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Background: Antibiotic-driven dysbiosis may impair immune function and reduce
vaccine-induced antibody titers.

Objectives: This study aims to investigate the impacts of early-life antibiotic exposure on
subsequent varicella and breakthrough infections.

Methods: This is a nationwide matched cohort study. From Taiwan’s National Health
Insurance Research Database, we initially enrolled 187,921 children born from 1997 to
2010. Since 2003, the Taiwan government has implemented a one-dose universal
varicella vaccination program for children aged 1 year. We identified 82,716 children
born during the period 1997 to 2003 (pre-vaccination era) and 48,254 children born from
July 1, 2004, to 2009 (vaccination era). In the pre-vaccination era, 4,246 children exposed
to antibiotics for at least 7 days within the first 2 years of life (Unvaccinated A-cohort) were
compared with reference children not exposed to antibiotics (Unvaccinated R-cohort),
with 1:1 matching for gender, propensity score, and non-antibiotic microbiota-altering
medications. Using the same process, 9,531 children in the Vaccinated A-cohort and
Vaccinated R-cohort were enrolled from the vaccination era and compared. The primary
outcome was varicella. In each era, demographic characteristics were compared, and
cumulative incidences of varicella were calculated. Cox proportional hazards model was
used to examine associations.
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Results: In the pre-vaccination era, the 5-year cumulative incidence of varicella in the
Unvaccinated A-cohort (23.45%, 95%CI 22.20% to 24.70%) was significantly higher than
in the Unvaccinated R-cohort (16.72%, 95% CI 15.62% to 17.82%) (p<.001). In the
vaccination era, a significantly higher 5-year cumulative incidence of varicella was
observed in the Vaccinated A-cohort (1.63%, 95% 1.32% to 1.93%) than in the
Vaccinated R-cohort (1.19%, 95% CI 0.90% to 0.45%) (p=0.006). On multivariate
analyses, early-life antibiotic exposure was an independent risk factor for varicella
occurrence in the pre-vaccination (adjusted hazard ratio [aHR] 1.92, 95% CI 1.74 to
2.12) and vaccination eras (aHR 1.66, 95% CI 1.24 to 2.23). The use of penicillins,
cephalosporins, macrolides, or sulfonamides in infancy was all positively associated with
childhood varicella regardless of vaccine administration.

Conclusions: Antibiotic exposure in early life is associated with varicella occurrence and
breakthrough infections.
Keywords: varicella, breakthrough infection, vaccine, antibiotic, microbiota, dysbiosis, pediatric population
INTRODUCTION

The early-life microbiome has a fundamental role in human
immunity. Indigenous microbiota provides crucial signals for
maturation and modulation of the immune system (1, 2). In
contrast, dysbiosis in infancy might cause stunting and
dysregulation of immunity (3, 4). The composition of gut
microbiota also correlates with vaccine immunogenicity (5).
Evidence has suggested the association between early-life
microbial colonization and sustainable vaccine-specific memory
T-cells and antibody responses (6).

Exposure to medications, particularly antibiotics, is a
common cause of dysbiosis (7, 8). Even short-term or low-
dose antibiotics can disturb the delicate ecosystem of the infant
microbiome (9, 10). Early-life antibiotic exposure has been
linked to a higher risk of various conditions, including
inflammatory bowel disease, type 2 diabetes, and atopic
disorders (11–13). However, little is known about the effect of
infantile antibiotic exposure on susceptibility to later-life
infections. In addition, although antibiotic-driven dysbiosis
has been found to impair vaccine responses (10, 14, 15),
limitations are that most studies were conducted with a small
sample size and in animal models or adults. Whether early-life
antibiotic exposures decrease vaccine efficacy or increase the
risk of breakthrough infections in the pediatric population
remains to be elucidated.

Varicella was once associated with a significant impact on
public health in Taiwan (16). Since the implementation of
universal varicella vaccination (UVV) in 2003, disease
transmission has been successfully controlled (17). However,
varicella outbreaks among schoolchildren still occurred
occasionally (18), and breakthrough infections continue to be
reported despite high rates of national vaccination coverage
(19). The present study was aimed to investigate the effect of
early-life antibiotic exposure on childhood varicella risk and
breakthrough infections.
org 2
MATERIALS AND METHODS

Data Source
We conducted a nationwide cohort study using Taiwan’s
National Health Insurance Research Database (NHIRD) from
1997 to 2013. The NHIRD contains detailed healthcare
information from more than 99% of Taiwan’s population of 25
million people. Diagnoses are documented in the NHIRD using
codes based on the International Classification of Diseases,
Revision 9, Clinical Modification (ICD-9-CM). The accuracy of
diagnosis in the NHIRD has been validated (20, 21), and the data
have been used extensively in clinical epidemiology and health
service research (22, 23). Personal information, including body
weight, height, lifestyle, occupation, and cluster history, is
unavailable from the database. This study has been approved
by the ethical review board of Taichung Veterans General
Hospital (No. CE20224B).

Vaccination
The live attenuated varicella vaccine was approved for use in
Taiwan in 1997. Two brands of OKA-strain varicella vaccines,
Varivax (Merck) and Varilrix (GlaxoSmithKline) are available in
Taiwan. The vaccines have been first provided free to children
aged 1 year in Taipei City and Taichung City since 1998 and
1999, respectively. In 2003, the Taiwan government
implemented the UVV program, targeting 1-year-old children.
The self-paid second-dose booster has been recommended for
children aged 4 to 6 years. Despite unavailable 2-dose
vaccination rates, the cumulative coverage rate of at least one
dose of varicella vaccine among children born after July 1, 2004,
has reached more than 94% to date (24).

Study Design and Population
From the NHIRD, children born from 1997 to 2010 were eligible
for enrollment. Children born from 1997 to 2003 and living in
regions other than Taipei City and Taichung City were
March 2022 | Volume 13 | Article 848835
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considered unvaccinated (pre-vaccination era). Children born
during July 1, 2004, and 2009 were deemed vaccinated
(vaccination era). We excluded children with a follow-up
period of less than one year, death registration, malignancy,
immunodeficiency disorders, white blood cell disorders,
transplantation, chemotherapy, or immunotherapy before
varicella development. The diagnostic codes for these
comorbidities are presented in Supplemental Table 1.

Early life, especially from conception to 2 years of age, is a
critical window for microbiota development and immune
maturation (25, 26). In the vaccination era, children who
received antibiotics for at least 7 days within the first 2 years of
life were included in the antibiotic cohort (Vaccinated A-cohort).
The reference cohort (Vaccinated R-cohort) comprised children
who had not received antibiotics. We identified the Unvaccinated
A-cohort and the Unvaccinated R-cohort in the pre-vaccination
era using the same process.

The index date was defined as the first day of the third year of
life. All sampled children were followed up from age 2 years to
the development of outcome of interest or death. Each child was
followed up for a maximum of 5 years.

In each era, 1:1 matching of children in both cohorts was
carried out for gender, propensity score, and non-antibiotic
microbiota-altering medications. The propensity score was
calculated via logistic regression model (27) that included
infectious diseases, non-bacterial gastroenteritis, and
constipation (Supplemental Table 1). These have been
common pediatric comorbidities that promote intestinal
dysbiosis. Histamine type-2 receptor antagonists (H2RAs),
proton pump inhibitors (PPIs), and laxatives have been found
to cause perturbation of gut microbiota (28). Non-antibiotic
microbiota-altering medication exposure was defined as using
any of these drugs for at least 7 days within the first 2 years of life.

Outcome Measurement
The primary outcome was varicella with diagnostic code (ICD-9-
CM code 052) in the NHIRD. Children with varicella before the
index date were still censored during the follow-up. However, to
evaluate the association between early-life antibiotic exposure
and subsequent varicella, only varicella that occurred in children
after 2 years of age was identified.

Breakthrough varicella has been defined as varicella occurring
over 6 weeks after at least one dose of vaccination (17, 19). Since
the age at varicella vaccination in Taiwan was previously
reported to be 1 to 1.97 years (17), the identified varicella cases
in the vaccination era were considered breakthrough events.

Covariate Assessment
Demographic factors such as gender, comorbidities, and
medication were considered potential confounders.
Comorbidities were defined as diseases based on diagnostic
codes (Supplemental Table 1) after the index date. Exposure
to drugs related to dysbiosis, including H2RAs, PPIs, or laxatives,
was defined as the use of such medications for at least 7 days
within the first 2 years of life. Exposure to immunomodulatory
drugs, such as systemic corticosteroids and disease-modifying
antirheumatic drugs, was defined as using these drugs for more
Frontiers in Immunology | www.frontiersin.org 3
than 30 days per year on average. The aforementioned
medication is listed in Supplemental Table 2.

Statistical Analysis
We first analyzed the demographic data, comorbidities, and
medications. The categorical variables and prevalence rates of
varicella in the study cohorts of each era were compared using
the chi-square test. The cumulative incidences of varicella were
calculated using the Kaplan-Meier method. The differences in
the full time-to-event distributions between the two cohorts of
each era were tested via the 2-tailed log-rank test.

We next performed multivariate analyses with modified Cox
proportional hazard models to determine whether antibiotic
exposure is an independent risk factor for subsequent varicella.
The adjusted variables were gender, hospital visit number during
the follow-up period, and well-known factors for dysbiosis,
including antibiotic exposure, use of non-antibiotic
microbiota-altering medications, infectious diseases, non-
bacterial gastroenteritis, and constipation. We also conducted
sub-analyses to examine the risk of exposure to different
antibiotics in early life on varicella development.

All data were managed via SAS 9.4 software (SAS Institute
Inc., Cary, NC, USA) and the “cmprsk” package of R. The results
are expressed as an estimated number with 95% confidence
interval (CI).
RESULTS

Demographic Characteristics of the
Study Cohorts
We initially enrolled 187,921 children born from 1997 to 2010
from Taiwan’s NHIRD. Among them, 82,716 children not living
in Taipei City or Taichung City were born from 1997 to 2003,
and 48,254 children were born from July 1, 2004, to 2009. A total
of 8,293 children with a follow-up period of less than 1 year or
with comorbidities or therapy that may increase the risk of
infections before the occurrence of varicella were excluded.
Finally, 81,596 children were included in the pre-vaccination
era group and 47,533 were included in the vaccination era group
(Figure 1). The baseline characteristics of the children in both
groups are presented in Supplemental Table 3.

In the pre-vaccination era, 69,430 children exposed to
antibiotics for at least 7 days within the first 2 years were
included in the Unvaccinated A-cohort, and 4,975 children in
the reference group not exposed to antibiotics within the first 2
years of life were included in the Unvaccinated R-cohort. The
baseline characteristics of children in both cohorts are shown in
Supplemental Table 4. After matching for gender, propensity
score, and non-antibiotic microbiota-altering medications at a
ratio of 1:1, there were 4,246 children in each cohort (Figure 1).
Using the same process, we selected subjects from the
vaccination era, with 9,531 children each in the Vaccinated A-
cohort and the Vaccinated R-cohort (Figure 1).

Demographic characteristics and comorbidities were
comparable between the cohorts in each era, except higher
March 2022 | Volume 13 | Article 848835
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numbers of hospital visits in both A-cohorts compared to the
respective R-cohorts (median 72 vs. 59 in pre-vaccination era,
and 77 vs.71 in vaccination era) (Table 1) . In the
Unvaccinated A-cohort, penicillins (59.6%) were most
common, followed by cephalosporins (33.4%), macrolides
(32.0%), and sulfonamides (22.7%). In the Vaccinated A-
cohort, penicillins (61.1%) and cephalosporins (15.4%) were
most common (Supplemental Table 5). Ages at varicella
occurrence and hospitalization for varicella were comparable
between the cohorts in each era.

Cumulative Incidences of Varicella
A significantly higher 5-year cumulative incidence of varicella
was observed in the pre-vaccination era group (22.22%, 95%
confidence interval [CI] 21.94-22.51%) than in the vaccination
era g roup (1 .40%, 95% CI 1 .27 -1 .53%) (p< .001)
(Supplemental Figure 1).

In the pre-vaccination era, the 5-year cumulative incidence of
varicella in the Unvaccinated A-cohort (23.45%, 95% CI 22.20-
24.70%) was significantly higher than in the Unvaccinated R-
cohort (16.72%, 95% CI 15.62-17.82%) (p<.001) (Figure 2A). In
the vaccination era, a significantly higher 5-year cumulative
incidence of varicella was observed in the Vaccinated A-cohort
(1.63%, 95% 1.32-1.93%) than in the Vaccinated R-cohort
(1.19%, 95% CI 0.90-1.45%) (p=0.006) (Figure 2B).
Frontiers in Immunology | www.frontiersin.org 4
Multivariate Analyses
In the pre-vaccination era, antibiotic exposure for at least 7 days
within the first 2 years of life was independently associated with
varicella occurrence (adjusted hazard ratio [aHR] 1.92, 95% CI
1.74-2.12). This risk was weaker but still significant among
children born in the vaccination era (aHR 1.66, 95% CI 1.24-
2.23) (Table 2).

Further analyses demonstrated that exposure to a specific
type of the commonly-used ant ib iot ics , inc luding
penicillins (aHR 1.47, 95% CI 1.31-1.66), cephalosporins
(aHR 1.19, 95% CI 1.04-1.36), macrolides (aHR 1.46, 95%
CI 1.28-1.67), and sulfonamides (aHR 1.27, 95% CI 1.09-1.48),
were also independent risk factors for varicella occurrence in
the pre-vaccination era. However, exposure to these
antibiotics in the vaccination era was positively associated
wi th subsequent var i ce l l a but wi thout s t a t i s t i ca l
significance (Table 2).
DISCUSSION

This nationwide cohort study suggests that antibiotic exposure
early in life is an independent risk factor for childhood varicella.
Even though herd immunity has been reached in the vaccination
era, a significantly higher incidence of breakthrough varicella is
FIGURE 1 | Flow chart of the patient selection process. NHIRD, National Health Insurance Research Database; A-cohort, antibiotic cohort; R-cohort, reference cohort.
March 2022 | Volume 13 | Article 848835
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observed in children exposed to antibiotics in early life. The
present study adds to the mounting evidence that antibiotic-
driven dysbiosis during infancy may cause sequelae linked with
immune dysfunction, including increased susceptibility
to infections.
Frontiers in Immunology | www.frontiersin.org 5
Commensal-pathogen interactions involve the direct
microbiota-related colonization resistance and the indirect
microbiome-mediated immune modulation (29). Commensal
microbiota can limit colonization of the invading pathogen
through upregulating epithelial barrier function, competition
TABLE 1 | Demographic characteristics and outcomes of matched study subjects in antibiotic and reference cohorts in the pre-vaccination and vaccination eras.

Pre-vaccination era Vaccination era

Antibiotic cohorta

(N=4,426)
Reference cohorta

(N=4,426)
P-value Antibiotic cohorta

(N=9,531)
Reference cohorta

(N=9,531)
P-value

Age, years
Mean ± SD 3.0 ± 0.0 3.0 ± 0.0 NA 3.0 ± 0.0 3.0 ± 0.0 NA
Median (IQR) 3.0 (3.0-3.0) 3.0 (3.0-3.0) NA 3.0 (3.0-3.0) 3.0 (3.0-3.0) NA

Gender, N (%) >.999 >.999
Female 2,371 (53.6%) 2,371 (53.6%) 4,693 (49.2%) 4,693 (49.2%)
Male 2,055 (46.4%) 2,055 (46.4%) 4,838 (50.8%) 4,838 (50.8%)

Follow-up, years
Mean ± SD 4.4 ± 1.3 4.5 ± 1.2 <.001 3.6 ± 1.3 3.5 ± 1.3 <.001
Median (IQR) 5.0 (5.0-5.0) 5.0 (5.0-5.0) <.001 4.0 (2.5-5.0) 3.7 (2.3-5.0) <.001

Hospital visits, N
Mean ± SD 82.7 ± 59.2 70.5 ± 56.0 <.001 88.9 ± 58.3 81.0 ± 54.3 <.001
Median (IQR) 72.0 (41.0-113.0) 59.0 (29.0-99.8) <.001 77.0 (47.0-118.0) 71.0 (42.0-109.0) <.001

Antibiotic exposure, days
Mean ± SD 39.2 ± 32.1 NA NA 21.5 ± 24.5 NA 0.187
Median (IQR) 29.0 (16.0-52.0) NA NA 15.0 (10.0-24.0) NA 0.220

Non-antibiotic microbiota-altering medication
exposure,b N (%)

270 (6.1%) 270 (6.1%) >.999 1,000 (10.5%) 1,000 (10.5%) >.999

Immunomodulatory drugs,c N (%)
Corticosteroids 13 (0.3%) 13 (0.3%) >.999 29 (0.3%) 26 (0.3%) 0.787
DMARDs 1 (0.0%) NA >.999 1 (0.0%) NA >.999

Early-life infectious diseases,d N (%)
All infectionse 2,162 (48.8%) 2,148 (48.5%) 0.782 7,777 (81.6%) 7,748 (81.3%) 0.602
Chronic sinusitis 51 (1.2%) 49 (1.1%) 0.920 72 (0.8%) 89 (0.9%) 0.205
Acute otitis media 82 (1.9%) 88 (2.0%) 0.699 559 (5.9%) 549 (5.8%) 0.781
Acute upper respiratory infections 3,846 (86.9%) 3,847 (86.9%) >.999 9,520 (99.9%) 9,523 (99.9%) 0.646
Acute bronchitis/bronchiolitis 2,460 (55.6%) 2,447 (55.3%) 0.797 8,502 (89.2%) 8,474 (88.9%) 0.531
Pneumonia 411 (9.3%) 415 (9.4%) 0.913 2,563 (26.9%) 2,569 (27.0%) 0.935
Urinary tract infections 29 (0.7%) 32 (0.7%) 0.797 142 (1.5%) 140 (1.5%) 0.952
Meningitis 6 (0.1%) 7 (0.2%) >.999 4 (0.0%) 8 (0.1%) 0.386
Sepsis 49 (1.1%) 48 (1.1%) >.999 60 (0.6%) 67 (0.7%) 0.593
Cellulitis/abscess 162 (3.7%) 163 (3.7%) >.999 927 (9.7%) 955 (10.0%) 0.512
Impetigo 88 (2.0%) 95 (2.1%) 0.654 221 (2.3%) 220 (2.3%) >.999

Comorbidities,f N (%)
Congenital anomalies of heart 76 (1.7%) 53 (1.2%) 0.051 187 (2.0%) 117 (1.2%) <.001
Kawasaki disease 9 (0.2%) 12 (0.3%) 0.662 42 (0.4%) 15 (0.2%) <.001
Non-bacterial gastroenteritis 2,414 (54.5%) 2,419 (54.7%) 0.932 6,303 (66.1%) 6,250 (65.6%) 0.427
Constipation 851 (19.2%) 855 (19.3%) 0.936 2,189 (23.0%) 2,176 (22.8%) 0.836
Intussusception 190 (4.3%) 173 (3.9%) 0.391 317 (3.3%) 297 (3.1%) 0.436
Appendicitis 20 (0.5%) 22 (0.5%) 0.877 33 (0.3%) 25 (0.3%) 0.357
Febrile convulsion 10 (0.2%) 19 (0.4%) 0.137 86 (0.9%) 98 (1.0%) 0.415
Epilepsy 37 (0.8%) 34 (0.8%) 0.812 75 (0.8%) 51 (0.5%) 0.040

Outcomes
Varicella, N (%) 1,038 (23.5%) 740 (16.7%) <.001 117 (1.2%) 75 (0.8%) 0.003
Age at varicella onset, years

Mean ± SD 5.3 ± 1.2 5.2 ± 1.2 0.664 5.1 ± 1.3 5.3 ± 1.3 0.187
Median (IQR) 5.2 (4.4~6.0) 5.2 (4.3~6.1) 0.688 5.0 (3.8~6.0) 5.3 (4.4~6.2) 0.220

Hospitalization for varicella 7 (0.2%) 3 (0.1%) 0.343 1 (0.0%) 2 (0.0%) >.999
March 2
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N, number; SD, standard deviation; IQR, interquartile range; NA, not available; DMARDs, disease-modifying antirheumatic drugs.
aIn each era, the antibiotic cohort and the reference cohort were matched by gender, propensity score, and non-antibiotics microbiota-altering medications at a ratio of 1:1.
bNon-antibiotic microbiota-altering medication exposure refer to the use of histamine type-2 receptor antagonists, proton pump inhibitors, or laxatives for at least 7 days within the first 2
years of life.
cImmunomodulatory drug exposure refers to the use of corticosteroids or DMARDs for at least 30 days after the index date.
dEarly-life infectious diseases refer to infections with diagnostic code recorded in the database at least once before the index date.
eAll infections include infectious diseases with codes 001-039 but 042 in the International Classification of Diseases, Ninth Revision [ICD-9].
fComorbidities refer to comorbidities with diagnostic code recorded in the database at least once after the index date.
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for specific resources, and bactericidal or bacteriostatic effects
(29, 30). Eubiotic microbiota also supports healthy immune
development, shaping optimal innate and acquired immune
responses against infective challenges (1, 2).

Evidence has demonstrated that a decrease in bacterial taxa,
vacant nutrient niches, and metabolic environment changes after
antibiotic administration predispose individuals to certain
infections (31, 32), whereas the commensals may progressively
return to baseline following antibiotic cessation (33). On the
other hand, antibiotic-driven dysbiosis, especially in early life,
might result in enduring immune alterations and long-lasting
health impacts (3, 4). Animal studies have demonstrated that
infant mice exposed to antibiotics had reduced and dysfunctional
interferon-g-producing CD8 T cells, resulting in subsequent
increased mortality from vaccinia virus infection (34). In
humans, children exposed to early-life antibiotics have been
found to exhibit lower infection-induced cytokines, including
Frontiers in Immunology | www.frontiersin.org 6
interleukin 1b, interferon a, interferon g, tumor necrosis factor
a, and IP10 protein (35). Our results align with these
immunological findings and support the microbiome-immune-
infection axis theory. Early-life antibiotic exposure is associated
with dysbiosis and impaired anti-infectious immunity and
increases susceptibility to future varicella infections.

The role of the microbiome in the modulation of vaccine
immunogenicity has recently been addressed (5). Several
observational studies have documented the correlation between
microbiota composition, such as the abundance of Bifidobacterium
and Bacteroides species, and vaccine responses (6, 36, 37).
Immunomodulatory molecules derived from microbiota, such as
flagellin, peptidoglycan, and lipopolysaccharides, regulate T cell
priming and immunoglobulin production in response to antigenic
stimulation (36, 38, 39). Increasing data also suggests that epitopes
encoded by the microbiota can cross-reactive with pathogen-
encoded epitopes, presumably with vaccine-encoded epitopes
(40, 41).

Despite the association between microbiome and vaccine
responses, controversy exists over the influence of microbial
perturbation on immunization. Antibiotic-driven dysbiosis
impairs vaccine immunogenicity in infant mice but not in
adult mice (14). From human research, adults with low pre-
existing immunity have been found to present markedly reduced
post-vaccination antibody titers after experiencing antibiotic
treatment (10). Nevertheless, antibiotic exposure in early life
has not significantly affected immunogenicity induced by routine
infant vaccines, while sample sizes of these studies were modest
(42, 43). Additionally, effects of prebiotics or probiotics on
vaccine response are variable, depending on the antigens,
probiotic strains, and population (44–46). To date, none of
these microbiota-targeted interventions have been transferred
from research into clinical practice. Our study assessed incidence
A B

FIGURE 2 | Cumulative incidences of varicella in patients exposed to antibiotics within the first 2 years of life and matched controls. The differences between the
two study cohorts in the (A) pre-vaccination era and (B) vaccination era were determined by log-rank test.
TABLE 2 | Multivariate analyses of antibiotic effects for varicella in the pre-
vaccination and vaccination eras.

aHR (95% CI)a

Pre-vaccination era Vaccination era

Antibiotic exposures 1.92 (1.74-2.12) 1.66 (1.24-2.23)
Penicillinsb 1.47 (1.31-1.66) 1.28 (0.94-1.74)
Cephalosporinsb 1.19 (1.04-1.36) 1.41 (0.88-2.26)
Macrolidesb 1.46 (1.28-1.67) 1.25 (0.67-2.34)
Sulfonamidesb 1.27 (1.09-1.48) 1.27 (0.59-2.73)
aHR, adjusted hazard ratio; CI, confidence interval.
aAdjusted for gender, hospital visit number, antibiotic exposure, non-antibiotic microbiota-
altering medication, infections within the first 2 years of life, non-bacterial gastroenteritis,
and constipation.
bSubstitution of specific type of antibiotic for any type of antibiotic in the same model on
multivariate analyses.
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of breakthrough varicella among children exposed to early-life
antibiotics. Although the UVV program has provided robust
protection, infantile antibiotic exposure was still an independent
risk factor for childhood breakthrough varicella. Such risk might
result from increased varicella pathogenicity following antibiotic
exposure overwhelming the vaccine protective efficacy or
alteration of vaccine responses induced by antibiotic-driven
dysbiosis. Further studies are needed to clarify the effects of
early-life antibiotic exposure on immunization and
vaccine efficacy.

The microbiota changes related to antibiotics depend on the
type of antibiotic used. Previous studies have suggested that
almost all types of antibiotics affect gut microbiota. The penicillin
family of antibiotics, such as amoxicillin, piperacillin, and
ticarcillin, may increase the abundance of Enterococcus spp.
and decrease the abundance of anaerobes (47). Cephalosporins,
quinolones, and sulfonamides have been associated with
abundant Enterobacteriaceae except for Escherichia coli (47).
Macrolide treatment has been linked to long-term gut
microbiota perturbations among pre-school children, including
depletion of Actinobacteria and increases in Bacteroidetes and
Proteobacteria (48). The antimicrobial spectrum also influences
the impact of antibiotics on the immune response to vaccination.
An adult study has demonstrated that the proportion of
vaccinees with a more than 2-fold anti-rotavirus antibody titer
by 7 days post-vaccination was significantly higher among
subjects treated with vancomycin only than those treated with
broad-spectrum antibiotics (15). In the present study, early-life
exposure to penicillins, cephalosporins, macrolides, or
sulfonamides were all independent risk factors for childhood
varicella in the pre-vaccination era. The risk of breakthrough
varicella due to exposure to these antibiotics in the vaccination
era was also observed, although without statistical significance
owing to the small number of cases. Relationship between the
risk and antimicrobial spectrum of the administered antibiotic
remains to be elucidated, since we only examined the effects of
using different types of antibiotics rather than the specific
antibiotic on varicella occurrence. Overall, caution is warranted
in prescribing any type of antibiotic to infants despite their
benefits. It should also be taken into account the effects on the
human microbiome when administering antibiotic therapy.

Our study has several strengths. The population-based cohort
study design enabled us to assess the association between
antibiotic exposure and varicella infections. By utilizing the
nationwide NHIRD, we enrolled a large sample size, which
prevented selection bias, allowing us to identify relatively rare
conditions such as post-vaccination infection, and provide
reliability in terms of statistics with a smaller margin of error.

Despite these strengths, there are several limitations. First, as
this was an observational study, we could only report an
association between antibiotic exposure and subsequent
varicella but could not infer causality. Second, patient-specific
information such as lifestyle, contact history, seeking healthcare
in private practice, and over-the-counter medication use was
unavailable from the NHIRD. To minimize biases, cohorts
possessed comparable characteristics after matching gender,
Frontiers in Immunology | www.frontiersin.org 7
propensity score, and non-antibiotic microbiota-altering
medications. We also performed multivariable analyses to
adjust for potential confounders. Third, the specific date of
vaccination, the total number of varicella vaccines
administered, whether concomitant vaccinations were used or
not, and the interval from antibiotic exposure to vaccination
were not recorded in the dataset. Therefore, it is difficult to assess
the effects of antibiotic exposure on immunization. Instead, we
reported the association between antibiotic therapy in infancy
and varicella during childhood regardless of herd immunity.
Finally, as our study focused on varicella, the generalizability of
our results may be limited. Nevertheless, it provided valuable
information on the microbiome-immune-infection axis theory.
CONCLUSIONS

In conclusion, children exposed to antibiotics in infancy are
associated with varicella later in life. Antibiotic exposure is an
independent risk factor for varicella occurrence, even though
herd immunity has been reached. These findings suggest caution
when administering antibiotics in early life to prevent increased
infection susceptibility and poor vaccine efficacy.
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