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A B S T R A C T   

As Diphenhydramine (DPH) has been considered as a drug to treat SARS-CoV-2, the degradation of DPH from water was investigated and evaluated in this study by 
adopting an advanced oxidation/advanced reduction process – the UV/sulfite process. The UV/sulfite system was able to eliminate DPH within 6 mins under UV254nm 

and 1.0 mM sulfite. It was observed that the presence of NO3
− , NO2

− , Cl− , HCO3
− , and SO4

2− anions in water can affect the performance of UV/Sulfite degradation 
system. The mechanism of UV/sulfite/anions was evaluated which the presence of NO3

− in UV/sulfite process has revealed faster initial decay rate but lower final 
DPH removal. It was observed that the UV/Sulfite process was extremely sensitive to pH as the dissociation of ion species varied among pH. The reaction became 
sluggish in acidic solution due to the dissociation of less reactive species such as HSO3

- . In alkaline solution, SO3
2- was the dominant species, producing powerful SO3

•−

and e−aq when activated by UV at 254 nm. By conducting LC/MS analysis, the degradation pathway was proposed and can be summarized into four main pathways: 
hydroxylation, side chain cleavage, losing aromatic ring or ring opening. Scavenging tests were also carried out and validated the presence of various radicals 
contributing to the reaction, including e−aq, H˙, OH˙, SO3

-̇ , O2
•- and SO4

-̇ .   

1. Introduction 

The COVID-19 caused by SARS-CoV-2 has led to a global health 
concern and safe drugs for prevention have been an urge to for pro
tecting vulnerable populations. It has been reported that antihistamine 
has a high potential to alleviate the symptoms caused by SARS-CoV-2 
[1]. Diphenhydramine - a widely used over-the-counter antihistamine 
as the form of diphenhydramine hydrochloride (DPH) to relieve symp
toms of allergy and common cold, has been discovered by an in vitro 
study to exhibit direct antiviral property against SARS-CoV-2 and the 
usage of diphenhydramine can reduce the positivity of SARS-CoV-2 in 
older subjects [2]. With the hope of using diphenhydramine for disease 
prevention, early intervention or therapy of COVID-19, extensive use of 
diphenhydramine could cause disaster to the aquatic ecosystem when 
discharged if they are not treated correspondingly. Although the 
detected concentration of pharmaceuticals and personal care products 
(PPCPs) are relatively low (less than1 μg/L) [3], they are persistent in 
the environment and can affect the metabolisms and biology of most 
aquatic lives. It has been reported that around 2–15 % of DPH are 
excreted unmetabolized and the removal of antihistamines like DPH in 
municipal wastewater treatment plants is only 69 % [4]. Among many 

kinds of pharmaceuticals discharged to the environment, DPH is one of 
them that has been specifically identified in major streams 0.01 to 0.10 
μg/L [5,6], soil (20 – 50 μg/kg) [6], and fish tissue in multiple studies 
[7–9]. According to Du, Price, Scott, Kristofco, Ramirez, Chambliss, 
Yelderman and Brooks [4], the n-octanol water partition coefficient of 
DPH (logKow = 3) was significantly higher among other water con
taminants and the presence of DPH in municipal wastewater influence 
has exhibited huge seasonal difference which the concentration was 
significantly greater in fall (530 to 600 µg/L) then winter (160 to 180 
µg/L). 

The exposure of streams ecosystems to DPH can cause a reduction of 
61 % in respiration and 99 % in photosynthesis [3]. It has been found 
that DPH could be photodegraded under sunlight in the presence of 
humic substances with half-lives of 5.4 h and is inactivated in 200 days 
using anaerobic biological treatment [10,11]. In order to facilitate DPH 
removal in wastewater treatment plant, a more efficient method is 
proposed for DPH removal. 

Previous studies of DPH removal in different photo-reactors by UV- 
C/H2O2 showed that total removal can be achieved under 150 mg/L of 
H2O2 in 60 min, while only 10 % of Total Organic Carbon (TOC) was 
removed [12]. Fenton process is also a common process to remove such 
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pharmaceuticals in wastewater. It is reported that in dosages of 15 mg/L 
and 2.5 mg/L of H2O2 and Fe2+, 60 % of DPH is removed in 60 min, 
where the removal was increased with increasing dosages of reactants 
[12]. However, such total removal required excessive dosage of H2O2 
and Fe2+, which could generate secondary pollution in effluent. There
fore, heterogeneous catalysis for DPH removal was considered. TiO2 
with UV-A was studied and around 50 % removal was achieved [12]; 
Adsorption of DPH was studied on swelling clay, activated carbon and 
aluminosilicates [13–15]. However, the adsorption process is rather 
slow, often required several hours to reach the equilibrium. To achieve 
faster reaction and better removal, advanced oxidation and reduction 
were examined. 

Sulfate radicals (SO4
-̇ ) and hydroxyl radicals (˙OH) have been widely 

applied as an oxidant under common advanced oxidation processes 
(AOPs) due to the high oxidation potential (2.5 – 3.1 V vs NHE and 1.8 – 
2.7 V vs NHE respectively) [16]. The convenient production of SO4

-̇ and 
˙OH are generated by activation of peroxymonosulfate (PMS), persulfate 
(PS) or peroxydisulfate (PDS) via UV, heat, ultrasound, electrochemical 
means [17–21], where the process can be assisted or catalyzed using 
transition metals [21]. Although the efficiency of AOPs is high, there are 
some drawbacks such as the high concentration of PMS or PDS residuals 
in the treated wastewater [22,23]. PS and PMS have been reported to 
have acute toxicity, which could pose other hazards and induce sec
ondary pollution [24,25]. Thus, an Advanced Reduction Processes 
(ARPs) by activating sulfite to generate highly reductive radicals has 
been proposed as an alternative method [26]. Comparing with PMS and 
PDS, sulfite has been considered as a cheap, efficient, and eco-friendly 
chemical for the degradation of emerging organics. The activation 
could be done by UV, high energy electron beam (HEEB), ultrasound and 
microwave [27]. It has been reported that the application of heavy metal 
– Co (III) for the activation of sulfite may contribute to significant 
drawbacks such as the leaching of heavy metals into water [28]. 
Nonetheless, the direct activation by UV irradiation was found to be the 
most effective method for persistent compounds [29,30]. Thus, the 
application of UV to activate sulfite has been proposed by previous 
studies as a green technology to degrade emerging pollutants in water 
[16]. 

UV/sulfite process has demonstrated excellent performance on the 
removal of organic pollutants and heavy metals by providing exclusive 
reducing and oxidizing agents [31,32]. It has been reported that the 
photolysis of sulfite can generate reductive species such as hydrated 
electrons (e−aq, − 2.9Vvs.NHE), Hydrogen radical (H•, − 2.3Vvs.NHE) and 
sulfite anion radicals (SO3

•− , 0.63 − 0.84 V) [33–35]. The e−aq has been 
reported as a nucleophile that can react with organic molecules by 
attaching to aromatic rings or substituting one electron on alkene double 
bonds [36]. Meanwhile, it has been demonstrated that the SO3

•− can 
further dissociate with dissolved oxygen (DO) in water to produce extra 
oxidizing agents (SO5

-̇ , SO4
-̇ and ˙OH) which can initiate AOPs [37–40]. 

Despite the high efficiencies for both AOPs and ARPs, the studies on 
the discovery of this ARP/AOP hybrid system was currently limited. 
Thus, the aim of this study is to examine the performance of UV/sulfite 
for the removal of DPH, as well as investigating the synergetic effects of 
combined AOP/ARP. Various parameters were investigated for process 
optimization and the degradation mechanisms were studied via the 
identification of the reaction pathways. 

2. Methodology 

2.1. Chemicals and reagents 

All chemicals are analytic reagent grade and all solvents and HPLC or 
LCMS grade and were used as received without further purification. 
Diphenhydramine Hydrochloride (99 %, C17H22ClNO) was purchased 
from Acros Organics, USA. Sodium Sulfite (98 %, Na2SO3) was pur
chased from BDG Laboratory Supplies, England. Acetonitrile, Methanol 

and Na2S2O3 (99 %) where purchased from Duksan. NaOH and HCl were 
used for pH adjustment and were purchased from Sigma-aldrich. Anions 
(Na2SO4, NaHCO3, NaNO2, NaNO3 and NaCl) were purchased from 
Riedel-deHaen. 

2.2. Experimental procedures 

The photodegradation was carried out in a UV reactor installed with 
three UV lamps and a mixer. The experimental setup is shown in Fig. S1. 
The UV lamps were turned on 20 min prior the experiment to ensure 
stable UV light intensity. The mixer was in fixed position to ensure ho
mogeneity throughout the reaction process. The pH of reaction mixture 
was adjusted by HCl or NaOH. 750 uL of sample was extracted from the 
suspension in specific operating time interval and was immediately 
quenched by 250 μL of methanol. For TOC measurement, 8 mL of sample 
was mixed with 12 mL of sodium thiosulfate quencher to prevent any 
interference. 

2.3. Analytical methods 

The concentration of DPH in samples were quantified by HPLC 
consisting of a Waters 2487 pump and a Waters Symmetry column (4.6 
× 150 mm, 5 μm particle size), with a flow rate of 1.0 mL/ min with 80 
μL injection volume. The detection wavelength was set at 220 nm. The 
mobile phase was a mixture acetonitrile and water at 60:20 (v/v) with 
0.1 % phosphoric acid. TOC measurement was performed using TOC-L 
analyzer purchased from Shimadzu TOC 5000A equipped with an ASI- 
5000A autosampler. The identification of reaction intermediates was 
conducted by Thermo Scientific Orbitrap Fusion Lumos Mass Spec
trometer with ESI ion source at both positive and negative mode. The 
Orbitrap resolution is 120,000 and scan range is 50–500 m/z. The 
chromatography was conducted with a Waters Dionex UltiMate 3000 
RSLCnano. The mobile phase is a mixture of A: water and B: acetonitrile. 
The gradient progressed linearly from 95 % A to 5 % from 0 to 9 min, 
and maintained at 5 % for 2 mins, and returned to initial condition in 
0.5 min and maintained for 3 mins. The flow rate was 0.3 mL/min and 
the whole program lasts for 15 mins. 

3. Results and discussions 

3.1. Effect of UV wavelengths 

Two sets of experiments were conducted under different wave
lengths with same initial [DPH] at 0.05 mM with and without sodium 
sulfite to reveal the effect of direct photolysis and UV/sulfite at different 
UV wavelengths and the result is shown in Fig. 1. In general, experi
ments with sodium sulfite performed better than direct photolysis where 
254 nm/sulfite has the best performance among all, with complete 
removal in 6 min. Without sulfite, the removal of DPH by direct 
photolysis was very limited. For 254 nm, the removal of DPH by direct 
photolysis is around 15 %, which is noticeably higher than 300 and 350 
nm (5 % and 1 %). This is because shorter wavelength can provide 
higher photon energy which more SO3

•− can be activated from sulfite. 
With the addition of sulfite, the removal of DPH at 300 nm and 350 nm 
has only increased slightly (5 % and 8 % respectively). However, the 
removal of DPH has reached 100 % at 254 nm which is significantly 
better then UV300 and UV350. Despite the higher photon energy provided 
at 254 nm, it has been demonstrated that the molar extinction coeffi
cient of sulfite is significant only at wavelength below 260 nm [41]. 
Moreover, the absorptivity of sulfite has been reported to drop from 3.0 
to zero when wavelength is greater than 260 nm [42]. Thus, the acti
vation of sulfite by UV at 300 nm and 350 nm are very limited. The 
significantly better performance of UV254/sulfite can be attributed to 
both improved photolysis and the efficient activation of sulfite to pro
duce reactive radicals for DPH degradation as shown in Eq. (1) – (5) 
[38–40,43]. Apart from the production of SO3

•− and e−aq by photolysis, 
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SO3
•− can also react with dissolved oxygen in water to form SO5

•− , with 
SO5

•− to produce SO4
•− by reacting with SO3

•− and self-scavenging. 

SO2−
3 →

hv SO•−
3 + e−aq (1)  

SO•−
3 +O2→SO•−

5 (2)  

SO•−
5 + SO•−

5 →O2 + 2SO•−
4 (3)  

SO•−
5 + SO2−

3 →SO2−
4 + SO•−

4 (4)  

SO•−
4 +H2O→H+ + SO2−

4 + HO• (5) 

Since UV254/sulfite has a desirable performance on DPH degrada
tion, this process was selected for other experiments in this study. 

3.2. Effect of sulfite dosage 

To evaluate the influence of sulfite on DPH degradation, different 
dosages of sodium sulfite ranging from 0.1 to 5.0 mM were tested as 

shown in Fig. 2. From [Sulfite]0 0.1 to 1.0 mM, the degradation rate and 
removal increased linearly. Both the reaction rate and removal are 
optimal at [Sulfite]0 = 1.0 mM. According to the decay rate constants at 
different [sulfite]0, a linear relationship was proposed when [sulfite]0 is 
less than 1.0 mM (Eq. (6)). The increase in SO3

2- supply could lead to 
more production of reactive radicals such as e−aq and SO3

•- via Eq. (6) for 
DPH degradation. However, when [sulfite]0 is further increased beyond 
its optimal, a decline in reaction rate and removal was observed. One 
possible explanation for this phenomenon is that an overdose of sulfite 
could hinder the average UV light intensity adsorbed by the solution 
[44], where the activation of sulfite could be reduced. Apart from the 
blockage of UV light, the self-scavenging effect of SO3

•- can also hinder 
the reaction as less radicals are available for reaction (Eq. (7) – (8)) 
[45]. It is also reported that e−aq can form an adduct with sulfite ions (Eq. 
(9)) [46], reducing the amount of e−aq for reaction. To minimize the 
scavenging effect, the concentration of sodium sulfite added to the re
action should be controlled to maintain the optimal sulfite radical 
quantity. In this case, [sulfite]0 = 1.0 mM was adopted for all the other 
tests. 

k = 0.26[sulfite]0 + 0.07, when [sulfite]0⩽ 1.0 mM (6)  

SO•−
3 + SO•−

3 →S2O2−
6 (7)  

SO•−
3 + SO•−

3 + H2O→SO2−
4 + HSO−

3 + H+ (8)  

e−aq + SO2−
3 − →HSO2−

3 +OH − (9)  

3.3. Effect of anions 

It has been reported that the photochemical activities of inorganic 
anions in water may affect the removal of organics in UV/sulfite system 
[35,47]. The anions that can influence the UV/sulfite system include 
NO3

− , NO2
− , Cl− , HCO3

− , and SO4
2− . Thus, these anions were 

selected in this study to evaluate their effect on UV/sulfite process. 
As shown in Fig. 3a – 3b, only the addition of NO3

− have positive 
effect on the UV/sulfite process, resulting in a faster initial decay rate (k 
= 0.138 min− 1). However, the final removal of DPH was then hindered 
after 10 min. The increase of initial rate could be due to the photolysis of 
NO3

− which extra oxidizing agents O(3P) and HO• generated (Eq. (10) – 
(12)). The reduced DPH removal could be due to the NO3

− scavenging 
effect on e−aq which reduced the overall reactive species in the system 
(Eq. (13)). 

NO−
3 →

hv NO−
2 +O

( 3P
)

(10)  

NO−
3 →

hv NO•
2 +O•− (11)  

O•− + H2O→ HO• +OH− (12)  

NO−
3 + e−aq→

(
NO•

3

)2− (13) 

To further elaborate the effect of NO3
− on DPH degradation, 

different dosages of NO3
− (10 mM, 30 mM, and 60 mM) were examined 

under both UV/sulfite process and direct photolysis (Fig. 3c – 3d). Ac
cording to Fig. 3c, increasing the dosage of NO3

− to 60 mM has neither 
increased the initial decay rate, nor hindered the final removal 
comparing with 10 mM dosage. This means that the production of re
action species (Eq. (10) – (12)) and reduction of reaction species (Eq. 
(13)) is approaching equilibrium, which higher dosage will not signifi
cantly increase nor reduce functional reaction species. According to 
Fig. 3d, increasing the dosage of NO3

− from 10 mM to 60 mM can result 
in an increase on both reaction rate and final removal under direct 
photolysis without sulfite. This can convince that the photolysis of NO3

−

has provided extra reaction species into the degradation system and has 

Fig. 1. Effect of UV wavelengths with and without sodium sulfite. Experimental 
Condition: [DPH]0 = 0.010 mM; [sulfite]0 = 1.0 mM; pH = 7.8. 

Fig.2. Effect of sulfite dosage. Experimental Condition: [DPH]0 = 0.010 mM; pH 
= 7.8; UV lamps at 254 nm were employed. 

H.L. So et al.                                                                                                                                                                                                                                     



Separation and Purification Technology 303 (2022) 122193

4

scavenged the reaction species produced from sulfite. 
All other studied anion species have reduced the reaction rate and 

removal capacity of UV/sulfite process. According to Fig. 3a, NO2
− has 

retarded the system the most among all anions. Although NO2
− can 

produce e−aq and HO• under photolysis (Eq. (14) – (16)), the HO• will 
then undergo diffusion control (Eq. (17) – (18)) to form other products 
with NO• or NO−

2 , which will significantly reduce the HO• produced. 
Moreover, NO−

2 has been reported to be an e−aq scavenger as shown in Eq. 
(19) [48]. This will reduce the reaction species in UV/sulfite system 
which resulted in strong process retardation. Comparing with Cl− an
ions, the impact of HCO3

− and SO4
2− anions towards UV/sulfite pro

cess was minimal. The Cl− anions have restricted the process because 
Cl− can scavenge the SO4

•− and HO• produced from sulfite as shown in 
Eq. (20) – (21). Besides, it has been reported that HCO3

− can also 
scavenge SO4

•− and HO• with second-order rate constant of 1.6 × 106 

M− 1 s− 1 and 8.5 × 106 M− 1s− 1 respectively [49]. Thus, HCO3
− anions 

also exhibited the ability to reduce the overall performance of UV/sulfite 
process. 

NO−
2 →

hv NO2
• + e−aq (14)  

NO2
− →

hv NO• + O•− (15)  

O•− +H2O→HO• +OH− (16)  

NO• + HO•→HNO2 (17)  

NO−
2 + HO•→NO•

2 +OH− (18)   

NO2–+→(NO2
˙ )2-                                                                           (19) 

Cl− + SO4
•− →Cl• + SO2

4− (20)  

Cl− + HO•→ClOH•− (21)  

3.4. Effect of DPH dosage 

The effect of initial DPH concentration was tested from 0.005 mM to 
0.100 mM DPH as shown in Fig. 4a. Complete removal was achieved 
with DPH initial concentration lower than 0.010 mM. As the detected 
environmental DPH in stream is less than 0.0004 μM, the system is found 
to be useful for environmental DPH treatment. The removal and reaction 
rates decrease with increasing DPH concentration, suggesting that the 
sulfite is the liming factor, where the competition between DPH and 
radicals increases with [DPH]0. Moreover, the increase in [DPH]0 causes 
more production of intermediate compounds, which will also lead to 
competition for radicals, causing even slower reaction. For accurate 
prediction of the reaction performance, the correlation between the first 
order rate constant k and 1/[DPH]0 is shown in Fig. 4b and is expressed 
as Eq. (22). The equation shows a straight-line correlation, indicating 

Fig.3. (a) Effect of anions; (b) The rate constants in the presence of different anions; (c) Effect of NaNO3 in UV/sulfite process; (d) Effect of NaNO3 using sole UV 
process. Experimental Condition: [DPH]0 = 0.010 mM; [sulfite]0 = 1.0 mM; pH = 7.8; UV lamps at 254 nm were employed. 
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that the reaction rate constant k is inversely proportional to [DPH]0. 

k = 0.003/[DPH]0 + 0.079 (22)  

3.5. Effect of initial pH under UV254/Sulfite 

The initial pH of the reaction solution is an important parameter for 
UV/sulfite degradation process as pH can affect the dominant species 
and the pathway of DPH removal. The initial pH level from 2.56 to 10.99 
were studied under the UV254/sulfite system. The results were shown in 
Fig. 5a – b and the dissociation of ion species varies at different pH are 
predicted and presented in Fig. 5c. According to Fig. 5a, it was noted 
that the optimum pH value for the removal of DPH was 10.04, which pH 
adjustments was required to achieve desired pH values for this system. 
The reaction rate in acidic pH (i.e. pH 2.7 to 5.6) was sluggish where 
only less than 30 % of DPH were removed within 30 min. According to 
Fig. 5b, although the optimum pH was observed to be 10.04, the pH 
during reaction was constant through the reaction. Instead, the pH has a 
significant drop at pH 5.12 to 7.86 which indicated that acidic reaction 
intermediates were tending to be produced under a more neutral con
dition. This is because the dissociation of H• was the highest at pH 5.12 
to 7.86 which can promote hydrogenation of intermediates to form 
–COOH compound. A summary of the reactions under acidic pH is listed 

in Table 1. 
It was observed that the reaction rate and removal efficiency was 

significantly improved in alkaline pH condition comparing with acidic 
environment. This could be due to the variation on molar absorptivity of 
sulfite under UV irradiation with pH. It has been demonstrated that an 
increase in pH from 3 to 7 can cause the absorptivity to increase for more 
than 12 folds and further pH increment results in linear increase in 
absorptivity [27], such that the UV activation is more favorable at high 
pH. 

Apart from the variation of molar absorptivity, the reaction was 
retarded at lower pH as the abundant H+ in the acidic solution causes 
scavenging effect on e−aq (Eq. 23) at k = 2.3 × 1010 M− 1s− 1 [46], such 

Fig.4. (a) Effect of initial DPH concentration and (b) Correlation between decay rate constants and [DPH]0. Experimental Condition: [sulfite]0 = 1.0 mM; pH = 7.8; 
UV lamps at 254 nm were employed. 

Fig. 5. (a) Effect of initial pH under UV/sulfite process (b) The evolution of pH during experiment (c) Theoretical dissociation of ion species at different pH levels. 
Experimental Condition: [DPH]0: 0.05 mM; [sulfite]0 = 1.00 mM; UV lamps at 254 nm were employed. 

Table 1 
Reactions in acidic pH.  

Reactions Favorable pH/ pKa Eq. 

e−aq+H+ ⇌ H Acidic / pKa = 9.7 (23) 
SO3

2- + H+ ⇌ HSO3
- pKa = 7.2 (24) 

HSO3
− →

hv SO3
•− + H• Acidic (25) 

e−aq + HSO3
– →H• + SO3

2- Acidic (26) 
e−aq + H+ →H• Acidic (27)  
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that less e−aq are available for reaction. It has been reported that the 
concentration of e−aq is at least 4 to 5 times more in pH 9 than pH 4 – 5 
[50]. According to Fig. 5c, at pH less than 7.2, SO3

2- tends to form HSO3
- 

with H+ in the solution (Eq. 24), which induced a shift of dominant 
species from SO3

2- to HSO3
- , where it has been reported that in pH 3, HSO3

- 

accounts for more than 90 % and SO3
2- for less than 10 % [51]. Although 

HSO3
- can still be activated to form radicals (Eq. 25) [51], the reaction 

rate is much less than for SO3
2- for a few reasons. First, the absorption 

coefficient of HSO3
- has an onset at a shorter wavelength at around 210 

nm, and under the studied UV wavelength (i.e. 254 nm), the absorption 
is almost four times less than that for SO3

2- [50]. Also, the quantum yield 
of HSO3

- under UV irradiation is halved compared to SO3
2- [27]. More

over, at acidic solution, abundant H+ and predominant HSO3
- ions act as 

scavengers for e−aq (Eq. 26 – 27), once again reducing the available e−aq 

for reaction. Altogether, the degradation by SO3
•− and e−aq is hindered at 

lower pH, and since the removal is similar to photolysis presented 
earlier, the removal pathway at acidic pH is proposed to be solely direct 
photolysis. 

At alkaline pH, the reaction is notably faster as the dissociation of 
SO3

2- (Eq. 24) is favored at pH higher than the pKa of DPH (pKa = 8.87), 
which resulted in more available SO3

2- for activation. It has been reported 
in previous study that at pH higher than 9, 98 % of sulfite are in the form 
of SO3

2- [52], indicating that SO3
2- is the dominant species in alkaline pH. 

At this pH range, the rate of photolysis, absorption coefficient and 
quantum yield for SO3

2- is favored in this pH range, resulting in 6 – 7 
times faster reaction. 

Moreover, it has been reported that in the presence of O2, SO3
•- can 

react together to form SO5
•- with higher reduction potential (E◦ = − 0.89 

V), which is much more powerful than SO3
•- (E◦ = − 0.72 V) [53] (Eq. 

(2)). This phenomenon occurs mainly only in alkaline pH, which SO5
•- 

further propagates to form even more powerful SO4
•- and OH• by self- 

combination (Eq. (3)) or by reaction with SO3
2- (Eq. (4) & (5)) [54]. 

At this stage, the synergetic effect of combined advanced oxidation and 
reduction (AOP/ARP) was observed. The AOP/ARP process can provide 
extra degradation pathway for DPH including hydroxylation, cleavage 
of alkylate side chain and loss of aromatic ring, resulting at a much 
better performance than in lower pH. Thus, the optimum for this reac
tion will occur at pH 10.04 as the production of SO4

•- and SO5
•- is favored. 

According to Fig. 5c, the dissociation of e−aq (Eq. 23) can reach 100 % at 
pH 10.04 which can contribute to the notable increase in reaction rate as 
the standard reduction potential of e−aq (E◦ = − 2.77 V) is higher than 
H•(E◦ = − 2.42 V) [55]. The e−aq can also reacts with dissolved oxygen to 
form another radical, O2

•- (Eq. 28) [56], which is proposed to contribute 
considerably to the increased rate. Apart from that, the DPH will be 
protonated to form DPH+ ions with pH > pKa (Eq. 29), which can also 
contribute to faster degradation of probe compound. The reactions 
involved in alkaline solution are summarized in Table 2. 

To further elaborate the impact of pH on DPH degradation with UV 
and sulfite in aqueous condition, the degradation of DPH by solely 
photolysis (Fig. S2a), solely sulfite (Fig. S2b) and solely hydrolysis 

(Fig. S2c) under various pH was examined. The results indicated that 
the reaction would be retarded at neutral pH for the three comparative 
tests which indicated that the dissociation of e−aq and DHP+ would affect 
the UV/sulfite process more significantly. In short, the UV/sulfite system 
for DPH degradation is significantly more efficient in alkaline pH due to 
physical (molar absorptivity, quantum yield), chemical (dissociation of 
desired ions at higher pH) properties and the combined effects of AOP/ 
ARP. 

3.6. Role of radical species in the UV/sulfite system 

As the activation of sulfite can be achieved by adopting UV254 irra
diation, leading to the generation of the sulfite anion radicals (SO3̇

-), 
aqueous electron (e−aq), and other oxidizing radicals (SO4

•- & OḢ) under 
aerobic conditions (Eq. (2) – (3)) [38,54,57]. Therefore, it is vital to 
investigate the dominating reactive species for the DPH degradation in 
the UV254/sulfite process. To examine the reaction mechanism, different 
types of scavengers were added to the reactions. Five types of scaven
gers, NO2

–, NO3
–, methanol, butanol and nitrogen purging were added 

into separate solutions as shown in Fig. 6. It is concluded that except for 
NO3

–, the addition of all other four kinds of scavengers caused a decline 
in removal in different degrees. The order of retardation in terms of 
reaction rate is summarized as NO2

– > Methanol > Butanol > N2 > NO3
–. 

Interestingly, the removal of oxygen via nitrogen purging did not 
cause a complete retardation, where only 38 % of decline in the 
degradation efficiency was observed. It is anticipated that the produc
tion of powerful reactive species such as SO4

•- and OH• will be hindered 
in the absence of oxygen (Eq. (2) – (3)), implying that the DPH degra
dation can be achieved using SO3

•- and/or eaq
- . The addition of NO3

– did 
not cause a notable effect on the degradation efficiency, which is un
expected due to the high capability of NO3

– to scavenge e−aq (Eq. (13)) 
[26,49]. Instead, the presence of NO3

– resulted in a positive effect on the 
degradation rate with about 20 % increment in rate constant during the 
first 10 min. This could be rationalized by two reasons: (1) the direct 
photolysis of NO3

– at UV254 produced new powerful reactive radicals 
(Eq. (10) – (12)) [58] and (2) the dominating role of SO3

•- in the DPH 
degradation. To further reveal the role of e−aq in the degradation mech
anism, NO2

– was also applied as a scavenger for e−aq (Eq. (19)) [48]. The 
addition of NO2

– showed the highest retardation effect on the DPH 
degradation among the five tests where the degradation is even slightly 
less than direct photolysis. This result suggested that the contribution of 
e−aq to the DPH degradation efficiency was minimal at pH 8.1 as the 
dissociation of e−aq at pH 8.1 was unsignificant. 

To explore the role of SO4
•- and OH•, methanol and tert-butanol al

cohols were utilized as scavengers for SO4
•- and OH•. Methanol can 

quench both SO4
-̇ and OH˙at higher efficiency (k2(SO4

-̇ ) = 0.9–1.3 × 107 

M− 1 s− 1, k2(OH•) = 0.8–1.0 × 109 M− 1 s− 1) [26,49,59] while tert- 
butanol can effectively quench OH˙only (k2(SO4

-̇ ) = 4.0–9.1 × 105 M− 1 

s− 1, k2(OH•) = 3.8–7.6 × 108 M− 1 s− 1) [26,59,60]. Conversely, the 
reactivity of SO3

•- and SO5
•- was reported to be low toward methanol and 

Table 2 
Reactions in alkaline pH.  

Reactions Favorable pH/ pKa Eq 

SO3
•- + O2 → SO5

•- Alkaline (2) 
SO5

•- + SO5
•- → 2 SO4

•- + O2 – (3) 
SO5

•-+SO3
2-→SO4

•-+SO4
2- – (4) 

SO4
2- + H2O → SO4

2- + H+ + OH• (5) 
e−aq + O2 → O2

•- pH greater than 9 (28) 
pKa = 9 (29)  
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tert-butanol [26]. The results exhibited that methanol can significantly 
inhibit the degradation performance, whereas tert-butanol can minimize 
the decay efficiency by 40 %. The difference between adding methanol 
and butanol is considered to be the reaction by SO4

-̇ . In general, methanol 
and tert-butanol scavenging tests indicate the contribution of both SO4

•- 

and OH• to the DPH degradation efficiency. The overall results of 
scavenging tests showed that SO3

-̇ , SO4
•-, OH• and e−aq are the dominate 

reactive species responsible for the DPH decay in the UV254/sulfite 
process suggesting the synergistic effect of both advanced reduction and 
advanced oxidation processes. 

3.7. DPH degradation pathways 

As illustrated in Scheme 1, a series of DPH degradation intermediates 

formed from the UV photolysis of sulfite were traced and identified by 
the UPLC-ESI-MS system. All the intermediates were verified by 
comparing their obtained experimental m/z values with the corre
sponding mass spectrum in the LC/MS library (Table S1). Based on this 
technology, the DPH degradation was elucidated through four major 
pathways, including hydroxylation (A1-A4), cleavage of alkylamine side 
chain (B1-B6), loss of aromatic ring (C1-C5), and open of aromatic ring 
(D1-D4). These reaction products are considered to be involved in 
multiple chain reactions, which could be first being oxidized, then 
reduced, or vice versa. 

Firstly, the hydroxylation was mediated by the OH• radical addition 
on the aromatic ring with the loss of H• to form A1, as OH• are expected 
to be reactive towards electron rich aromatic systems by adducting on 
the meta-, ortho-, and para-positions [61]. The mono-hydroxylation 

Fig. 6. (a) Effect of different scavengers on the degradation and (b) The rate constants at different scavengers. Experimental Condition: [DPH]0: 0.010 mM; [sulfite]0 
= 1.0 mM; pH = 8.1; UV lamps at 254 nm were employed. 

Scheme 1. Proposed DPH degradation pathways under UV/sulfite.  
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further increased the electron-rich property of phenyl ring, making it 
more readily to be di-hydroxylated [62]. While the addition of OH•

radicals on the other non-hydroxylated phenyl ring is another preferred 
way, which leads to the production of two mono-hydroxylated aromatic 
ring within a DPH molecule. Both constitutional isomers were grouped 
as intermediate A2. Likewise, A2 underwent a series of oxidation from 
the attack of reactive radicals to generate tri-hydroxylated A3 and tetra- 
hydroxylated A4, accordingly [63]. Secondly, the cleavage of alkyl
amine side chain is another possible way for DPH decay in the UV 
photolysis of sulfite. It was initiated by hydroxylation on different po
sitions of alkylamine chain to give the birth of derivatives B1. The 
further oxidation occurred on different hydroxylated sites of B1 via H- 
abstraction reaction with OH• and subsequently formed ketonic product 
B2 with several isomers. Afterwards, B3 was originated from a deme
thylation effect at N–C bond. B4 was assigned to the product of dea
midation by eaq

– /SO3
•– reaction with amine group from B2 and the 

scission of amino group from B3. Further oxidation took place on B2 or 
B4 to yield diphenylmethanol (B5) through the dissociation of benzyl or 
the break of ketone group, respectively. The benzophenone fragments 
(B6) was emerged by the further transformation of B5 based on H- 
abstraction of eaq

– /SO3
•– [64]. Thirdly, as a parallel degradation route, 

DPH was found to loss one aromatic ring, yielding the derivative C1 
which conserves single phenyl ring. Two isomers of derivative C2 could 
be assigned according to the OH• radical electrophilic adduction on the 
alkylamine chain. The ketonic products (C3) were subsequently gener
ated attributed to the H-abstraction on the hydroxyl group [65]. Further 
oxidation resulted in the scission of side chain on C3, generating C4 and 
C5 accordingly. Fourthly, the opening of aromatic ring in DPH structure 
was observed in the UV/sulfite process through the breakage of C––C 
bond in π orbitals, which give the birth of derivative D1 [66]. With the 
further attack of OH• radicals, it is expected that the aliphatic chain of 
D1 was hydroxylated first and followed by the H-abstraction to produce 
ketonic structure D2 and D3, resulting in the scission of aliphatic chain. 
Carboxylation product was also observed from converting D3 to D4. 

4. Conclusion 

This study examined the mechanism of UV254/sulfite for DPH 
degradation, and the process was able to achieve complete removal in 6 
min under desirable pH levels. The pH level of solution was discovered 
to have greatly influenced the dominant species accounting for degra
dation. In summary, at lower pH, the reaction is hindered due to the 
dissociation of ineffective HSO3

- , while at higher pH, SO3
2- is the pre

vailing species, leading to the surge of reactive SO3
•-, SO4-̇and e−aq, which 

contributed to the much faster degradation. The scavenging test has 
revealed that DPH can be degraded through both advanced oxidation 
and advanced reduction processes, where mainly SO3

-̇ , SO4
•-, OH• and e−aq 

contributed to the degradation. It is discovered that among the five 
scavengers used, NO3

– caused an increase in reaction rate due to the 
generation of an extra radical. The anions presented water will cause 
negative effect to the process. LCMS was also conducted to study the 
reaction pathway, and DPH was found to degrade into smaller molecules 
by H-abstraction, hydroxylation, side chain cleavage, losing aromatic 
ring or ring opening. 
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