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Abstract: To aid development of phage therapy against Campylobacter, we investigated the dis-
tribution of the clustered regularly interspaced short palindromic repeats (CRISPR) systems in
fluoroquinolone (FQ)-resistant Campylobacter jejuni. A total of 100 FQ-resistant C. jejuni strains from
different sources were analyzed by PCR and DNA sequencing to determine resistance-conferring
mutation in the gyrA gene and the presence of various CRISPR systems. All but one isolate harbored
1–5 point mutations in gyrA, and the most common mutation was the Thr86Ile change. Ninety-
five isolates were positive with the CRISPR PCR, and spacer sequences were found in 86 of them.
Among the 292 spacer sequences identified in this study, 204 shared 93–100% nucleotide homology
to Campylobacter phage D10, 44 showed 100% homology to Campylobacter phage CP39, and 3 had
100% homology with Campylobacter phage CJIE4-5. The remaining 41 spacer sequences did not match
with any phages in the database. Based on the results, it was inferred that the FQ-resistant C. jejuni
isolates analyzed in this study were potentially resistant to Campylobacter phages D10, CP39, and
CJIE4-5 as well as some unidentified phages. These phages should be excluded from cocktails of
phages that may be utilized to treat FQ-resistant Campylobacter.

Keywords: Campylobacter jejuni; Cas9 gene; CRISPR-Cas system; fluoroquinolone-resistant bacteria

1. Introduction

Campylobacter jejuni causes bacterial gastroenteritis in humans worldwide and is
responsible for an estimated 1.3 million cases of diarrhea each year in the United States [1,2].
Campylobacteriosis is typically a self-limiting condition, with symptoms usually resolving
within a week, but antimicrobial therapy may be necessary in immune-compromised and
elderly patients [3,4].

Campylobacter spp. have been reported to be resistant to antibiotics including flu-
oroquinolones, beta-lactams, macrolides, and aminoglycosides [4,5]. Fluoroquinolones
(e.g., ciprofloxacin) and macrolides (e.g., azithromycin) are the primary antibiotics used
for treatment in humans, and thus resistance to these classes of drugs in Campylobacter is a
significant public health concern [6,7]. Whereas fluoroquinolone resistance develops easily,
macrolide resistance in Campylobacter is a gradual process requiring prolonged exposure
to the antibiotic [8]. In Campylobacter, quinolone antibiotics exert their effect via binding
to and interfering with the function of the DNA gyrase enzyme (consisting of GyrA and
GyrB subunits), resulting in DNA breaks and cell death [9]. DNA gyrase plays an essential
role in DNA repair, recombination, transcription, and replication. Of note, Campylobacter
does not encode topoisomerase IV (ParC/ParE), which is known to be another main target
of fluoroquinolones in many other bacteria [4,10].
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Resistance to fluoroquinolones in Campylobacter is primarily mediated by point muta-
tions in the quinolone resistance-determining region (QRDR) of GyrA, which is located
within the DNA binding site on the surface of DNA gyrase [11]. A number of different
amino acid substitutions in the QRDR such as Thr86Ile, Asp90Asn, Thr86Lys, Thr86Ala,
Thr86Val, and Asp90Tyr have been reported to be associated with fluoroquinolone re-
sistance in Campylobacter species, of which Thr86Ile (encoded by the C257T mutation in
gyrA gene) is the most frequent one leading to clinically relevant levels of antibiotic resis-
tance [8,12]. Of note, no mutations in GyrB have been found to be linked to fluoroquinolone
resistance so far in Campylobacter [13]. In addition, the multidrug efflux pump CmeABC is
critical for the development of resistance to fluoroquinolones in Campylobacter [4,14].

The clustered regularly interspaced short palindromic repeats (CRISPR) is an adaptive
immune system that protects prokaryotes against foreign genetic elements [15,16]. CRISPR
loci typically consist of short and highly conserved repetitive DNA sequences (up to
100 repeats) interspaced by variable short sequences of equal lengths (called spacers), and
an adjacent 6 to 20 genes encoding CRISPR-associated (cas) proteins [17,18]. The CRISPR-
Cas system is divided into three types (I, II, and III), each of which is further subdivided
depending on the number and structure of the cas genes [19–21]. The bacteria such as
C. jejuni, Neisseria meningitidis, Haemophilus influenzae, and Pasteurella multocida have the
type II CRISPR-Cas system comprising the cas1, cas2, and cas9 genes [15]. The cas9 gene,
which encodes the main protein component of type II CRISPR-Cas systems and mediates
both the CRISPR RNA (crRNA) processing and the intervention stages, engages in spacer
acquisition and exhibits the lowest level of diversity in protein structures [22]. This CRISPR
system recognizes foreign DNA by the RNA-guided endonuclease Cas9 along with crRNA
and trans-activating crRNA (tracrRNA) [23], commonly known as crRNA:tracrRNA duplex
or sgRNA that targets a foreign genetic element [24]. Whereas the involvement of the
CRISPR system in helping bacteria to defend against foreign invaders (i.e., phages) is
well established, its role in antimicrobial resistance remains somewhat controversial [25].
Studies have shown that although there was no notable relationship between the cas gene
presence and the pools of plasmids, integrons, or antimicrobial resistance determinants
in E. coli [26], significant reverse associations between the presence of the CRISPR-Cas
system and occurrence of antibiotic resistance were found in enterococci [27,28]. On the
other hand, the CRISPR-Cas system in C. jejuni has been reported to increase antimicrobial
resistance via regulation of certain genes [25].

Previous studies reported that Type II CRISPR-Cas loci are interchangeable by horizon-
tal gene transfer, not only among different species of the same genus [29] but also among
taxonomically distant bacterial species, although the ecological parameters involved in this
process were not further investigated [30]. However, despite the potential of horizontal
gene transfer, Type II CRISPR-Cas systems, which have a small operon size and a low
diversity in gene content, are suitable for comparative genomics and phylogenetics analysis
in bacteria [31].

Therapeutic use of phages is an approach employed in control of many foodborne
bacteria, including Campylobacter, in the food production chain [32–34]. Phage therapy is
also considered an alternative treatment method in the fight against antibiotic-resistant
bacterial strains [35]. For example, several infectious diseases caused by multidrug-resistant
bacteria have been mitigated successfully with the aid of phage therapy [36]. In addition,
CRISPR-Cas9 technology has increasingly been employed to revolutionize the biological
research on many fronts in recent years [35]. For instance, it was used successfully to
introduce point mutations, deletions, and insertions into the lactococcal phage p2 [37].
CRISPR-Cas9 was also used to inject a red fluorescent protein into the Klebsiella phage
phiKpS2 with an efficiency of 87.5% [38]. To make phage therapy effective, it is necessary
to determine the distribution of phage–immune (i.e., CRISPR) systems in fluoroquinolone
(FQ)-resistant C. jejuni isolates. The main focus of this study was to investigate the CRISPR
system in FQ-resistant C. jejuni because FQ resistance is highly prevalent and alternative
treatment strategies such as phage therapy are urgently needed to combat FQ-resistant
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C. jejuni. Toward this goal, we investigated the CRISPR systems of FQ-resistant C. jejuni
isolates derived from various sources (human, animal, and environment). The information
may be used to identify naive phages (to which FQ-resistant C. jejuni is not immune) that
can potentially be used for the treatment of FQ-resistant Campylobacter in future.

2. Results
2.1. Antimicrobial Susceptibility of All Isolates

Susceptibility profiles of 100 isolates of C. jejuni recovered from cattle, broiler chicken,
turkey, and sheep feces as well as retail chicken meat to nine antimicrobial drugs were
determined. All of the isolates showed resistance to either ciprofloxacin or nalidixic acid
(99 were resistant to ciprofloxacin and 96 were resistant to nalidixic acid). There were
four isolates resistant to ciprofloxacin (a fluoroquinolone) only and one isolate resistant
to nalidixic acid only. Thus, for simplicity, all isolates were referred to as FQ-resistant
in this study even though one isolate was resistant to nalidixic acid (a quinolone—not
fluoroquinolone—antibiotic) only. The complete minimum inhibitory concentration (MIC)
results are shown in Table 1.

2.2. Resistance Mechanism of FQ-Resistant C. jejuni Isolates

To examine the mechanisms of FQ resistance, the QRDR in gyrA of 100 C. jejuni
isolates was sequenced to determine the mutations associated with FQ resistance. All of
the isolates except for one harbored a single to five different types of mutations known
to be associated with FQ-resistance in Campylobacter. The most common mutation was
Thr-86-Ile. Fifty isolates had a single mutation, 16 isolates had two, 18 isolates had three,
7 isolates had four, and 9 isolates had five mutations. The phenotypic fluoroquinolone
resistance observed in a single C. jejuni isolate that did not contain any mutations in the
QRDR region of gyrA gene may have been due to other potential resistance mechanisms
such as decreased outer membrane permeability and increased efflux activity [39]. Detailed
information on the nonsynonymous mutation types of the isolates is show in Figure 1.
In addition, synonymous (silent) mutations were detected frequently in the FQ-resistant
C. jejuni isolates (results not shown). The most common silent mutations were C157T
(n = 92), A186G (n = 50), G136A (n = 49), T119C (n = 46), and C81T (n = 38), and there was
usually more than one mutation (mostly 4 to 10) in the QRDR region. The gyrA gene of
C. jejuni NCTC 11,168 was used as a reference sequence for determining the mutations in
the strains tested in this study.
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Table 1. Antimicrobial resistance profiles of 100 C. jejuni isolates tested in this study.

Antibiotic Range (µg/mL) Resistance
Breakpoints (µg/mL) * Sources (n)

No. of Isolates with an MIC (µg/mL) of: No. (%) of
Resistant Isolates0.015 0.03 0.06 0.12 0.25 0.5 1 2 4 8 16 32 64 >64

AZ 0.015–64 ≥8 CM (11) 9 2 0
CF (70) 26 36 7 0 1 0
BF (12) 1 10 1 0
TF (4) 4 0
SF (3) 1 2 0

CIP 0.015–64 ≥4 CM (11) 2 3 5 1 11 (100.0)
CF (70) 3 43 23 1 70 (100.0)
BF (12) 1 0 4 7 11 (85.0)
TF (4) 3 0 1 4 (100.0)
SF (3) 1 2 3 (100.0)

ER 0.003–64 ≥32 CM (11) 1 7 3 0
CF (70) 22 38 6 2 1 1 0
BF (12) 2 5 5 0
TF (4) 3 1 0
SF (3) 2 1 0

GN 0.12–32 ≥8 CM (11) 1 9 1 0
CF (70) 1 0 2 22 42 3 0
BF (12) 4 8 0
TF (4) 3 1 0
SF (3) 3 0

TE 0.06–64 ≥16 CM (11) 2 1 1 1 0 0 0 0 0 4 2 6 (55.0)
CF (70) 1 1 4 64 69 (99.0)
BF (12) 5 2 1 0 4 6 (46.1)
TF (4) 4 4 (100.0)
SF (3) 1 2 3 (100.0)

FL 0.03–64 ≥16 CM (11) 1 10 0
CF (70) 1 62 5 2 0
BF (12) 4 6 2 0
TF (4) 4 0
SF (3) 1 1 1 0

NA 4.0–64 ≥32 CM (11) 1 0 10 11 (100.0)
CF (70) 1 1 4 64 69 (99.0)
BF (12) 12 12 (92.3)
TF (4) 4 4 (100.0)
SF (3) 3 0
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Table 1. Cont.

Antibiotic Range (µg/mL) Resistance
Breakpoints (µg/mL) * Sources (n)

No. of Isolates with an MIC (µg/mL) of: No. (%) of
Resistant Isolates0.015 0.03 0.06 0.12 0.25 0.5 1 2 4 8 16 32 64 >64

TEL 0.015–8 ≥16 CM (11) 2 6 3 0
CF (70) 5 51 11 3 0
BF (12) 12 0
TF (4) 4 0
SF (3) 3 0

CL 0.03–16 ≥8 CM (11) 2 9 0
CF (70) 8 47 12 3 0
BF (12) 2 3 7 0
TF (4) 3 1 0
SF (3) 1 1 1 0

* CM: chicken meat, CF: cattle feces, BF: broiler feces, TF: turkey feces, SF: sheep feces, AZ: azithromycin, CIP: ciprofloxacin, ER: erythromycin, GN: gentamicin, TE: tetracycline, FL: florfenicol, NA: nalidixic acid,
TEL: telithromycin, CL: clindamycin.
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Figure 1. Point mutations observed in the quinolone resistance-determining region (QRDR) of GyrA in FQ-resistant
C. jejuni isolates.

2.3. CRISPR Detection, Spacer Identification, and Phylogenetic Analysis of C. jejuni Isolates

In this study, the primer pair used targeted the conserved regions flanking the CRISPR-
Cas locus in C. jejuni, which is located between the moeA2 gene (cj1519) and a pseudogene
(cj1528) in the genome [31]. Ninety-five out of the one-hundred FQ-resistant C. jejuni
isolates were positive with the CRISPR array PCR. Spacer sequences were found in 86
out of the 95 CRISPR-positive isolates. The number of isolates and the number of spacers
carried are shown in Figure 2. A total of 300 spacer sequences were determined and
submitted to the NCBI database for sequence comparison via BLASTn. The distribution
of lengths of spacer sequences was between 28 bp and 30 bp. Additionally, all of the
86 CRISPR spacer-positive FQ-resistant C. jejuni strains carried identical CRISPR repeat
sequences of 35 bp in length between regions two and ten of the CRISPR locus (Figure 3).
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Figure 2. Distribution of the number of CRISPR (clustered regularly interspaced short palindromic repeats) spacers in 95
C. jejuni isolates from which CRISPR sequences were extracted by the CRISPR Recognition Tool.
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Figure 3. Representative CRISPR array sequences in FQ-resistant C. jejuni isolates examined in this study. CRISPR repeat
regions (colored yellow) and various spacers surrounding the repeat regions on both sides are shown. The isolate names are
depicted on the far left. The alignment was generated by MEGA X. The adenine (A), cytosine (C), guanine (G), and thymine
(T), which are the letters of the DNA sequencing, showed as green, blue, purple, and red color, respectively.

The BLASTn analysis showed that the majority of the spacer sequences (n = 248)
revealed a 93–100% homology to Campylobacter phage D10, while 44 sequences showed
100% homology with Campylobacter phage CP39. In addition, eight sequences had a 100%
nucleotide homology with Campylobacter phage CJIE4-5. On the other hand, the remaining
spacers (n = 9) did not match significantly with any Campylobacter or other phages available
in the NCBI database. Detailed information on the sequencing results, including the
annotation of spacers, is provided as supplementary data (Supplementary Table S1).

A phylogenetic tree based on the Cas9 protein amino acid sequences (inferred from the
cas9 gene sequences) of C. jejuni isolates from this study (n = 10; all from chicken meat) and
those available at the PATRIC database (n = 59; from different sources) was generated with
neighbor-joining estimation methods (Figure 4). The branching patterns demonstrated
the presence of two main clades. The majority of the strains were clustered very closely
in the same clade, which included animal, human, and all of the isolates from this study,
indicating a close phylogenetic relationship based on Cas9. The smaller clade containing
all the environmental isolates along with additional isolates from humans and animals
displayed more divergence. The Cas9-based phylogenetic tree showed that C. jejuni isolates
were overall clustered closely regardless of their isolation source, suggesting little or no
relationship between Cas9 phylogeny and the origin of isolates and that the CRISPR-Cas
system might disseminate readily among C. jejuni populations from diverse niches.
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3. Discussion

In this study, we first investigated the occurrence of CRISPR loci and spacers in FQ-
resistant C. jejuni strains recovered from cattle, broiler, turkey, and sheep feces and retail
chicken meat samples. In addition, phylogenetic relationships among C. jejuni isolates from
various sources (including isolates from this study and those available at a public database)
based on the Cas9 protein sequence were determined. Antimicrobial susceptibility testing
confirmed that all of the isolates originated from this study were resistant to ciprofloxacin
and/or nalidixic acid. The most common mutation in the gyrA gene was Thr-86-Ile.

The CRISPR-Cas system, which is encoded predominantly in the genomes of pathogenic
bacteria that interact with eukaryotic hosts [40], was found to be present in the vast major-
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ity of the FQ-resistant C. jejuni isolates (95 out of 100) tested in this study, as determined
by the PCR. All of these 95 isolates were shown to carry 35 bp long CRISPR repeat se-
quences (Figure 4). This same repeat sequence was also reported in C. jejuni in previous
studies [41–43]. A previous study, which used greater than 4000 genome sequences to
investigate the distribution of CRISPR-Cas in C. jejuni and C. coli, reported that 98.0% of
C. jejuni strains were positive for CRISPR-Cas. On the other hand, a recent study showed
that only 49% of the 99 C. jejuni isolates were positive for CRISPR-Cas [42]. Published work
on the subject so far does not indicate the antimicrobial susceptibility profiles of Campylobac-
ter isolates tested, but presumably contains both FQ-susceptible and FQ-resistant strains.
Future studies are needed to better assess the distribution of the CRISPR locus in different
populations of C. jejuni, including fluoroquinolone-susceptible vs. -resistant isolates. It
should be noted that the mere presence of the CRISPR-Cas system in an organism does not
necessarily indicate the functionality of the system [31]. The lack of functionality of the
CRISPR-Cas system was reported to be related to the presence of chromosomally integrated
mobile sialyltransferase containing loci and ganglioside-like lipooligosaccharide expression
in C. jejuni [44].

We used the availability of CRISPR arrays [45] to search for potential targets of the
FQ-resistant C. jejuni CRISPR-Cas system and found strong matches with Campylobacter
phages D10, CP39, and CJIE4-5. Campylobacter phages are classified into three different
groups (I, II, and III) based on the morphology and genome size [35,46,47]. In general,
phages within a group share high genomic homology, but the overall homology among the
different groups may be quite low [48]. Even though a few open reading frames (ORFs) of
phage DA10 (a novel class of Campylobacter phage) have homologs in other Campylobacter
phages, including CP39 (a class III Campylobacter phage) and the prophage CJIE4-5 [49],
the likelihood of these shared ORFs in the induction of cross-immunity among different
phage groups is expected to be minimal. Furthermore, these data showed that the CRISPR
region of most of the FQ-resistant C. jejuni strains tested in this study contained nucleic
acids derived not only from phages but also from plasmid or other sources. However,
as with some arrays of CRISPR spacers, there were some spacers that did not match any
plasmid/phage sequence in the NCBI database. As CRISPR arrays originate predominantly
from genomes of mobile genetic elements, mostly viruses but also plasmids [50], this was
not an unexpected finding.

The phylogenetic tree based on the Cas9 protein sequences showed that the C. jejuni
isolates from humans were placed in the same cluster together with animal and environ-
mental isolates of various origin (Figure 4). This finding indicated a close relationship
between human, animal, and environmental isolates, suggesting that the CRISPR-Cas
system may readily disseminate among C. jejuni strains from diverse isolation sources. The
tree also indicated an overall moderate level of genetic diversity within the Cas9 protein
sequences, suggesting the horizontal transfer of this gene among C. jejuni isolates with
different genetic backgrounds. It has been reported that CRISPR spacers in Staphylococ-
cus spp. can integrate with the mobile genetic element target sequences to facilitate a form
of specialized transduction of CRISPR elements, indicating the role of CRISPR-Cas system
in horizontal gene transfer [29]. More studies are required to understand the underlying
mechanism of the transfer of the CRISPR-Cas system among the members of a bacterial
species occupying different niches.

4. Material and Methods
4.1. Bacterial Culture and Identification

A total of 100 C. jejuni isolates from different sources (Table 2) were included in the
current study. Pure culture (originated from a single colony grown on agar medium for
24 h) of each isolate was suspended in broth medium containing 30% glycerol and stored
at −80 ◦C until use. From the frozen stocks, each strain was streaked onto Mueller–Hinton
(MH) agar plate and incubated at 42 ◦C for 48 h under microaerobic conditions (5% O2,
10% CO2, and 85% N2) prior to use in this study. A single colony from each strain was
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subcultured onto a MH agar plate and incubated for 24 h under the same conditions for
subsequent uses.

Table 2. Campylobacter jejuni isolates used in this study.

Sources No. Isolates Origin

retail chicken meat 11 This study
cattle feces 10 Tang et al. [51]
cattle feces 60 This study

broiler feces 12 Luangtongkum et al. [52]
turkey feces 4 Luangtongkum et al. [52]
sheep feces 3 Xia et al. [53]

TOTAL 100

Matrix-assisted laser desorption ionization–time-of-flight (MALDI-TOF) mass spec-
trometry (Bruker Daltonics, Billerica, Massachusetts, USA) was used for confirmation of all
the isolates as C. jejuni included in this study. Sample preparation and analysis were done
as described previously [54]. Mass spectra were acquired and analyzed using a microflex
LT mass spectrometer (Bruker Daltonics) in combination with research-use-only version
of the MALDI Biotyper Compass software 4.1 and the reference database MBT 7311 MSP
Library (no. 1829023) at Iowa State University. Data were interpreted in accordance with
the manufacturer’s (Bruker Daltonics) standard criteria, as follows: (i) high-confidence
identification when the score was between 2.00 and 3.00, (ii) low-confidence identification
when the score was between 1.70 and 1.99, and (iii) no organism identification possible
when the score was 1.69 and lower.

4.2. Antimicrobial Susceptibility Testing

All of the 100 C. jejuni isolates (Table 2) were tested for their antimicrobial suscepti-
bility profiles. The minimum inhibitory concentrations (MICs) of nine antibiotics were
determined using a standard broth microdilution method as recommended by Clinical
and Laboratory Standards Institute (CLSI) and the National Antimicrobial Resistance
Monitoring System for Enteric Bacteria (NARMS). The tested ranges of the nine antibi-
otics are listed in Table 1. Commercially available Sensititre Campylobacter plates (Thermo
Fisher Scientific, Waltham, MA, USA) were used for the test. The nine antibiotics were
azithromycin, ciprofloxacin, erythromycin, gentamicin, tetracycline, florfenicol, nalidixic
acid, telithromycin, and clindamycin. After incubation in a microaerobic environment for
24 h at 42 ◦C, the MICs were recorded and results were interpreted. For each isolate, the
MIC value was set as the lowest antimicrobial concentration at which no bacterial growth
was observed. The antimicrobial resistance breakpoints (Table 1) were chosen according to
the standards established by NARMS and CLSI for bacteria isolated from animals [55–57].
C. jejuni ATTCC 33560 was included as the quality control strain for the MIC testing.

4.3. PCR and Sequencing of gyrA for Mutation Determination

A total of 100 FQ-resistant C. jejuni isolates (as determined by the MIC test) were
investigated for detection of the point mutations in gyrA. To amplify the QRDR region
of gyrA by PCR, primers GyrAF1 (5′-CAACTGGTTCTAGCCTTTTG-3′) and GyrAR1 (5′-
AATTTCACTCATAGCCTCACG-3′) were used [51,58]. All PCR products were purified
using the QIAquick® PCR purification kit (QIAGEN, Hilden, Germany) and then sequenced
at the DNA Core Facility of Iowa State University using an Applied Biosystems 3730xl
DNA Analyzer.

4.4. Detection of CRISPR Array and Analysis of CRISPR Spacers

The presence of the CRISPR-cas system in C. jejuni isolates was identified by con-
ventional PCR as described previously [41]. Briefly, primers CRISPR-F (AGCTGCCCT-
TATGGTGGTG) and CRISPR-R (AAGCGGTTTTAGGGGATTGT) were used to identify the
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CRISPR region. The PCR reactions were performed in a 25 µL volume, containing 2 µL
DNA template, 1 µL each primer (10 pmol), 2.5 µL 10× ExTaq™ buffer (TaKaRa, Shiga,
Japan), 2 µL 2.5 mM each of deoxynucleotides triphosphate (dATP, dCTP, dGTP, and dTTP)
and 0.5 µL ExTaq (TaKaRa, Shiga, Japan). The following touchdown PCR protocol was
applied: denaturation at 95 ◦C for 30 s; primer annealing at 69 ◦C for 30 s; extension at 72 ◦C
for 1 min, with lowering of the primer annealing temperature by 2 ◦C every 2 cycles until
59 ◦C was reached; and another 30 cycles with a primer-annealing temperature of 59 ◦C,
followed by a final elongation step at 72 ◦C for 7 min. All PCR products were purified
using the QIAquick® PCR purification kit (QIAGEN) and then sequenced at the DNA Core
Facility of Iowa State University using an Applied Biosystems 3730xl DNA Analyzer.

CRISPR spacer sequences were determined in all C. jejuni isolates that had a CRISPR
array as identified by the PCR described above. The CRISPR Finder tool available online
(http://crispr.u-psud.fr/Server/, accessed on 22 February 2020) was used to detect and
identify CRISPR repeat and spacer sequences in the genome [45]. Similarities among se-
quences were searched in the BLASTn program (www.ncbi.nlm.nih.gov/BLAST/, accessed
on 22 February 2020) against the GenBank nucleotide sequence database. Searches were
conducted against all bacteria, and alignments having an E-value below the cut-off value
with similarity greater than 80% were selected. Therefore, alignment search criteria were
eventually based on sequence identity and E-value [25,59]. The repeat regions identified
by the program were aligned using MEGA X [60] to evaluate their conservation.

4.5. Phylogenetic Analysis

The whole genome sequencing (WGS) data of retail chicken meat C. jejuni isolates
(n = 10) from the current study (isolated as part of an ongoing NARMS surveillance
project) were extracted from the NCBI Pathogen Detection Isolates Browser (https://
www.ncbi.nlm.nih.gov/pathogens/isolates#/search/, accessed on 22 February 2020) for
phylogenetic analysis.

Whole genome sequences of 59 C. jejuni (including both FQ-resistant and -susceptible
strains) of animal (n = 44), human (n = 10), and environment (n = 5) origins at the PATRIC
(https://patricbrc.org/, accessed on 22 February 2020) C. jejuni database were utilized for
retrieving and inferring Cas9 protein sequences for phylogenetic analysis. GenBank accession
numbers of genomes used in the phylogenetic comparison are shown in Figure 4. The Cas9-
based tree was generated with neighbor-joining method with a bootstrap of 500 using the
software MEGA X. The tree was visualized by the online tool iTOL (https://itol.embl.de/,
accessed on 22 February 2020).

5. Conclusions

In summary, this study revealed the widespread presence of CRISPR-Cas systems
in FQ-resistant C. jejuni isolates and identified bacteriophages to which Campylobacter is
immune. These phages are potentially not effective against C. jejuni and should be excluded
in the design of phage therapy. On the other hand, phages to which Campylobacter is not
immune should be considered in the development of treatment regimes. This approach
to phage therapy can be further facilitated by analyzing the C. jejuni genome sequences
deposited in various databases.
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