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Abl family kinases are nonreceptor tyrosine kinases activated
by diverse cellular stimuli that regulate cytoskeleton organi-
zation, morphogenesis, and adhesion. The catalytic activity of
Abl family kinases is tightly regulated in cells by a complex set
of intramolecular and intermolecular interactions and post-
translational modifications. For example, the platelet-derived
growth factor receptor beta (PDGFRβ), important for cell
proliferation and chemotaxis, is a potent activator of Abl family
kinases. However, the molecular mechanism by which PDGFRβ
engages and activates Abl family kinases is not known. We
show here that the Abl2 Src homology 2 domain directly binds
to phosphotyrosine Y771 in the PDGFRβ cytoplasmic domain.
PDGFRβ directly phosphorylates multiple novel sites on the N-
terminal half of Abl2, including Y116, Y139, and Y161 within
the Src homology 3 domain, and Y299, Y303, and Y310 on the
kinase domain. Y116, Y161, Y272, and Y310 are all located at
or near the Src homology 3/Src homology 2-kinase linker
interface, which helps maintain Abl family kinases in an
autoinhibited conformation. We also found that PDGFRβ-
mediated phosphorylation of Abl2 in vitro activates Abl2 ki-
nase activity, but mutation of these four tyrosines (Y116, Y161,
Y272, and Y310) to phenylalanine abrogated PDGFRβ-medi-
ated activation of Abl2. These findings reveal how PDGFRβ
engages and phosphorylates Abl2 leading to activation of the
kinase, providing a framework to understand how growth
factor receptors engage and activate Abl family kinases.

Abl family nonreceptor tyrosine kinases, comprised of
Abl1 and Abl2 in vertebrates, translate signals from growth
factors and adhesion receptors to regulate cytoskeleton
organization and remodeling, which is essential to many
cellular processes including cell morphogenesis, adhesion,
and migration (1–9). The catalytic activity of Abl family
kinases is important in promoting actin-based cell edge
protrusions, facilitating endocytosis and phagocytosis,
mediating DNA damage responses, and regulating cell sur-
vival and proliferation in a variety of cell contexts. These
processes play essential roles in the development and
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function of the cardiovascular, brain, and immune systems,
among others (6, 8, 10–19).

The catalytic activity of Abl family kinases is tightly regulated,
and inappropriate kinase regulation drives leukemia develop-
ment and promotes solid tumor progression (18, 20–24). The
kinase activities of Abl1 and Abl2 are regulated by a complex set
of intermolecular and intramolecular interactions and post-
translational modifications (25–29). Nonactivated Abl kinases
are kept inactive via an autoinhibitory mechanism, in which the
kinase domain is held in a rigid conformation through intra-
molecular interactions with the Src homology 3 (SH3) and Src
homology 2 (SH2) domains (27–30). Models for kinase activa-
tion proposed that engagement of SH3 and SH2 domains with
cellular binding partners relieves this inhibition. Subsequent
tyrosine phosphorylation events promote adoption of an active
conformation and prevent returning back to the inactive
conformation (9, 25, 26, 29, 31). Endogenous Abl kinases are
activated by diverse stimuli including growth factors, cytokines,
DNA damage, and adhesion receptors (1–4, 7, 9, 31, 32).

Abl family kinases are activated downstream of receptor
tyrosine kinases in fibroblast and cancer cells, including the
epidermal growth factor receptor and platelet-derived growth
factor receptor (PDGFR) (1, 2, 7, 18, 21, 23). The PDGFR beta
(PDGFRβ) is an especially potent activator of Abl family ki-
nases, and Abl kinases mediate the biological effects of PDGF
including PDGF-induced dorsal membrane ruffles, cell pro-
liferation, and chemotaxis (1–3, 7, 33). PDGFR signaling
through Abl1 is upregulated during the development of
resistance to aromatase inhibitor treatment in breast cancer
(34). Previous work showed that the PDGFRβ binds Abl ki-
nases, and this is associated with increased Abl kinase activa-
tion (1–3, 7), but the molecular mechanism by which PDGFRβ
engages and activates Abl family kinases is not known.

Here, we report the molecular mechanism by which
PDGFRβ interacts with, phosphorylates, and activates Abl2
kinase. We found that PDGFRβ binds and phosphorylates
Abl2 both in vitro and in cells. We also identified several novel
tyrosine (Y) phosphorylation sites on Abl2 including Y116,
Y139, and Y161 on the SH3 domain and Y299, Y303, and Y310
on the kinase domain. Of notable interest, Y116, Y161, Y272,
and Y310 are all located near the SH3/SH2–kinase linker
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PDGFRβ regulates Abl2 activation
interface, which is crucial for keeping Abl2 in an autoinhibited
conformation. Mutation of Y116, Y161, Y272, and Y310 to
phenylalanine abrogated PDGFRβ-mediated activation on
Abl2. These findings provide a mechanism to understand how
Abl family kinases are regulated by receptor tyrosine kinases
through different phosphorylation events.
Results

The Abl2 SH2 domain binds to phosphotyrosine 771 in
PDGFRβ

Previous work demonstrated that Abl2 coimmunoprecipi-
tates with PDGFRβ from cell lysates (3), but whether the
PDGFRβ binds Abl2 directly or which protein–protein in-
terfaces mediate this interaction is not known. Upon activation
by PDGF binding, the PDGFRβ cytoplasmic domain (CD)
undergoes tyrosine autophosphorylation at multiple sites,
which recruit key adaptor and signaling proteins. We hy-
pothesized that Abl2 SH2 domain directly binds one or more
of these phosphotyrosines.
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Figure 1. The Abl2 SH2 domain binds phosphorylated PDGFRβ. A, HEK29
inactive (KI) PDGFRβ were serum starved overnight and treated with 100 ng
antibodies to PDGFRβ, phosphotyrosine-751 in PDGFRβ, or a general phospho
blots as loading controls. Molecular weight markers are indicated. Significant
phosphotyrosine antibody and a site-specific phosphor-Y751 PDGFR antibo
phosphotyrosine-binding defective (R198K) Abl2 SH2 mutant were incubated w
treated or stimulated with PDGF-BB after overnight serum starvation as in (A)
PDGF-BB. C, top three panels, WT and tyrosine (Y) to phenylalanine (F) PDGFRβ
cells and stimulated as in (A). About 40 μg of cell lysate was immunoblotted
Ponceau S-stained blots as control. Bottom panel, 500 μg of the indicated lys
bound material was immunoblotted for PDGFRβ. D, quantification of WT and
standard error from n = 3 for each condition. *p < 0.05; ****p < 0.0001. HEK
receptor beta; SH2, Src homology 2.
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PDGFRβ was expressed in human embryonic kidney 293
(HEK293) cells and activated by stimulation with PDGF-BB
(PDGF). Following stimulation, we found that PDGFRβ
could be retained on Abl2 SH2 domain–containing agarose
beads but not on beads containing the Abl2 SH2 R198K point
mutation that disrupts SH2 binding to phosphotyrosine-
containing binding partners (6, 35) (Fig. 1B). In parallel, the
kinase-inactive PDGFRβ point mutant (K634R) did not un-
dergo PDGF-stimulated autophosphorylation and was not
retained on Abl2 SH2 beads (Fig. 1, A and B). These data
indicate that autophosphorylated PDGFRβ in cell lysates can
bind the Abl2 SH2 domain.

PDGFRβ is phosphorylated at multiple sites in cells, some or
all of which could be binding interfaces for the Abl2 SH2
domain, but previous studies have not resolved which phos-
photyrosine (pY) residue(s) of PDGFRβ serve as binding sites
for the Abl2 SH2 domain. To address this, we mutated specific
tyrosine residues in the PDGFRβ CD to phenylalanine and
expressed the mutants in HEK293 cells. All mutants were
expressed at similar levels and underwent significant tyrosine
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PDGFRβ regulates Abl2 activation
phosphorylation following PDGF-BB treatment, but binding of
the PDGFRβ Y771F mutant to Abl2 SH2 domain beads was
reduced by 90% relative to WT PDGFRβ or any of the other Y
to F single-substitution mutants of PDGFRβ (Fig. 1, C and D).
Binding of PDGFRβ Y751F was also reduced but only by 10%
relative to WT controls (Fig. 1, C and D). These data suggest
that phospho-Y771 in PDGFRβ is required to interact with the
Abl2 SH2 domain.

We next used purified recombinant Abl2 SH2 domain and
PDGFRβ CD to test whether the proteins interact directly
and to measure the affinity and specificity of this interaction.
The PDGFRβ CD was comprised of the residues spanning
from the C-terminal end of the transmembrane region to the
C terminus of the protein (554M-1106L). We purified
6XHis-tagged PDGFRβ CD following baculovirus-mediated
expression in insect cells, fully dephosphorylated it in vitro
using phage lambda phosphatase, and repurified the
dephosphorylated PDGFRβ CD (Fig. 2A). We incubated
PDGFRβ CD in the presence of saturating Mg2+ and ATP for
2 h to enable it to autophosphorylate to completion (Fig. 2A).
Purified autophosphorylated PDGFRβ CD bound to the Abl2
SH2 domain beads with submicromolar affinity (Kd = 0.26 ±
0.07 μM), whereas the nonphosphorylated PDGFRβ CD only
exhibited weak background binding (Fig. 2B). As in experi-
ments using cell-derived PDGFRβ (Fig. 1B), the binding-
defective Abl2 SH2 domain R198K mutant completely
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Figure 2. Abl2 SH2 directly binds phosphorylated PDGFRβ cytoplasmic d
recombinant purified proteins used in this figure. About 50 ng of recombina
photyrosine (4G10). B–E, the concentration dependence of nonphosphoryla
phorylated PDGFRβ CD (Y771F) (D) binding to Abl2 SH2 domain and phospho
increasing concentration of PDGFRβ CD from 0 to 2 μM in binding reaction w
concentration of 1 μM. Pulldown products were separated by SDS-PAGE, gel ba
using ImageJ. One-site–specific binding isotherms were fit using ImageJ. Th
0.07 μM. Error bars represent standard error from n = 3. PDGFRβ, platelet-der
abolished binding to autophosphorylated PDGFRβ CD
(Fig. 2C). While the PDGFRβ CD Y771F mutant was able to
autophosphorylate in vitro, the amount of protein binding to
Abl2 SH2 domain–containing beads was greatly reduced
compared with WT (Fig. 2, A, D, and E). The Abl2 SH2
domain might bind to other minor phosphorylated tyro-
sine(s) in the Y771F PDGFR construct, which could explain
the small amount of residual PDGFRβ CD Y771F pulled
down by SH2 beads (Fig. 2D). Together, our data indicate
that the Abl2 SH2 domain binds directly to phosphorylated
Y771 interface on the PDGFR CD.
PDGFRβ directly phosphorylates the Abl2 N-terminal half on
multiple novel sites

Abl2 kinase activity is activated by phosphorylation (26). We
used an in vitro kinase assay to measure whether purified re-
combinant PDGFRβ CD phosphorylates Abl2. We expressed
maltose-binding protein (MBP)-Abl2 full length (encompass-
ing the first common exon to C terminus), MBP-Abl2 C ter-
minus (residues 557–1182, �120 KDa) and a 6XHis-tagged
Abl2 N terminus (Abl2N; residues 74–557, �55 KDa) in insect
cells and purified them (Fig. 3A). The Abl2 kinase domain–
containing constructs carried two inactivating mutations
(D307N and K317M) in the kinase domain, which eliminates
possible Abl2 autophosphorylation. In the presence of Mg2+
0                                     2
P-PDGFRβ 

0                                     2  μM
P-PDGFRβ 

Abl2-SH2 Abl2-SH2 (R198K)     beads 

100

75

0                                     2
P-PDGFRβ 

0                                     2  μM
unphospho PDGFRβ 

Abl2-SH2         Abl2-SH2            beads   

100

75

0                                     2
P-PDGFRβ 

0                                     2  μM
         P-PDGFRβ (Y771F) 

Abl2 SH2         Abl2 SH2            beads     

100

75

kDa

kDa

kDa

omain (CD) in vitro. A, Coomassie blue–stained gel showing the purity of
nt PDGFRβ CD was immunoblotted with antibodies to PDGFRβ and phos-
ted PDGFRβ CD (B), autophosphorylated PDGFRβ CD (C), and autophos-
tyrosine-binding defective (R198K) Abl2 SH2 mutant (C) were measured. An
as pulled down by agarose beads covalently coupled to Abl2 SH2 at a final
nds were resolved with Coomassie blue stain, and densities were quantified
e Kd value for phosphorylated PDGFR CD and Abl2 SH2 domain is 0.26 ±
ived growth factor receptor beta; SH2, Src homology 2.

J. Biol. Chem. (2021) 297(1) 100883 3



A

Abl2 C-term

Abl2 N-term

C-term

Abl2 FL

SH3 SH2 Kinase

SH3 SH2 Kinase

    557                                                                    1182    

   74                                                                      557    

74   107   167  173     263   288                539    557                                                                    1182   

C-term
K317M D407N

K317M D407N

B MBP-Abl2 
      FL

His-Abl2 
 N-term

MBP-Abl2
 C-term

0.5    1      2       0.5   1      2       0.5   1      2      μM      0

:Phosphor-
     scan

D

1: His-Abl2 N-term
2: MBP-Abl2 FL
3: MBP-Abl2 C-term

MW

250
150

KDa

100
75

50

1       2      3

5 nM PDGFRβ

C
His-Abl2 N-term

0                           2          0                           2    μM          

His-Abl2 N-term
       (R198K)

PDGFRβ (5 nM) PDGFRβ (5 nM) 

:Phosphor-
     scan

:Coomassie 
       Blue

His-Abl2 N-term
0                           2          0                           2    μM          

His-Abl2 N-term
  (Y272F, Y439F)

PDGFRβ (5 nM) PDGFRβ (5 nM) 

:Phosphor-
     scan

:Coomassie 
       Blue

KDa

50

KDa

50

Figure 3. PDGFRβ phosphorylates the Abl2 N-terminal half. A, domain architecture and purified recombinant protein of Abl2 and Abl2 N- and C-terminal
halves. Purified proteins were separated by SDS-PAGE and visualized by Coomassie blue staining. The Abl2 kinase domain–containing constructs carried two
inactivating mutations (D307N, K317M, indicated by red lines) in the kinase domain to eliminate possible Abl2 autophosphorylation. B, radioactive ATP
kinase assays were performed by preincubating 5 nM PDGFRβ CD and 0 to 2 μM Abl2 constructs for 5 min at 32 �C before initiating reactions with 5 μM ATP
and 0.75 μCi of [γ-32P] ATP for 10 min before terminating with 1× LSB, running on gels, and exposing to a phosphor imaging screen. C, radioactive ATP
kinase assays testing ability of PDGFRβ CD to phosphorylate Abl2 N-terminal and a phosphotyrosine-binding defective (R198K) Abl2 N-terminal mutant with
PDGFRβ CD as kinase. A parallel assay was performed without [γ-32P] ATP addition, separated by SDS-PAGE and visualized with Coomassie blue. The position
of molecular weight was indicated based on gel run under parallel conditions. D, left panel, radioactive ATP kinase assays of WT Abl2 N-terminal and Abl2
N-terminal (Y272F and Y439F) mutant phosphorylated by PDGFRβ CD as kinase. A parallel assay was performed without [γ-32P] ATP addition, separated by
SDS-PAGE and visualized with Coomassie blue. The position of molecular weight was indicated based on gel run under parallel conditions. Right panel, 0 to
20 μM WT Abl2 N-terminal and mutant were preincubated with 0.1 nM of PDGFRβ CD in kinase assay conditions described in (B). Reactions were quenched
with 1× LSB after 10 min, boiled, and separated on 10% SDS-PAGE, and protein bands were stained with Blue Silver G-250 Coomassie to visualize Abl2
N-terminal protein bands. Bands were cut out, and scintillation was counted. Counts per minute were converted and fit to Michaelis–Menten equation in
GraphPad to obtain kinetic parameters. Error bars represent standard error from n = 3. CD, cytoplasmic domain; LSB, Laemmli sample buffer; PDGFRβ,
platelet-derived growth factor receptor beta.

PDGFRβ regulates Abl2 activation
and ATP, 5 nM of recombinant PDGFRβ CD directly phos-
phorylated full-length Abl2 and the Abl2N but only very
weakly the Abl2 C terminus (Fig. 3B). We next investigated
whether PDGFR/Abl2 direct interaction is required for
PDGFR to phosphorylate Abl2. PDGFRβ CD phosphorylation
of the Abl2N (R198K) SH2 domain mutant, defective in
binding, was greatly reduced relative to WT Abl2N (Fig. 3C).
These results suggest that SH2 domain–mediated Abl2
recruitment to PDGFR is required for its phosphorylation.

Phosphorylation of Abl2 at Y272 in the SH2 domain-kinase
linker and Y439 in the kinase activation loop can activate its
kinase activity, and Abl1 is similarly activated via phosphory-
lation of those homologous sites (25, 26). We mutated these
sites in the Abl2N construct to test how this impacts phos-
phorylation by the PDGFRβ CD. Unexpectedly, we found that
the PDGFRβ CD could still phosphorylate Abl2N Y272F/
Y439F mutant with a similar kcat (6.8 versus 7.3 min−1) and KM
4 J. Biol. Chem. (2021) 297(1) 100883
(1.6 versus 2.8 μM) as compared with WT, suggesting that the
PDGFRβ CD phosphorylates one or more novel sites in Abl2
(Fig. 3D).

In order to identify the novel phosphorylation sites, we
performed phosphopeptide mapping with MS. Abl2N puri-
fied from insect cells was treated with a mix of Lambda
protein phosphatase and YopH for dephosphorylation.
Abl2N phosphorylated by PDGFRβ CD was monitored for
phosphorylation status at different time points. Samples
immunoblotted for phosphotyrosine show phosphorylation
intensity saturates at a reaction time of 2 h (Fig. 4A, top
panel). Phos-tag SDS-PAGE successfully separated unphos-
phorylated Abl2N and resolved multiple phosphorylated
Abl2N species in the PDGFRβ CD-treated samples. As ki-
nase reaction time increases, the intensity increases for
higher phosphorylated states of Abl2N, whereas the intensity
decreases for lower phosphorylated states and
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PDGFRβ regulates Abl2 activation
nonphosphorylated Abl2N (Fig. 4A, lower panel). The
phosphorylated Abl2N was used to perform phosphopeptide
mapping by MS to locate potential new phosphotyrosine
residues. We attempted to limit nonspecific phosphorylation
as much as possible by reducing both the kinase concen-
tration and time of phosphorylation. MS analysis identified
seven tyrosine phosphorylation sites (Fig. 4B), including
phospho-Y439, which was previously identified as an Src
family kinase (SFK)–mediated phosphorylation site (26)
(Fig. 4C) and several novel sites including phospho-Y161
(Fig. 4D).
In parallel with the MS study, we used smaller subfrag-
ments of Abl2N as substrates to identify regions phosphor-
ylated by PDGFRβ. We found that the isolated tandem SH3–
SH2 domain fragment, a fragment of the SH2 domain con-
taining the SH2–kinase linker, and the kinase domain were
all phosphorylated by PDGFRβ, indicating that PDGFRβ can
phosphorylate multiple sites as MS study suggests. To cross
examine the MS study, we created a panel of Y to F substi-
tution of phosphotyrosine identified by MS and also Y116,
which was indicated by MS as a potential phosphorylation
site but with lower confidence (Fig. 5A). Mutation of tyrosine
J. Biol. Chem. (2021) 297(1) 100883 5
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adopts a PPII helix that engages the SH3 domain. Abl2 Y116 and Y161 (Y89 and Y134 in Abl1) are located on the binding interface of SH3 domain that faces
the linker. Abl2 Y272 (Y245 in Abl1) is located on the linker and faces the N-lobe of the kinase domain. Abl2 Y310 (Y283 in Abl1) is located on the kinase N-
lobe and face the linker. CD, cytoplasmic domain; KI, kinase inactive; PDGFRβ, platelet-derived growth factor receptor beta; PPII polyproline type II; SH2, Src
homology 2; SH3, Src homology 3.

PDGFRβ regulates Abl2 activation
272 (Y272F) on the SH2–kinase linker completely abrogated
Abl2 SH2 domain phosphorylation by PDGFR, whereas the
other triple mutant constructs did not reduce phosphoryla-
tion (Fig. 5B). Mutation of three tyrosines in the SH3 domain
(Y116F, Y139F, and Y161) greatly reduces SH3–SH2 domain
phosphorylation by PDGFR (Fig. 5C). Mutations of four
6 J. Biol. Chem. (2021) 297(1) 100883
tyrosines in the kinase domain (Y299F, Y303F, Y310F, and
Y439F) also significantly reduced its phosphorylation
(Fig. 5D). Our mutagenesis kinase assay was consistent with
MS findings. Interestingly, there are several novel phos-
phorylated tyrosine residues (Y116, Y161, Y272, and Y310)
located at or near the SH3/SH2–kinase linker interface,
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which has an important regulatory role of keeping Abl family
kinases in an autoinhibited conformation (Fig. 5E) (28). We
hypothesize that PDGFRβ phosphorylation on these sites
would disrupt the autoinhibitory binding interfaces between
SH3– and SH2–kinase linker, resulting in Abl2 activation.
PDGFRβ phosphorylation activates Abl2 kinase activity

Autophosphorylation of Y272 in Abl2 and phosphorylation
of Y439 by SFKs promotes Abl2 kinase activity (26). We tested
if PDGFRβ CD phosphorylation could activate the ability of
Abl2 to phosphorylate its substrate CrkII in vitro, using puri-
fied proteins (Fig. 6A). We first incubated 1 μM of Abl2N with
10 nM of PDGFRβ and Mg2+/ATP in a 1-h activation reaction,
Figure 6. PDGFRβ phosphorylates Abl2 and modulates Abl2 kinase activ
combinant purified protein used in this figure. B, WT Abl2 N terminus, Abl2-N 4
Y310F, and Y439F) were incubated with PDGFRβ in an activation reaction. Co
vated), and Abl2-N constructs with ATP only (autoactivated). About 100 ng o
from all conditions. C and D, kinase activity was assayed by determining the k
Measurements collected along an increasing concentration (0–16 μM) of CrkII
Error bars represent the standard error from n = 3 concentration series for eac
mediated GST-CrkII phosphorylation were calculated from isotherms fit to persp
platelet-derived growth factor receptor beta.
during which we achieved significant tyrosine phosphorylation
(Fig. 6B). Control preparations include PDGFRβ only, Abl2N
without PDGFRβ/ATP (nonactivated), and Abl2N with
ATP-only (autoactivated) condition. Following these pre-
incubations, we used 1 nM of Abl2N in kinase reactions to
phosphorylate CrkII, and KM and kcat for the reaction were
measured. The catalytic efficiency (kcat/KM) value for the
nonactivated Abl2N was determined to be 0.55 μM−1 min−1,
and autophosphorylated Abl2 had a kcat/KM = 0.83 μM−1

min−1, whereas the PDGFR-activated condition was 3.15 μM−1

min−1. This result suggests that PDGFR phosphorylation on
Abl2N promotes a 5.7-fold activation over baseline and a
3.8-fold activation over autophosphorylated Abl2N (Fig. 6, B
and D).
ation in vitro. A, Coomassie blue–stained gel showing the purity of all re-
YF (Y116F, Y161F, Y272F, and Y310F), and Abl2-N 5YF (Y116F, Y161F, Y272F,
ntrol conditions include Abl2-N constructs without PDGFRβ/ATP (nonacti-
f reaction product were immunoblotted with antibody to phosphotyrosine
inetic parameter of GST-CrkII phosphorylation in [γ-32P] ATP kinase assays.
in each condition were fit to Michaelis–Menten isotherms using GraphPad.
h condition. E, KM, kcat, and the catalytic efficiency (kcat/KM) values of Abl2-N
ective conditions shown in C and D. GST, glutathione-S-transferase; PDGFRβ,
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To determine which tyrosine phosphorylation events
contribute to Abl2 kinase activation, we selected five
tyrosine residues to mutate that were suggested to be most
relevant to Abl2 kinase activation (Y116F, Y161F, Y272F,
Y310F, and Y439F), by structural modeling, to create the
Abl2N 5YF construct. Incubation with the PDGFRβ CD
did not result in Abl2N 5YF activation (Fig. 6, C and D).
SFK–mediated phosphorylation of Abl2 on Y439 phos-
phorylation within its activation loop promotes kinase
activation (26). Hence, we also tested whether restoration
of Y439, in a 4YF mutant (Y116F, Y161F, Y272F, and
Y310F), impacts activation of Abl2N by PDGFRβ. Similar
to the effects on the 5YF mutant, PDGFR phosphorylation
did not result in Abl2 4YF activation (Fig. 6, C and D).
Using an Abl2 pY439-specific antibody, we found that
PDGFRβ does not phosphorylate Tyr439 on the Abl2N
4YF mutant construct, whereas it significantly phosphor-
ylates the WT Abl2N (Fig. S1A). We also found that
autophosphorylation of the Abl2N 4YF protein does not
lead to increased kinase activity (Fig. S1, B and C). These
data suggest that PDGFR phosphorylation on one or more
of the additional sites, Y116, Y161, Y272, and Y310,
contributes to activation of Abl2N kinase activity.
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PDGFRβ binds and phosphorylates Abl2 in cells

We next investigated whether PDGFRβ binds and phos-
phorylates Abl2 in cells. PDGFRβ and Abl2-HA
(hemagglutinin) tag were coexpressed in HEK293 cells, stimu-
lated with PDGF. Both WT and kinase-inactive PDGFRβ and
WT and R198K Abl2-HA expressed at similar levels (Fig. 7A).
Only WT PDGFRβ underwent significant tyrosine phosphory-
lation following PDGF treatment (Fig. 8A). We then immuno-
precipitated Abl2 and measured Abl2 tyrosine phosphorylation
levels. In cells expressing WT PDGFRβ, PDGF stimulation
significantly increased Abl2 tyrosine phosphorylation levels by
2.2-fold, but similar increases in Abl2 tyrosine phosphorylation
were not observed in PDGF-stimulated cells expressing kinase-
inactive PDGFRβ (Fig. 7, B and C). Similarly, stimulation of the
PDGFRβ did not increase tyrosine phosphorylation of the
PDGFRβ-binding defective Abl2 R198K mutant. In fact, the
basal tyrosine phosphorylation of the Abl2 R198K mutant was
significantly lower than WT Abl2. PDGFRβ also coimmuno-
precipitated with Abl2 after PDGF stimulation, but complexes
were not detected in transfections expressing either the PDGFR
kinase inactive mutant or the R198K Abl2 mutant. These data
suggest that PDGFRβ signaling promotes Abl2 tyrosine phos-
phorylation and PDGFRβ/Abl2 interaction.
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PDGFRβ regulates Abl2 activation
PDGFR activates Abl2 kinase activity in fibroblasts

We next addressed whether PDGFRβ activation leads to
Abl2-mediated signaling events in cells. We used CRISPR in
WT mouse 3T3 fibroblast cells to achieve 90% reduction in
Abl1 levels and 88% reduction in Abl2 levels (Fig. 8B). Stim-
ulation of WT mouse fibroblasts with PDGF leads to an
eightfold increase in phosphorylation of the Abl1/Abl2 sub-
strate CrkII (Fig. 8A), but this was significantly abrogated in
Abl1/Abl2 CRISPR double KO (DKO) cells. However, we
ascribe the small increase of CrkII phosphorylation after PDGF
stimulation to this residual Abl1/Abl2 level in the DKO cells.

Discussion

We report here the molecular mechanisms by which
PDGFRβ binds, phosphorylates, and activates the Abl2 kinase.
We provide evidence that Abl2 binds to autophosphorylated
PDGFRβ both in vitro and in cells via the Abl2 SH2/PDGFRβ
phospho-Y771 interface. Abl2 recruitment results in PDGFRβ
directly phosphorylating the Abl2N on multiple sites. Using
both kinase assays with Tyr to Phe substitution and phos-
phopeptide mapping with MS, we identified up to eight
phosphotyrosine sites on Abl2. We demonstrated that
PDGFRβ phosphorylation of Abl2 results in Abl2 kinase acti-
vation both in vitro and in cells. These findings provide a
molecular mechanism to understand how receptor tyrosine
kinases activate Abl family kinases through different phos-
phorylation events.
PDGFRβ may serve as a scaffold to coordinate Abl kinase
activation with other signaling outputs

PDGF stimulation induces homodimerization of PDGFRβ as
well as heterodimerization of PDGFRα and PDGFRβ, resulting
in receptor autophosphorylation at multiple sites. These
autophosphorylated Tyr residues serve as docking sites to re-
cruit and activate multiple SH2 domain–containing signaling
proteins to elicit specific cellular responses (36, 37). Some of
these effectors have intrinsic enzymatic activities, including
SFKs, phospholipase C-γ, Ras GTPase–activating protein, and
Src homology phosphatase 2 (36–40). Among them, both SFKs
and phospholipase C-γ had previously been shown to activate
Abl family kinases through different mechanisms (1–3, 25, 26).
Interestingly, SFKs bind sites on PDGFRβ (pY579/Y581) that
are distinct from the pY771 that recruits Abl2. Thus, PDGFRβ
may serve as a scaffold to bring these proteins in proximity to
promote Abl2 activation. The dimerized form of PDGFRβ may
also facilitate Abl2 Y272 autophosphorylation in trans, which
also promotes kinase activation (25, 26). We anticipate that
other cell receptors that activate Abl family kinases, including
epidermal growth factor receptor and integrins (4, 9, 21, 41,
42), may similarly use phospho-Y residues to recruit the Abl
kinases and coregulators, thereby acting as a platform for Abl
family kinase activation.

The identification of phospho-Y771 on PDGFRβ as an Abl2-
binding site has implications for additional modes of Abl2
kinase regulation. For example, the Src homology phosphatase
J. Biol. Chem. (2021) 297(1) 100883 9
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2 tyrosine phosphatase specifically dephosphorylates Y771 in
PDGFRβ, which may restrict Abl recruitment to PDGFRβ (43).
In addition, Ras GTPase–activating protein also binds to
pY771 (39), and it may compete with Abl2 and limit PDGFRβ-
mediated Abl2 kinase activation by competing with Abl2
recruitment to the receptor.

Disruption of the SH3/SH2–kinase linker interaction through
phosphorylation may be a common mechanism in abl kinase
activation

In the inactive state, the Abl SH3 domain binds to the
praline-rich linker between the SH2 and kinase domains,
which adopt a polyproline type II helical conformation
(28, 44–46). Mutations of the SH3 domain and the linker
prolines perturb this intramolecular interaction, thereby
activating Abl kinase activity (30, 47, 48). We found that
PDGFRβ phosphorylates Abl2 on four interesting tyrosines
(Y116, Y161, Y272, and Y310) that are all located at or near
the SH3/SH2–kinase linker interface, which is critical to
keep Abl family kinases in an autoinhibited conformation
(Fig. 5D) (28). Engagement of the Abl2 SH2 domain with
PDGFRβ may disrupt this autoinhibited conformation.
Subsequent phosphorylation on one or more of these sites
would prevent re-engagement of SH3 domain with the SH2–
kinase linker and shift Abl2 into a noninhibited “open”
activated conformation. Consistent with this, previous
studies demonstrated that phosphorylation of Abl2 Y116,
Y161, and Y272 (Y89, Y134, and Y245 in Abl1) or mutation
of key Pro residues in the SH2–kinase linker prevent
engagement of Abl SH3 domain with the SH2–kinase linker
and are associated with enhanced Abl kinase activity
(26, 48–50). Abl2 SH3 domain phosphorylation may also
result in such open conformation, which releases the SH2–
kinase linker. Disrupting the autoinhibited intramolecular
interaction within Abl2 could possibly make the linker
tyrosine residue (Y245 in Abl1 and Y272 in Abl2) more
accessible and more likely to be phosphorylated by either
PDGFRβ or by an Abl family kinase in trans, which is an
important step in Abl kinase activation (25, 26).

Abl family kinase activation as a multistep process

Phosphorylation of Abl2 at Y439 (Y412 on Abl1) in the
kinase activation loop is a critical step for full kinase activation
of Abl family kinases (26, 48). However, how this process is
regulated is not fully understood. We show that PDGFRβ CD
phosphorylation on the Abl2N promotes a 5.7-fold activation
over nonactivated Abl2N in vitro. Mutation of Y116, Y161,
Y272, Y310, and Y439 (5YF) abrogated PDGFRβ-mediated
activation of Abl2 kinase activity. Surprisingly, an Abl2N
mutant in which Y439 was restored (e.g., the 4YF mutant—
Y116F, Y161F, Y272F, and Y310F) could not undergo activa-
tion by PDGFRβ. PDGFRβ does not phosphorylate Tyr439 on
the Abl2N 4YF mutant construct. Our data may be consistent
with a model in which Abl2 Y439 is not efficiently phos-
phorylated when Abl2 is in a less phosphorylated and possibly
more “autoinhibited” conformation. Our model may provide
10 J. Biol. Chem. (2021) 297(1) 100883
some insight that activation loop phosphorylation and kinase
activation may be regulated by N-terminal domain
conformation.

Our work adds to a growing body of data indicating that Abl
kinases are not simply switched between a closed autoinhibited
state and an open active state through a one-step process (9,
25, 26, 29). Instead, Abl kinases appear to be regulated by
different types and degrees of intermolecular/intramolecular
interactions and post-translational modifications across a
spectrum of activity levels (25–29). Our findings provide a
mechanism to understand how Abl kinases are precisely
regulated through multistep phosphorylation events by re-
ceptor tyrosine kinases.

Experimental procedures

Molecular cloning and recombinant protein purification

Full-length Abl2 (residues 74–1182), Abl2 N terminus
(residues 74–557), Abl2 kinase domain (residues 288–539),
and PDGFRβ CD (residues 554–1106) were cloned with an
N-terminal 6XHis tag into the pFastBac1 vector (Invitrogen),
as previously described (9). Abl2 C terminus (residues
557–1182) was cloned with an N-terminal MBP tag into the
pFastBac1 vector (Invitrogen), as previously described (51).
All Abl2 and PDGFRβ point mutants were generated using
PCR-based mutagenesis and confirmed by DNA sequencing.
Recombinant baculoviruses expressing these constructs were
generated using the Bac-to-Bac expression system (Thermo
Fisher Scientific) in Sf9 insect cells, as described previously
(9). After expression in Hi5 insect cells for 48 h, cells were
lysed in Hi5 lysis buffer (50 mM Hepes, pH 7.25, 150 mM
NaCl, 5% glycerol, 20 mM imidazole, 1 mM DTT, and
protease inhibitors [benzamidine, aprotinin, leupeptin, chy-
mostatin, pepstatin A, and phenylmethylsulfonyl fluoride]).
All 6XHis-tagged proteins were affinity purified on nitrilo-
triacetic acid resin (Qiagen) and eluted with 250 mM
imidazole. Proteins were further purified by S200 gel filtra-
tion chromatography. MBP-tagged proteins were affinity
purified on amylose resin (New England Biolabs), eluted
with 10 mM maltose and further purified by S200 gel
filtration chromatography. All proteins were buffer
exchanged into assay buffer containing 50 mM Hepes at pH
7.25, 150 mM NaCl, 5% glycerol, and 1 mM DTT using 10-
ml columns packed with Sephadex G25 resin.

The Abl2 SH3–SH2 and SH2 domains were cloned in frame
with glutathione-S-transferase (GST) into the pGEX-6P-1
vector, and GST-Abl2-SH3-SH2 and GST-Abl2-SH2 fusion
proteins were purified from BL21 (DE3) Escherichia coli cells
(Millipore Sigma) on glutathione 4B beads (GE Healthcare).
The GST tags were cleaved using PreScission protease (GE
Healthcare), as previously described (9). GST-CrkII was cloned
into pGEX-4T-1 and purified from E. coli on glutathione 4B
beads (GE Healthcare), as previously described (26). Before use
in assays, all proteins were buffer exchanged into assay buffer
containing 50 mM Hepes at pH 7.25, 150 mM NaCl, 5%
glycerol, and 1 mM DTT using 10-ml columns packed with
Sephadex G25 resin.
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Crosslinking of recombinant proteins to beads

AminoLink (Thermo Fisher Scientific) beads were used to
covalently link Abl2 SH2 domain following purification (9).
Briefly, proteins were gently rotated with AminoLink beads
overnight. About 50 mM sodium cyanoborohydride was added
to catalyze the reaction. Protein was linked at a final reaction
concentration of 1 μM, and the remaining reactive sites on
protein-linked beads were blocked with 1 M Tris–HCl, pH 8.0,
and 100 mg/ml bovine serum albumin, washed, and stored in
assay buffer.

Binding assays

Binding assays were conducted as previously described (9).
For determination of the PDGFRβ CD-Abl2 SH2 domain–
binding interface, purified Abl2 SH2 and SH2 (R198K) were
covalently linked to AminoLink beads as described previously
and added to binding reactions at a final concentration of
1 μM. For determination of Kd values, an increasing concen-
tration gradient of PDGFRβ CD constructs from 0 to 2 μMwas
used. Binding reactions were incubated for 1 h at 4 �C before
washing and resuspending in Laemmli sample buffer (LSB).
Bead-associated material were boiled and separated on SDS-
PAGE gels. Gel bands were resolved with Coomassie blue
silver stain, and densities were quantified using ImageJ (the
National Institutes of Health) (52). For measurements of Kd,
band densities were plotted against concentration of the free
solution protein, and binding isotherms were set using
GraphPad software using the one-site–specific binding equa-
tion, Y ¼ Bmax � X=ðKd þ XÞ, where Y is specific binding, X
is the concentration of the ligand, Bmax is the maximum spe-
cific binding, in the same units as Y, and Kd is the binding
affinity in the same units as X.

In vitro kinase assays

Kinase assays were performed by preincubating 5 nM
PDGFRβ CD and 0 to 2 μM Abl2 constructs in 50 mM Hepes
at pH 7.25, 150 mM NaCl, 5% glycerol, 5 mM MgCl2, 5 mM
MnCl2, 1 mM sodium pervanadate, and 1 mM DTT for 5 min
at 32 �C before initiating reactions with 5 μM ATP with
0.75 μCi of [γ-32P] ATP for 10 min before terminating with
LSB, running on gels, and exposing to a phosphor-imaging
screen. Screens were scanned using a Personal Molecular
Imager (Bio-Rad), and band densities were quantified using
ImageJ software (52).

For in vitro Abl2 activation experiments, 1 μM purified re-
combinant Abl2 constructs were preincubated with 10 nM
PDGFRβ CD for 2 h at 32 �C in 25 mM Hepes at pH 7.25,
150 mM NaCl, 5% glycerol, 5 mMMgCl2, 5 mMMnCl2, 1 mM
sodium pervanadate, 1 mM DTT, and 10 μM cold ATP. After
1 h of preincubation in room temperature, 25-μl reactions
were initiated by addition of GST-CrkII (0–16 μM as sub-
strate), 1 nM of preincubated Abl2 kinase proteins, 5 μM ATP,
and 0.5 μCi of [γ-32P] ATP. All reactions were quenched with
1× LSB after 10 min, boiled, and separated on 10% SDS-PAGE
gels. Gels were stained with Blue Silver G-250 Coomassie for
30 min to visualize GST-CrkII protein bands. Bands were cut
out, along with background regions within the same lane, and
scintillation counted along with a 1 μl sample from the kinase
assay. The number of counts per minute was calculated, and
KM and kcat values were determined as previously (9, 26).

Cell culture, construct transfection, and antibodies

Experiments were performed in HEK293 cells (American
Type Culture Collection) and mycoplasma-free WT mouse 3T3
fibroblast cells. Cells were grown in Dulbecco’s modified Eagle’s
medium supplemented with 10% fetal bovine serum, 100 units/
ml penicillin, 100 μg/ml streptomycin, and 2 mM L-glutamine.
abl2−/− and abl1−/−abl2−/− 3T3 fibroblasts were generated using
CRISPR/Cas9. A guide sequence of 50-CATGTAAAGTAA-
CACGACGG-30 with a protospacer adjacent motif (CGG) tar-
geting the seventh exon of Abl2 was inserted into
lentiCRISPRv2 plasmid (Addgene Plasmid #52961), then trans-
fected into HEK293T cells to generate Abl2sg1 lentivirus. WT
mouse 3T3 fibroblast cells were infected with the generated
Abl2sg1 lentivirus and then selected with 2 μg/ml puromycin for
72 h to generate abl2−/− 3T3 cells. Another guide sequence of
50-GTTAGTTCACCATCACTCCA-30 with a protospacer
adjacent motif (CGG) targeting the fourth exon of Abl1 was
inserted into lentiCRISPRv2 neo plasmid (Addgene Plasmid
#98292), then transfected into HEK293T cells to generate
Abl1sg1 lentivirus. WT mouse 3T3 fibroblast cells were infected
with the generated Abl2sg1 lentivirus and Abl1sg1 lentivirus
simultaneously and then selected with 2 μg/ml puromycin and
800 μg/ml G418 to generate abl1−/−abl2−/− DKO 3T3 cells.

The following antibodies were used for this study: phos-
photyrosine (4G10; Upstate/Millipore or affinity purified from
hybridomas), (P)-Y751 PDGFRβ (Cell Signaling), CrkII (Cell
Signaling), (P)-Y439 Abl2 (Thermo Fisher Scientific), (P)-Y221
CrkII (Cell Signaling), Abl2 (Ar11, Ar19; purified from hy-
bridomas), HA (12CA5 purified from hybridomas), PR4, a
rabbit polyclonal antiserum recognizing the C-terminal 13
amino acids of the human PDGFRβ was a generous gift from
Daniel Dimaio (Yale University).

In vivo PDGFRβ pulldown binding assay

HEK293 cells were transiently transfected with WT or
mutant full-length PDGFRβ using polyethylenimine trans-
fection. At 48 h after transfection, cells were serum starved
overnight with Dulbecco’s modified Eagle’s-only medium.
PDGFRβ was then stimulated with 100 nM of PDGF-BB for
10 min. Cells were lysed in radioimmunoprecipitation assay
buffer (50 mM Hepes at pH 7.25, 150 mM NaCl, 1% Nonidet
P-40, 1 mM EDTA, 1% deoxycholic acid, 0.1% SDS, 0.5 mM
sodium pervanadate, and protease inhibitor). Lysates (500 μg)
were incubated with 1 μM of Abl2 SH2-linked beads in a 500-
μl reaction overnight before washing and resuspending in LSB.
Pulldown products were boiled, separated by SDS-PAGE, and
then immunoblotted for PDGFRβ.

Immunoprecipitation

Abl2-HA was immunoprecipitated from HEK298 cells lysed
in Triton lysis buffer (25 mM Hepes at pH 7.25, 150 mM NaCl,
J. Biol. Chem. (2021) 297(1) 100883 11



PDGFRβ regulates Abl2 activation
1 mM EDTA,10% glycerol, 1% Triton X-100, 0.5 mM sodium
pervanadate, and protease inhibitor). Cell lysate (0.5 mg;
standardized to 1 mg/ml) was precleared with 20 μl of Protein
A/G Plus Agarose bead (Thermo Fisher Scientific) for 1 h at 4
�C. The precleared supernatant was incubated with 20 μl of
beads that had been incubated overnight with anti-HA anti-
body (12CA5) for 1 h at 4 �C. Immunoprecipitates were
washed three times with 0.5 ml of lysis buffer, suspended in
40 μl of LSB, and separated by SDS-PAGE for immunoblot
analysis.

Measurement of CrkII phosphorylation

WT and abl1−/−abl2−/− DKO KO mouse 3T3 fibroblasts
were serum starved overnight before stimulation with 100 nM
of PDGF-BB for 10 min. Cells were lysed in radio-
immunoprecipitation assay buffer (50 mM Hepes at pH 7.25,
150 mM NaCl, 1% Nonidet P-40, 1 mM EDTA, 1% deoxy-
cholic acid, 0.1% SDS, 0.5 mM sodium pervanadate, and pro-
tease inhibitor). Lysate (40 μg) in LSB was boiled, separated by
SDS-PAGE, and then blotted for CrkII, (P)-Y221 CrkII,
PDGFRβ, and (P)-Y751 PDGFRβ. About 500 μg of cell lysate
was precleared with A/G-agarose beads (Pierce Protein
Biology) and incubated overnight at 4 �C with Ar11 antibody
beads to immunoprecipitate Abl2. Immunocomplexes were
incubated with protein A/G-agarose beads for 1 h at 4 �C
before spinning down, washing, and resuspending in LSB.
Pulldown products were boiled, separated by SDS-PAGE,
transferred, and then immunoblotted for Abl2 and
phosphotyrosine.

In solution proteolysis and phosphopeptide enrichment

In vitro phosphorylated Abl2 (50 mg) was reduced with
DTT (10 mM, 30 min, 56 �C), alkylated with iodoacetamide
(30 mM, room temperature, 45 min in dark), and then digested
with trypsin in a trypsin-to-protein ratio of 1:20 at 37 �C
overnight. The reaction was quenched by 1% formic acid (FA;
final concentration). The resulting peptides were dried using a
SpeedVac (Thermo; SPD1010), desalted with Pierce C18 tips
(Thermo), and the phosphopeptides were enriched by Titan-
sphere Phos-TiO Kit (GL Science) according to the manu-
facturer’s protocol.

LC–MS/MS analysis

The enriched phosphopeptides were analyzed by MS using a
Dionex Ultimate 3000 nano-UHPLC system LC coupled with a
Thermo Scientific Orbitrap Velos Pro mass spectrometer. The
Dionex Ultimate 3000 system was equipped with an Acclaim
PepMap 100 (C18, 5 μm, 100 Å, 100 μm × 2 cm; Thermo
Fisher Scientific) trap column and an Acclaim PepMap RSLC
(C18, 2 μm, 100 Å, 75 μm × 50 cm; Thermo Scientific)
analytical column. Chromatographic separation of the phos-
phopeptides was achieved using a linear gradient consisted of
ultrapure water (J. T. Baker; Thermo Fisher Scientific) with
0.1% FA and acetonitrile (J. T. Baker; Thermo Fisher Scientific)
with 0.1% FA, where the gradient was from 5% B at 0 min to
40% B at 105 min. The source voltage was set in 2.1 kV, and
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the capillary temperature was set at 320 �C. The MS analysis
was performed using a top-10 data-dependent analysis in the
positive ion mode with dynamic exclusion option enabled for
30 s. MS/MS spectra were collected using collision-induced
dissociation. Data were searched against a custom-made
database, which included the sequence of recombinant Abl2
in the background of E. coli database (UniProtKB; February
2018, 4435 annotated entries) using the Sequest HT algorithm.
The Proteome Discoverer, version 2.5 (Thermo Fisher Scien-
tific) was used for database search with the following param-
eters: enzyme, trypsin (full); parent mass error tolerance,
10 ppm; fragment mass error tolerance, 0.6 Da (monoisotopic);
maximum number of missed cleavage sites, two; variable
modifications of +15.995 Da (oxidation) on methionine,
and +79.996 Da (phosphorylation) on serine, threonine, and
tyrosine; fixed modification of +57.021 Da (carbamidomethy-
lation) on cysteine. Identified peptides were validated through
the false discovery rate, for which thresholds were 0.01 and
0.05 for strict and relaxed target false discovery rate,
respectively.
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