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FoxP3+ regulatory T (Treg) cells maintain immune homeostasis, promote self-tolerance,
and have an emerging role in resolving acute inflammation, providing tissue protection,
and repairing tissue damage. Some data suggest that FoxP3+ T cells are plastic,
exhibiting susceptibility to losing their function in inflammatory cytokine-rich
microenvironments and paradoxically contributing to inflammatory pathology. As a
result, plasticity may represent a barrier to Treg cell immunotherapy. Here, we discuss
controversies surrounding Treg cell plasticity and explore determinants of Treg cell
stability in inflammatory microenvironments, focusing on epigenetic mechanisms that
clinical protocols could leverage to enhance efficacy and limit toxicity of Treg cell-
based therapeutics.
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INTRODUCTION

In health, regulatory T (Treg) cells are essential for maintaining immune homeostasis and
promoting self-tolerance. These powerful immuno-modulatory cells, which comprise a subset of
CD4+ T cells expressing CD25 (IL-2Ra) and the master transcription factor FoxP3 in humans and
mice, suppress immune activation via inhibitory cell surface molecules (e.g., CTLA-4 and PD-1) and
secretion of anti-inflammatory cytokines (e.g., IL-10 and TGF-b) to dampen pro-inflammatory
effector immune cell functions (1–4). Recent data demonstrate that Treg cells also coordinate
resolution of inflammation, provide tissue protection, and orchestrate repair of tissue damage,
potentially rendering them useful to treat acute inflammation and tissue injury (5–19). Some animal
experiments and observations in humans suggest that FoxP3+ T cells can lose their identity and
function following exposure to inflammatory cytokines, resulting in loss of the canonical Treg cell
transcriptional signature and acquisition of various helper T (Th) cell pro-inflammatory functions
(20–25). Hence, the possibility of Treg cell plasticity represents a barrier to incorporating Treg cells
into clinical protocols.
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Treg cell development in the thymus involves the
establishment of a specific epigenetic landscape, which is
independent of, but complimentary to, FoxP3 expression and
is required for specification of Treg cell lineage identity and
function (26–30). Instability of Treg cell identity and function
thus results from the loss of FoxP3 expression or changes in the
epigenetic landscape. Natural Treg cells (nTreg cells) originate
from the thymus with these transcriptional and epigenetic
requirements established, persisting as a self-renewing
population in the periphery (31, 32). While nTreg cells possess
robust immunosuppressive capabilities, they comprise only 5–
10% of human peripheral CD4+ T cells, thus requiring prolonged
ex vivo expansion times (~2–5 weeks) to use them in therapeutic
transfer protocols targeting acute inflammation. These long
culture times thus limit the practicality of nTreg cells to treat
acute inflammatory diseases or to promote tissue protection and
repair following an acute injury. As naïve T cells are significantly
more abundant than nTreg cells in peripheral blood, high
numbers of induced Treg (iTreg) cells—naïve CD4+ T cells in
which FoxP3 expression and a Treg cell phenotype have been
induced by TGF-b in vitro—are rapidly obtainable, presenting a
potential alternative to nTreg cells in clinical protocols. Data
from murine studies suggest that iTreg cells can be generated
within a few days (30, 33–35), possibly facilitating the use of
iTreg cells in therapeutic transfer protocols targeting acute
inflammation and injury. Induced Treg cells lack nTreg cell-
type epigenetic patterns, particularly in DNA methylation, that
drive phenotypic stability (27, 29, 30). Thus, defining exploitable
epigenetic mechanisms that allow for nTreg cell-level stability in
iTreg cells is of particular interest in the pursuit of using iTreg
cells as immunotherapy. While minor populations of some
immune and non-immune cells can express FoxP3 (36), our
review focuses on FoxP3+ T cells.
TREG CELLS AS IMMUNOTHERAPY

The therapeutic goals of using Treg cells to induce self-tolerance
and mitigate inflammation are to ameliorate immune
dysregulation using minimal or no immunosuppressive
pharmacotherapy while allowing proper immune responses to
take place during the host response to pathogens (37). Pilot trials
of Treg cells as cellular immunotherapy in humans have
provided proof-of-concept for their use in diseases of auto-
reactivity—including type 1 diabetes, graft-versus-host disease,
and organ allo-transplantation—with promising results (38–44).
In these studies, nTreg cells were isolated from patients for
subsequent re-infusion either after storage or ex vivo expansion.
Primary strategies of isolation involve obtaining mononuclear
cells from leukopheresates, peripheral whole blood, or umbilical
cord blood followed by Treg cell sorting using immuno-magnetic
systems or flow cytometry cell sorting (45, 46). Ex vivo expansion
protocols achieve large, pure, and suppressive cell populations
while maintaining good manufacturing practice standards (47–
50). Clinical trial protocols have infused dosages as high as 5 x
109 cells, which typically take 2–5 weeks to generate. To enhance
Frontiers in Immunology | www.frontiersin.org 2
Treg cell purity during expansion, several groups have studied
the effect of culture in the presence of the mTOR inhibitor
rapamyc in , a s i t s e l e c t i ve ly promote s growth o f
CD4+CD25+FoxP3+ Treg cells while concomitantly inhibiting
CD4+CD25– (non-Treg) effector T cells at low doses (50, 51).

Beyond induction of self-tolerance, emerging evidence
demonstrates that Treg cells orchestrate resolution of
inflammation, provide tissue protection, and coordinate tissue
repair following a growing list of acute insults, including lung
injury due to pneumonia, muscle injury, dermal injury, and
vascular endothelial injury (5–18). The tissue-protective and
-reparative properties of Treg cells appear to be the result of
specific inflammatory signals, such as the cytokine IL-18 and the
alarmin IL-33. Growth factor receptor ligands such as
amphiregulin and keratinocyte growth factor may, in part,
mediate these tissue-protective and -reparative functions,
which are distinct from canonical T cell receptor (TCR)
stimulation-dependent Treg cell suppressive functions.
Promising data support broadening the use of Treg cells for
the treatment of acute inflammation and tissue injury (19).
Nevertheless, some lines of evidence suggest that Treg cells can
exhibit plasticity in inflamed and damaged microenvironments,
resulting in loss of their identity and the potential to gain pro-
inflammatory effector functions (22). Discussed below,
manipulating epigenetic determinants of Treg cell stability
could aid efforts to maintain their beneficial functions in
inflamed and damaged tissue microenvironments while
limiting the potential for conversion into pathogenic T cells.
EPIGENETIC DETERMINANTS OF TREG
CELL DEVELOPMENT AND STABILITY

Epigenetic mechanisms include a set of processes that modify
transcriptional patterns without altering the underlying DNA
sequence, allowing for heritable changes in gene expression.
DNA methylation is a dynamic epigenetic modification
mediated by a family of DNA methyltransferases (DNMTs)
that add methyl groups to the 5’ carbon of cytosine bases to
create 5-methylcytosine (5mC), which is associated with
chromatin inaccessibility and transcriptional repression (52,
53). The DNMT family member DNMT1 catalyzes
maintenance DNA methylation, and ubiquitin-like containing
PHD and RING finger domains 1 (UHRF1) recruits DNMT1 to
hemi-methylated DNA during DNA replication, serving to
maintain DNA methylation patterning in mitotic cells. DNA
demethylation occurs either passively during DNA replication or
via the catalytic activity of the ten-eleven translocation (TET)
fami ly of dioxygenases , which oxidize 5mC to 5-
hydroxymethylcytosine (5hmC) and other intermediates that
ultimately restore unmethylated cytosine at a given position
(54). Histone modifications represent another form of dynamic
epigenetic alteration to chromatin, which, in combination with
the non-catalytic domains of histone-modifying proteins,
modulates transcriptional activity (55). For example, enzymes
that promote monomethylation of lysine 4 on histone H3
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(H3K4me1) and acetylation of lysine 27 on histone H3
(H3K27ac) mark active enhancer elements and promote
transcription. Importantly, cellular metabolism provides
substrates for epigenetic writers and erasers (e .g . ,
methyltransferases and demethylases) in Treg cells (56). For
example, our group determined that the mitochondrial electron
transport chain in Treg cells is required to prevent the
accumulation of toxic metabolites such as 2-hydroxyglutarate,
which inhibits a-ketoglutarate-dependent enzymes such as the
TETs (57). We found that loss of mitochondrial electron
transport chain complex III in Treg cells results in increased
levels of 2-hydroxyglutarate, altered DNA methylation
patterning, and impaired Treg cell suppressive function.

The field has now recognized that stable Treg cell phenotype
and function depend on a specific epigenetic landscape to
maintain lineage-defining Treg cell gene expression, including
at the locus encoding FoxP3 (Table 1) (26–30). Accordingly,
nTreg cells can be distinguished from conventional T cells and
iTreg cells by characteristic DNA hypomethylation at the Foxp3
promoter and additional elements within Foxp3-associated
enhancer regions, such as the Treg cell-specific demethylated
region (TSDR), also known as conserved noncoding DNA
sequence 2 (CNS2). How the Treg cell lineage establishes and
stabilizes its epigenetic signature remains an active area of
investigation (Figure 1A). During development in the thymus,
TET enzymes and HATs, such as CBP (also known as CREBBP)
and p300, are recruited to modify the Foxp3 locus for induction
and maintenance of FoxP3 expression, which is followed by
establishment of a Treg cell-specific gene expression profile (60,
61). Epigenetic modification at the Foxp3 locus involves TET-
mediated 5hmC accumulation at the TSDR and other key
regions (59). Importantly, in the absence of these epigenetic
modifications, Treg cells can lose FoxP3 expression and gain IL-
17 expression.

Beyond the Foxp3 locus, investigators have determined that
Treg cell-specific super-enhancers—genomic regions with dense
clustering of highly active lineage-defining enhancer elements—
regulate Foxp3 and other Treg cell lineage-defining genes (58). In
thymic pre-Treg cells, the genome organizer Satb1 binds Treg cell-
specific super-enhancer sites, resulting in chromatin loop
Frontiers in Immunology | www.frontiersin.org 3
formation that allows distal regulatory elements to interact with
and recruit transcription factors and epigenetic modifiers to
activate and stabilize the Treg cell-defining gene regulatory
network. Deletion of Satb1 in double-positive thymocytes results
in impaired Treg cell-super-enhancer activation and failure to
induce Treg cell signature genes, leading to fatal autoimmunity in
vivo. These studies also revealed that DNA hypomethylation is a
distinguishing feature of the Treg cell-specific super-enhancer
landscape in Treg cells. Moreover, our work demonstrated that
the Treg cell-specific super-enhancer epigenetic pattern shown to
be causally deterministic in mice is also present in Treg cells
obtained from the alveolar spaces of patients with severe
pneumonia (67). Thus, the Treg cell-specific super-enhancer
landscape appears to be a conserved and translationally relevant
epigenetic pattern, prompting clinical trials of Treg cell infusions
for patients with the acute respiratory distress syndrome due to
severe SARS-CoV-2 pneumonia (16, 68, 69).

The role of maintenance of epigenetic marks in stabilizing lineage
identity following the initial establishment of epigenetic patterns at
Treg cell-specific super-enhancers and at other important non-
coding elements remains unclear (Figure 1B). Experimental data
suggest that some chromatin organizers necessary for lineage
specification are not required for lineage stability. Indeed, deletion
of Satb1 in differentiated Treg cells does not lead to any changes in
Treg cell numbers or phenotype, indicating that Satb1 is dispensable
for Treg cell maintenance (58). In contrast, loss of the chromatin-
modifying CoREST repressor complex disrupts FoxP3-driven
repression of Th1 cell signature genes encoding T-BET, IL-2, and
IFN-g. Consequently, loss of CoREST results in Treg cell production
of IL-2 and IFN-g, impaired Treg cell function, and enhanced anti-
tumor immunity (62).

Maintenance DNA methylation also controls Treg cell stability
following FoxP3 induction in nTreg cells. We observed that loss of
an epigenetic regulator responsible for maintenance DNA
methylation, UHRF1, at the thymic FoxP3+ stage of
development in nTreg cells leads to loss of FoxP3 expression
and a Scurfy-like phenotype (30). We went on to determine that
Treg cell-conditional deletion of UHRF1 results in failure of nTreg
cells to persist after FoxP3 induction in the thymus, generating
hyperinflammatory ex-FoxP3 cells in which loss of maintenance
TABLE 1 | Selected epigenetic modifiers discussed in the text and their role in Treg cell development and maintenance.

Epigenetic
modifier

Mechanism Role in Treg cells

Satb1 Chromatin organizer Establishes Treg cell-specific super-enhancer landscape (58)
TET enzymes DNA demethylases Induce and maintain expression of Foxp3 and other loci (59, 60)
CBP and
p300

Histone acetyltransferases
(H3K27ac)

Induce and maintain expression of Foxp3 and other loci (61)

CoREST Epigenetic repressor complex Represses Th1 cell signature genes (62)
UHRF1 DNA methyltransferase adapter

protein
Maintains repressive DNA methylation patterning at Th1 cell signature genes to stabilize the Treg cell lineage (30);
promotes proliferative capacity in colonic Treg cells (63); may regulate iTreg cell suppressive function (64)

DNMT1 Maintenance DNA methyltransferase Required for Treg cell suppressive function (65)
EZH2 Histone methyltransferase

(H3K27me3), subunit of PRC2
Deposits repressive chromatin modifications at FoxP3-bound loci (66)
See text for abbreviations.
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DNA methylation derepresses Th1 cell signature genes, including
Tbx21 (encodes T-BET). Interestingly, UHRF1-deficient ex-FoxP3
cells exhibit downregulation of the TET demethylases and DNA
hypermethylation at core Treg cell loci, including Foxp3. These
observations support a mechanism in which loss of maintenance
DNA methylation unleashes a secondary wave of DNA
methylation at core Treg cell loci to generate hyperinflammatory,
Th1-skewed, ex-FoxP3 cells. Consistent with these observations,
others found that constitutive deletion of the maintenance DNA
methyltransferase DNMT1, but not the de novo methyltransferase
DNMT3A, results in diminished numbers and suppressive
function of Treg cells (65). Interestingly, DNMT1-deficient Treg
cells maintain Treg cell-specific DNA hypomethylation patterns at
Foxp3, and we determined that UHRF1-deficient Treg cells possess
the Treg cell-specific super-enhancer landscape. Additional
Frontiers in Immunology | www.frontiersin.org 4
evidence supports that pan-T cell-specific deficiency of UHRF1
results in defective proliferation and functional maturation of
colonic Treg cells (63). Thus, nTreg cells require both a
canonical hypomethylation pattern as well as maintenance
methylation at loci encoding inflammatory programs to stabilize
their lineage identity and function. The role of maintenance DNA
methylation in stabilizing iTreg cell identity and function remains
less clear. Intriguingly, while we found that UHRF1 is dispensable
for induction of FoxP3 expression in iTreg cells (30), others
observed augmented suppressive function in iTreg cells generated
from UHRF1-deficient naïve CD4+ T cells, even in inflammatory
microenvironments (64). As inflammation may drive instability of
FoxP3+ T cells, we will explore in the following section how
microenvironmental inflammatory signals control T cell plasticity
via their influence on epigenetic modifiers.
A

B

FIGURE 1 | Development and maintenance of Treg cell epigenetic landscapes. (A) Thymic Treg cell development involves establishment of a Treg cell-specific
super-enhancer landscape at Foxp3 and other key loci. The chromatin organizer Satb1 establishes a super-enhancer landscape in Treg cells, characterized by active
enhancer histone marks, and TET-mediated DNA hypomethylation. Loci encoding effector T cell signature genes are hypermethylated. (B) Maintenance of Treg cell
epigenetic patterning requires the CoREST repressor complex (top) and the epigenetic regulator UHRF1 (bottom) to repress loci encoding inflammatory genes.
March 2022 | Volume 13 | Article 861607
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CYTOKINE SIGNALING AND THE
EPIGENETICS OF TREG CELL PLASTICITY

Plasticity refers to the capacity of CD4+ T cells to depolarize their
specialized functional programs in response to the cytokine
milieu of the local microenvironment, resulting in loss of their
functional identity and potential for a gained Th-skewed cell
phenotype (70). Careful lineage-tracing studies in mice reported
the eminent stability of the Treg cell lineage under physiologic
and inflammatory conditions (31), and others have argued that
the plasticity observed in FoxP3+ T cells in inflammatory or
lymphopenic microenvironments results from cellular
Frontiers in Immunology | www.frontiersin.org 5
heterogeneity rather than reprogramming (71). Indeed, minor
populations of conventional T cells can transiently express
FoxP3 and then differentiate into ex-FoxP3 Th-skewed cells
(72, 73). These populations retain the ability to re-express
FoxP3 upon activation, a finding correlated with the
demethylated status of the TSDR in the conventional T cell
population and possibly the Treg cell population.

Nevertheless, several lines of evidence describe plasticity
occurring in FoxP3+ T cells to produce ex-FoxP3 cells or
FoxP3+ Th-like cells in response to specific signaling events
(Figure 2A). For example, Th1-like IFN-g-secreting FoxP3+ T
cells exist in patients with relapsing-remitting multiple sclerosis,
A

B

FIGURE 2 | Cytokine-mediated epigenetic reprogramming of FoxP3+ T cell populations. (A) Specific cytokine microenvironments can repolarize FoxP3+ T cells with
variable effects on FoxP3 expression and Th cell-like phenotypes. (B) TGF-b, NRP-1, and ATRA signal to maintain Treg cell-type epigenetic patterns. Inflammatory
cytokines such as IL-6 can promote DNMT and HDAC activity to result in loss of Foxp3 gene expression and modulate PRC complexes to depress loci encoding
inflammatory genes. TF, transcription factor.
March 2022 | Volume 13 | Article 861607
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a finding recapitulated in vitro when investigators cultured Treg
cells from healthy people in the presence of IL-12 (23). IL-4
signaling promotes the development of ex-FoxP3 Th2-like cells
in the setting of chronic helminth infection (25). The presence of
an IL-6-, IL-21-, and activated B cell-rich environment in the
Peyer’s patches of mice results in FoxP3+ T cell transformation
into cells with characteristics of follicular Th (Tfh) cells that are
capable of promoting germinal center formation (21). Th17 cells
express the orphan nuclear receptor RORgt and a characteristic
cytokine signature, including IL-17. Regulation of the locus
encoding IL-17 via reciprocal actions of STAT3 and STAT5 in
part determines Th17-Treg cell plasticity, producing FoxP3+IL-
17+ or FoxP3+RORgt+ cells (20, 74, 75). Clinically, the joints of
patients with rheumatoid arthritis contain FoxP3+IL-17+ cells,
which are also present in mice with experimental joint
inflammation (24). These FoxP3+IL-17+ cells may represent a
transitional cell population moving toward complete loss of
FoxP3, as synovial fibroblast-derived IL-6 can cause
CD4+FoxP3+ T cells to lose FoxP3 expression and differentiate
into Th17 cells in mice with experimental inflammatory arthritis.
Further, treatment of patients with rheumatoid arthritis using
the IL-6R inhibitor tocilizumab resulted in significant
symptomatic benefit along with decreases in circulating Th17
cells and increases in circulating Treg cells (76). Despite
expressing RORgt, FoxP3+RORgt+ cells in the intestines of
mice demonstrate transcriptional and epigenetic profiles more
similar to FoxP3+RORgt− cells than to FoxP3−RORgt+ cells,
including demethylation at Treg cell-characteristic genes
encoding FOXP3, CTLA-4, GITR, EOS, and HELIOS.
FoxP3+RORgt+ cells retain suppressive function and are more
suppressive than FoxP3+RORgt− cells in a T cell transfer colitis
model (77, 78). Collectively, these reports identify plasticity
within FoxP3+ T cell populations that is induced and modified
by specific cytokine microenvironments.

Data suggest that epigenetic alterations underlie the ability of
FoxP3+ T cells to polarize in response to microenvironmental
inflammatory signals (Figure 2B). For example, some experiments
determined that IL-6 can promote DNMT1-mediated DNA
methylation and that histone deacetylase (HDAC) activity can
destabilize FoxP3+ T cells (79, 80). EZH2 (enhancer of zeste
homolog 2) is the enzymatic subunit of polycomb repressive
complex 2 (PRC2), which participates in histone methylation to
result in transcriptional repression. PRC1 (polycomb repressive
complex 1) maintains the repressed transcriptional state,
interacting with chromatin by recognizing PRC2-established
H3K27me3 marks in an equilibrium with other histone-
modifying complexes and repressive DNA methylation (81, 82).
In inflammatory microenvironments, FoxP3-containing
complexes incorporate EZH2, which deposits repressive
chromatin modifications at FoxP3-bound loci (66). Studies of
intestinal inflammation in inflammatory bowel disease suggested a
disrupted FoxP3-EZH2 physical interaction that investigators
recapitulated by treatment with IL-6 (83). In the context of
aging (84), we found that cell-autonomous age-related
alterations in DNA methylation drive plasticity in FoxP3+ T
cells in the inflamed lungs of aged but not young mice during
Frontiers in Immunology | www.frontiersin.org 6
recovery from influenza pneumonia (18, 85). Our studies in aged
hosts revealed co-expression of Th1- and Th17-associated
transcription factors (T-BET and RORgt) in lung FoxP3+ T cells
60 days following influenza virus infection along with expression
of cognate cytokines (IFN-g and IL-17). In contrast, other
signaling events may stabilize Treg cell-type epigenetic patterns.
Transcriptional and epigenetic analyses of human Treg cells from
inflamed synovial joints compared with peripheral blood in
pediatric patients revealed that Treg cells differentiate into
effector Treg (eTreg) cells that are suppressive in vitro and
display increased expression of core Treg cell genes (86).
Importantly, epigenetic alterations in active enhancer marks,
including H3K4me1 and H3K27ac, explained these
transcriptional differences. CD103+ intestinal dendritic cells
secrete all-trans retinoic acid (ATRA) and TGF-b to induce
histone acetylation at the CNS1 region of the FOXP3 locus to
promote FoxP3 expression while restricting Th17 polarization
(87). Experimental data suggest that neuropilin-1 (NRP-1) also
reinforces the stability of Treg cells in inflammatory environments,
as silencing of NRP-1 results in diminished FoxP3 expression with
a correlative increase in DNA methylation at the TSDR (88).
Collectively, several lines of evidence support that epigenetic
mechanisms determine FoxP3+ T cell plasticity in inflammatory
environments, prompting consideration of leveraging these
mechanisms to promote functional stability in clinical Treg cell
transfer protocols.
STABILIZING TREG CELL
IMMUNOTHERAPEUTIC FUNCTION VIA
EX VIVO EPIGENETIC MODIFICATION

Treg cell plasticity may represent an adaptive feature to regulate a
given microenvironment. Clinically, however, therapeutic
protocols will require a greater understanding of Treg cell
plasticity to maximize on-target function and limit unintended
toxic inflammation. Recent mouse studies have performed ex vivo
modifications to induced and natural Treg cells to enhance their
stability in the presence of inflammatory cytokines (Figure 3). As
inhibition of DNMTs or HDACs can induce FoxP3 expression
and support Treg cell identity, DNMT or HDAC inhibitors could
stabilize nTreg cells in culture before therapeutic infusion (11, 27,
79, 89–92). The DNMT adapter protein UHRF1 also remains a
drug target of interest. As noted above, adoptive transfer of iTreg
cells generated from UHRF1-deficient naïve CD4+ T cells display
enhanced suppressive function in colitis models (64). In contrast,
UHRF1 overexpression in T cells causes BCL6 downregulation
and decreased Tfh cell differentiation, which may serve as a
potential therapeutic target in systemic lupus erythematosus
(93). Nevertheless, the field requires further data to determine
whether modulation of UHRF1 in mature iTreg cells translates
into a more stable, suppressive, and reparative state in vivo. Studies
of HDAC inhibitors found that they are capable of promoting
thymic production of nTreg cells and inducing iTreg cells ex vivo,
leading to efficacy in attenuating inflammatory bowel disease and
March 2022 | Volume 13 | Article 861607
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promoting cardiac allograft tolerance (94). Going forward,
selective manipulation of HDAC subclass function may stabilize
and promote nTreg and iTreg cell function in clinical trial
protocols (95).

The aryl-hydrocarbon receptor (AHR) is a ligand-activated
transcription factor that functions in part through interaction
with epigenetic regulators, including the mediator complex (96).
AHR regulates Treg-Th17 cell plasticity in mice via activation by
specific ligands. AHR activation by 2,3,7,8-tetrachlorodibenzo-p-
dioxin (TCDD) induces functional Treg cells that suppress
experimental autoimmune encephalitis. Treatment of mice
with TCDD also attenuates delayed hypersensitivity responses,
which are associated with induction of Treg cells and
suppression of Th17 cells in mesenteric lymph nodes (97).
Intriguingly, treatment with AHR ligands such as TCDD or
butyrate inhibits pro-inflammatory HDAC classes I and II (97).
Hence, generation of iTreg cells or expansion of nTreg cells in
the presence of AHR ligands may stabilize the Treg cell
epigenetic landscape to maintain their identity following
therapeutic transfer.

Several investigations have examined modulation of TET
enzyme activity via treatment with the TET activator vitamin
C (ascorbic acid) or culture under low oxygen conditions to
enhance Treg cell induction and stability. Vitamin C facilitates
demethylation of the Foxp3 CNS2 enhancer region in a TET2/3-
dependent manner to increase the stability of FoxP3 expression
in TGF-b-induced Treg cells (33, 98). Further, culture of iTreg
cells under low oxygen (5%) conditions facilitates CNS2
demethylation and stabilization of FoxP3 both in vitro and
Frontiers in Immunology | www.frontiersin.org 7
in vivo, a finding that correlates with increased TET
expression. These post-hypoxia Treg cells exhibit stronger
suppressive activity in a colitis model compared with untreated
iTreg cells (34), informing potential immunotherapeutic iTreg
cell induction protocols. Moreover, activation of TET enzyme
activity during ex vivo nTreg cell expansion protocols could
likewise support their stability and function.

While CD28 is essential for optimal thymic Treg cell
development, CD28 is surprisingly dispensable for Treg cell
induction or Treg cell-specific gene hypomethylation in the
intestines of mice (35, 99). iTreg cell induction via TGF-b, IL-
2, and TCR agonism in the absence of CD28 signaling induces
nTreg cell-type DNA hypomethylation in conventional T cells
while hindering skewing toward Th cell phenotypes. Data
suggest that CD28 acts via the PKC-NF-kB signaling pathway
during iTreg cell generation and that inhibition of this pathway
enables de novo acquisition of nTreg cell-type DNA
hypomethylation. Induced Treg cells generated under
conditions of absent CD28 stimulation stably express FoxP3
after adoptive transfer and effectively suppress antigen-specific
immune responses in vivo (35). Thus, potential modifications to
standard nTreg cell culture practices or iTreg cell induction
protocols include relatively straightforward adjustments such as
reducing CD28 stimulation during cellular activation.

Cyclin-dependent kinase 8 (CDK8) and CDK19 reversibly
associate with the mediator complex as well as regulate
epigenetic events such as histone modification and chromatin
remodeling (100, 101). Inhibition of CDK8 and CDK19 in
conventional T cells induces FoxP3 expression and suppressive
function independent of TGF-b signaling in antigen-stimulated
effector-memory as well as naïve CD4+ and CD8+ T cells (102).
Importantly, inflammatory cytokines do not appear to affect the
induction of FoxP3 expression following CDK inhibition. These
results suggest that CDK8 and CDK19 physiologically repress
FoxP3 expression in activated conventional T cells, prompting
consideration of targeting CDK8 and CDK19 in ex vivo iTreg cell
generation or nTreg cell expansion protocols.

Finally, CRISPR-dCas9 epigenome editing systems may be of
use to enhance FoxP3 stability during and following Treg cell
induction or expansion. Kressler and colleagues demonstrated a
transient-transfection CRISPR-dCas9-based epigenetic editing
method for the selective de-methylation of the TSDR within
the endogenous chromatin environment of a living cell (103).
The demethylation marks were durable over weeks, including
after expression of the editing complex had ceased. Consistent
with prior data, however, successful FoxP3 induction was not
associated with a switch to a fully functional Treg cell phenotype,
highlighting importance of establishing gene expression and
methylation patterns at other key loci in the Treg cell genome.
DISCUSSION

FoxP3+ Treg cells represent a powerful cell type capable of inducing
self-tolerance, suppressing over-exuberant immune system
activation, promoting resolution of inflammation, and effecting
FIGURE 3 | Epigenetic strategies to promote Treg cell stability. Multiple
orthogonal pathways could be leveraged during ex vivo generation of iTreg
cells or expansion of nTreg cells to promote FoxP3 expression and Treg cell
stability, enhancing the efficacy of therapeutic transfer.
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protection and repair of damaged tissues. Clinical trial protocols
have applied Treg cell immunotherapy to disorders of auto- and
allo-reactivity as well as to suppress damaging inflammation and
hasten recovery from severe pneumonia. Epigenetic mechanisms,
particularly those that regulate DNA methylation, control Treg cell
lineage identity, stability, and function. Although the Treg cell
lineage displays a strong tendency toward stability, many lines of
evidence suggest that FoxP3+ T cells can exhibit plasticity in
inflammatory microenvironments, with investigators observing
both loss of canonical suppressive function and gain of
inflammatory effector functions. Going forward, manipulating the
epigenetic state of Treg cells ex vivo prior to infusion could stabilize
their identity and function to enhance clinical efficacy while limiting
the potential for off-target effects.
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