samples, a strong correlation between alterations of
methylation and expression levels for 11 out of 12 miRNAs examined by qRT-PCR (miR-
124-3p, -125b-5p, -127-5p, -129-5p, -132-3p, -137-3p, -148a-3p, -193a-5p, -203a-3p, -339-3p,
and -375-3p) was established that indicated the functional significance of hypermethylation
in the downregulation of these miRNA genes in OvCa. At the same time, for six genes, a
relationship was shown between a decrease in their expression level in primary tumors
and metastasis, which confirmed the tumor suppressor role and antimetastatic function for
a number of miRNAs studied. Downregulation in these tumors was the most statistically
significant for miR-203a-3p (p = 0.001, FDR = 0.01), which was distinguished by specific
hypermethylation only in the patients with metastases. These data suggested that hyper-
methylation of the MIR203A gene can be used as a marker predicting the development of
metastases in OvCa.
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One of the critical stages of metastasis is the epithelial–mesenchymal transition (EMT),
which is involved in different stages of the metastatic process but primarily provokes
migration and invasion of tumor cells and triggers metastasis [18,19]. Genes of miRNAs
involved in the metastasis of primary tumors may be involved in EMT. In this regard, we
determined in silico the relationship between the expression levels of miR-203a-3p and
those of the ZEB1 and ZEB2 genes, widely known as key factors of EMT in cancer, including
OvCa, and inhibitors of E-cadherin, which is responsible for maintaining the epithelial
phenotype of cells [20–23].

The sequence of miR-203a-3p is complementary to conservative sites of 3′-UTRs of
ZEB1 and ZEB2 that suggests miR-203a-3p to be a tumor suppressor. Furthermore, the
inhibitory effect of miR-203a-3p on these target genes is supported by the significant
negative correlation between the expression levels of miR-203a-3p and mRNA of ZEB1 and
ZEB2. The effect of miR-203 (the commonly used name of miR-203a-3p) on ZEB1 and ZEB2
genes was previously shown in many cancer types, such as lung, gastric, cervical, prostate,
colon, and renal cancers, as well as glioblastoma, cholangiocarcinoma, and nasopharyngeal
carcinoma, for both ZEB1 [24–28] and ZEB2 [29–34]. However, the inhibitory effect of miR-
203a-3p/miR-203 on the expression level of ZEB1 and ZEB2 in OvCa was not previously
reported in the literature (PubMed on 15 November 2021).

Our results on the negative correlation of the miR-203a-3p level with mRNA levels of
ZEB1 and ZEB2 in OvCa indicated the role of miR-203a-3p in suppressing EMT through
inhibitory interaction with these protein-coding genes, key activators of EMT. The identified
interactions of miR-203a-3p with mRNA of the ZEB1 and ZEB2 genes in OvCa can occur
through direct binding and indirectly through chains of interactions. However, direct
linking is quite likely because data on direct interactions of miR-203 with ZEB1 and ZEB2
in other cancer types were obtained, as cited above. Moreover, one site for binding miR-
203 was bioinformatically localized in 3′-UTR of ZEB1 [25] and more than one site in
3′-UTR of ZEB2 [32]. It was noted that interactions of miR-203 with ZEB1 and ZEB2
suppressed metastasis and EMT in multiple cancers and, in addition, antimetastatic miR-
203, inhibiting ZEB2, reduced tumor stemness and chemotherapy resistance, for example,
in nasopharyngeal carcinoma [31].

In 2011, Hanahan and Weinberg, analyzing biological manifestations in the process
of multistep development and progression of human tumors, included reprogramming
of tumor cells as an additional hallmark [35]. In the following reviews, Weinberg et al.
highlighted changes in transcription programs in the process of multistage tumorigenesis
and metastasis, as well as the role of epigenetic factors in the regulation of reprogramming
processes, including EMT and plasticity in cancer [18,36–38]. Moreover, there are points of
view that the mesenchymal–epithelial transition (MET) occurs in order to fix metastatic
cells in the metastatic niche, and the reversibility of EMT–MET provides plasticity for all
biological processes during cancer metastasis [39]. For example, there has been a plastic
reversion of EMT–MET during colonization of distant metastases of colon cancer in the
liver [33]. OvCa metastasis into the peritoneum is particularly flexible, it is assumed that
EMT–MET reversion is incomplete, can turn back, and the features of both epithelial and
mesenchymal cells are preserved [19,40,41].

In these processes, the regulatory function can be performed by epigenetic factors [36,42].
In line with this concept, we observed that an increase in the methylation levels of the
MIR193A and MIR9-1 genes in primary tumors was replaced by a partial decrease in
methylation levels in peritoneal macroscopic metastasis that can partially reactivate the
expression of miR-193a and miR-9 in these secondary tumors. Thus, we speculated a
partial reversal of EMT-MET with the acquisition by cells of secondary tumors of epithelial
properties and suggested a regulatory role in this reversal for miR-193a and miR-9 owing
to partial demethylation of genes encoding these miRNAs. This concept is also consistent
with our recently discovered effect of decreasing hypermethylation of a number of long
noncoding RNA genes during the transition from primary ovarian tumors to peritoneal
macroscopic metastases [43]. The features we discovered corresponded to the concept
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of cancer plasticity, including EMT–MET and their transitional forms as pEMT (partial
EMT), or a multistep dynamic continuous spectrum of plastic transition EMT–MET with
metastable intermediate states [19,44,45].

In addition, the relationship between miRNA gene methylation levels and overall
survival of OvCa patients was established using the Kaplan–Meier analysis, Fisher’s exact
test, and Cox proportional hazards model. The five genes, for which hypermethylation was
the most strictly associated with poorer overall survival of OvCa patients, were selected:
MIR107, MIR125B-1, MIR130B, MIR9-1, and MIR9-3. Worth noting, these five genes were a
part of a group of 12 genes associated with both metastatic primary tumors and advanced
stages. Among them, hypermethylation of MIR130B and MIR9-1 genes led to the greatest
relative risk of death.

Our results on the relationship between hypermethylation of MIR9-1 and MIR9-3
with a decrease in survival were consistent with the data on the effect of these miRNAs
on paclitaxel resistance in OvCa cells [46]. Downregulation of miR-130b, including that
due to the gene hypermethylation, increased the multidrug resistance of OvCa cells [47,48].
Increased resistance to therapy can result in decreased survival rates. A decrease in serum
miR-125b levels was also significantly associated with an increase in chemoresistance in
patients [49] that is consistent with our data on the relationship of MIR125B-1 methylation
with worse survival in OvCa patients. In addition, miR-125b encapsulated in hyaluronic
acid-based nanoparticles (HA-PEI-miR-125b) in combination with intraperitoneal paclitaxel
can enhance the antitumor efficacy of paclitaxel in patients with OvCa [50]. Moreover,
miR-125b-nanoparticles did not induce systemic toxicity and therefore are promising in
intraperitoneal chemotherapy of OvCa patients [50]. For miR-107, only two recent studies
provided data on biological functions in OvCa. The study by Tang et al. [51] showed
the ability of miR-107 to suppress proliferation and induce cell cycle arrest by targeting
mRNA of CCNE1 (encodes cyclin E1), and the work by Liu et al. [52] revealed that miR-
107 inhibited cell proliferation, migration, and invasion in OvCa via targeting pyruvate
dehydrogenase kinase isozyme 4 (PDK4). There were no data on the role of miR-107 in
metastasis and on the clinical significance of this miRNA. We previously showed the role
of the hypermethylated MIR107 gene in the development and metastasis of OvCa [53], and
in the present work, we were the first to obtain data on the significant effect of MIR107
hypermethylation on a decrease in the survival rate of OvCa patients.

Our data on the specific participation of hypermethylated MIR1258, MIR137, MIR203A,
MIR375, and MIR148A in several steps of OvCa spread strengthen the literature data on
the role of miRNAs encoded by these genes in the progression, EMT, and metastasis of
OvCa and other cancers. So, miR-1258 acted as a tumor suppressor to inhibit invasion and
metastasis by targeting HPSE (heparanase) in gastric cancer and inhibited growth and EMT
via targeting SP1 in oral squamous cell carcinoma [54,55]. However, data on the association
of MIR1258 with EMT and metastasis in OvCa were not reported by other authors. MiR-137
was shown to directly target Snail and inhibit EMT in OvCa, which is an early and critical
step in metastasis [56]. MiR-375 was also demonstrated to inhibit the growth, metastasis,
and drug sensitivity of OvCa cells [57]. The decreased expression level of miR-148a in
OvCa was associated with lymph node metastasis and predicted poor prognosis [58]. In
breast cancer, data were obtained on the participation of miR-148a in the suppression of
the process of extravasation of cancer cells [59], which is in agreement with our data on
the specific function of miR-148a in the colonization of macroscopic metastases of OvCa in
the peritoneum.

It should be emphasized that in the works published by other authors on the role
of miRNAs in OvCa, attention was focused on the analysis of miRNA expression levels
and functional experiments in cell cultures. In our work, using a representative set of
clinical samples, we demonstrated the significance of DNA methylation of a large group of
20 miRNA genes in biological processes at different stages of development and metastasis
of OvCa and in the formation of peritoneal secondary tumors for the first time. Together,
our results revealed aberrantly methylated miRNA genes as epigenetic factors specifically
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involved in the regulation of various steps of OvCa pathogenesis and metastasis and
suggested novel potential biomarkers.

4. Materials and Methods
4.1. Tissue Samples

The set of samples included 102 primary ovarian tumors (primary tumors of OvCa
patients without and with metastases), 83 matched histologically normal ovarian tissues,
30 peritoneal metastases, and 15 control samples (donors, which were ovarian tissues
from deceased individuals without any cancer in their anamnesis). The characteristics
of the samples are presented in Table 4 and Supplementary Table S1. The whole set of
samples was used in the DNA methylation studies. A subset of 47 paired (tumor/normal)
ovarian samples was used for the analysis of miRNA expression. The mRNA levels of
ZEB1 and ZEB2 genes were evaluated in 26 paired OvCa samples remaining after the
miRNA expression studies. All samples were obtained from the N.N. Blokhin National
Medical Research Center of Oncology (Moscow, Russia). Most samples (77%, 79/102)
were serous ovarian adenocarcinomas. The study was performed in accordance with the
principles outlined in the Declaration of Helsinki. The samples were collected in accordance
with the guidelines issued by the Ethics Committee of the N.N. Blokhin National Medical
Research Center of Oncology and in cooperation with them. Tumor tissues and matched
histologically normal tissues were obtained from the patients after surgical resection prior
to radiation or chemotherapy and were stored in liquid nitrogen. Diagnoses were verified
by histopathology, and only the samples containing 70–80% or more tumor cells were used
in the studies. Matched controls were histologically confirmed to be normal epithelial cells.
The tumor samples were characterized based on the tumor–node–metastasis according to
the International System of Classification of Tumors, according to the staging classification
of the Union for International Cancer Control [60], and using the criteria for classification
developed by the World Health Organization (WHO) [61].

Table 4. Summary of clinical data for the sample set examined in the study.

Clinical and Histological Characteristics N = 102 With PMM
N = 30

Histological type

Borderline serous adenocarcinoma 6 0

High-grade serous adenocarcinoma 73 25

Low-grade serous adenocarcinoma 7 0

Endometrioid adenocarcinoma 9 4

Clear cell adenocarcinoma 2 0

Mucinous adenocarcinoma 2 1

Mixed epithelial tumors 2 0

Undifferentiated carcinoma 1 0

Stage

I 12 1

II 17 4

III 67 24

IV 6 1

Grade

G1 9 1

G2 27 11

G3 60 18

Grade Unknown 6 0
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Table 4. Cont.

Clinical and Histological Characteristics N = 102 With PMM
N = 30

Size

T1 12 1

T2 18 4

T3 72 25

Peritoneal metastases
Absent 72 0

Present 30 30

Lymph node metastases
N0 81 30

N1 21 0

Distant metastases
M0 96 29

M1 6 1
Note: Data are given for the whole set of 102 primary tumors (left column) and separately for a subset of
30 primary tumors with peritoneal macroscopic metastases (PMM, right column).

4.2. Bioinformatics

Protein-coding genes ZEB1 and ZEB2 were confirmed as potential targets for miR-203a-
3p using the TargetScan 7.2 (http://www.targetscan.org/, accessed on 15 November 2021)
and miRDB 6.2 (http://mirdb.org, accessed on 15 November 2021) databases. The next
step was the assessment of Spearman’s correlation coefficient and significance level for
two miRNA-mRNA pairs. For this purpose, we extracted counts of reads that overlap
at our regions of interest from the TCGA-OV project (study accession phs000178, https:
//portal.gdc.cancer.gov/projects/TCGA-OV, accessed on 15 November 2021) as a tumor
group and from GEO (accession numbers GSE14407, GSE18520, and GSE36668, https:
//www.ncbi.nlm.nih.gov/geo/, accessed on 15 November 2021) as a normal group. The
choice of data sets was determined by the requirement of the presence of expression of miR-
203a-3p and its target genes in more than 70% of samples. Using the removeBatchEffect
procedure from the limma package R-studio, we eliminated systematic errors that occurred
during the sequence alignment stage. The counts in data sets were normalized by FPKM
(Fragments Per Kilobase Million) values. The Spearman’s correlation coefficients and
significance levels were calculated with R 3.4.4.

4.3. DNA and Total RNA Isolation and Reverse Transcription

Nitrogen-frozen tissues were crushed using an Ultra-Turrax T10 basic homogenizer-
dispersant (IKA, Staufen, Germany). DNA from the tissues was isolated using phenol
extraction as per standard protocols. The quality and concentration of DNA were deter-
mined by the optical density on the NanoDrop ND-1000 spectrophotometer (Thermo Fisher
Scientific, Waltham, MA, USA). Total RNA was isolated using a guanidinium thiocyanate-
phenol-chloroform extraction protocol [62]. Before use, all RNA samples were treated with
RNase-free DNase I (Thermo Fisher Scientific) according to the manufacturer’s protocol.
The quality and concentration of RNA were evaluated using the NanoDrop ND-1000
spectrophotometer (Thermo Fisher Scientific). 28S and 18S rRNA band intensities were
estimated via electrophoresis in a 2% agarose gel using the Sub-Cell GT Horizontal Elec-
trophoresis System (Bio-Rad, Hercules, CA, USA) followed by gel imaging with the Gel
Doc XR+ Gel Documentation System (Bio-Rad). The RNA was considered acceptable for
further use if the bands of the 28S and 18S rRNAs had an intensity ratio of about 2:1, and
the A260/A280 ratio was in the range 1.8–2.1. All cDNA was synthesized from 1 µg of total
RNA using the MMLV reverse transcriptase and random specific set of oligonucleotides
according to the manufacturer’s protocol (Thermo Fisher Scientific).

http://www.targetscan.org/
http://mirdb.org
https://portal.gdc.cancer.gov/projects/TCGA-OV
https://portal.gdc.cancer.gov/projects/TCGA-OV
https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
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4.4. Quantitative PCR (qPCR) for Expression Analysis

MiRNA expression levels were analyzed by qPCR using TaqMan MiRNA Assays
(Thermo Fisher Scientific): miR-124-3p (Assay ID: 001182), miR-125b-5p (Assay ID: 000449),
miR-127-5p (Assay ID: 002229), miR-129-5p (Assay ID: 000590), miR-132-3p (Assay ID:
000457), miR-137-3p (Assay ID: 001129), miR-148a-3p (Assay ID: 000470), miR-191-5p
(Assay ID: 002299), miR-193a-5p (Assay ID: 002281), miR-203a-3p (Assay ID: 000507),
miR-339-3p (Assay ID: 002184), and miR-375-3p (Assay ID: 000564). RNU48 (Assay ID:
001006) and RNU6 (Assay ID: 001093) expression levels were used as references. The
mRNA levels of ZEB1 and ZEB2 genes were assessed by qPCR using SYBR Green/ROX
qPCR Master Mix (Thermo Fisher Scientific) on a CFX96 Real-Time PCR Detection System
(Bio-Rad) with the primers and PCR conditions from the article by You et al. [63]. B2M
was used as a reference gene in the ZEB1 and ZEB2 expression study [64]. All reactions
were performed in triplicate, and each assay included negative control reactions that
lacked cDNA. Relative quantification according to the ∆∆Ct-method [65,66] was used for
data analysis. Considering expression level variability of reference genes and estimated
errors, less than twofold changes (∆∆Ct ≤1) in miRNA or mRNA levels were considered
as retentions.

4.5. Quantitative Methylation-Specific PCR (qMSP)

Bisulfite DNA conversion and qMSP were performed as previously reported [67–69].
Briefly, the Epitect Fast DNA bisulfite kit (Qiagen, Hilden, Germany) was used for bisulfite
conversion of DNA. The qPCRmix-HS SYBR reagent kit (Evrogen, Moscow, Russia) and
CFX96 Real-Time PCR Detection System (Bio-Rad) were used. The primers designed for
qMSP are listed in Supplementary Table S2. The completeness of DNA conversion was
determined using the control ACTB locus with oligonucleotides specific to the unconverted
template [68]. The absence of a PCR product in the case of unconverted DNA was checked
for each pair of primers. Commercial DNA preparation #G1471 (Promega, Madison, WI,
USA) was used as a control for unmethylated alleles. Commercial DNA preparation
#SD1131 (Thermo Fisher Scientific) was used as a positive control for 100% methylation.
The obtained data on the methylation of the studied genes were processed using the
methylation index (MI) as a criterion of the methylation level as described earlier [70]. The
MI value was calculated for each sample by the Bio-Rad software algorithm in the qPCR
Bio-Rad system.

4.6. Overall Survival Markers

For most patients, overall survival data were tracked for more than 10 years. For the
patient survival analysis depending on methylation levels of miRNA genes, the Kaplan–
Meier curves, Fisher’s exact test, Cox proportional hazards model, and log-rank test were
applied. To determine clinically significant parameters, such as the sensitivity (Sn) and
specificity (Sp), the odds ratio (OR), and relative risk (RR), and to perform the ROC
analysis, the MedCalc online calculator (https://www.medcalc.org/calc/diagnostic_test.
php, accessed on 15 November 2021) was used.

4.7. Statistical Analysis

Statistical processing of the results was carried out using the package of statistical
programs IBM SPSS Statistics 22, which included the determination of the median and in-
terquartile range. The R software environment was used to build heatmaps and correlation
matrices. To assess the significance of differences, the nonparametric Mann–Whitney U and
multiple Kruskal–Wallis tests were used. Spearman’s correlation analysis was also applied.
Differences were considered statistically significant at p ≤ 0.05. A Benjamini–Hochberg
correction for multiple comparisons was performed and FDR (false discovery rate) values
were calculated.

https://www.medcalc.org/calc/diagnostic_test.php
https://www.medcalc.org/calc/diagnostic_test.php
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