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Female breast cancer has become the most commonly occurring cancer worldwide.
Although it has a good prognosis under early diagnosis and appropriate treatment, breast
cancer metastasis drastically causes mortality. The process of metastasis, which includes
cell epithelial–mesenchymal transition, invasion, migration, and colonization, is a multistep
cascade of molecular events directed by gene mutations and altered protein expressions.
Ubiquitin modification of proteins plays a common role in most of the biological processes.
E3 ubiquitin ligase, the key regulator of protein ubiquitination, determines the fate of
ubiquitinated proteins. E3 ubiquitin ligases target a broad spectrum of substrates. The
aberrant functions of many E3 ubiquitin ligases can affect the biological behavior of cancer
cells, including breast cancer metastasis. In this review, we provide an overview of these
ligases, summarize the metastatic processes in which E3s are involved, and
comprehensively describe the roles of E3 ubiquitin ligases. Furthermore, we classified
E3 ubiquitin ligases based on their structure and analyzed them with the survival of breast
cancer patients. Finally, we consider how our knowledge can be used for E3s’ potency in
the therapeutic intervention or prognostic assessment of metastatic breast cancer.

Keywords: ubiquitination, E3 ligase, breast cancer, metastasis, systematic review
1 INTRODUCTION

According to the latest global cancer statistics by the International Agency for Research on Cancer,
female breast cancer has overtaken lung cancer and has become the most commonly occurring
cancer worldwide, which accounts for about 11.7% of all new cancer cases (1). Breast cancers are
highly heterogeneous, and they are classified into subtypes as Luminal A, Luminal B, HER2 (human
epithelial growth factor receptor 2) positive, and basal-like (triple negative breast cancer, TNBC),
with respect to the presence or absence of hormone receptors such as estrogen receptor (ER) and
progesterone receptor (PR), and one oncogenic biomarker, HER2. These molecular subtypes help
determine which patients are likely to respond to targeted therapies (2). Despite having good
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prognosis with early diagnosis and appropriate treatment, breast
cancer is still the leading cause of mortality among women (3).
Breast cancer–leading deaths are mostly attributed to metastasis.
As mammary epithelial cells which acquire deregulated
proliferation, if these malignant cells remain contained within
the ducts or lobules of breast, the patients’ survival has been
reported to be nearly ~98% within 5 years. In contrast, the
patients’ 5-year survival rate with distant metastases at the time
of diagnosis decreased to only 23% (2). Furthermore,
approximately one-third of female breast cancer patients with
no lymph node involvement at the time of diagnosis will develop
distal metastasis (4).

1.1 The Multistep Cascade of Breast
Cancer Cell Alternations in Metastasis
Some breast cancer cells acquire metastatic potential in a very
early stage, which gains the capability to spread from the breast
tissue, enter the blood or lymphatic vessels, and disseminate to
distal organs, preferentially to the lung, liver, brain, and bone.
Metastasis represents the multistep cascade of cancer cell
alterations accompanied by structural and functional changes.
It is well recognized that distant metastasis colonization consists
of sequential steps (Figure 1) (2, 5), including cell detachment
from the primary tumor site involving epithelial–mesenchymal
transition (EMT) (6); migration and invasion into surrounding
tissue; penetration of the basal membrane (trans-endothelial
intravasation) into the vasculature of blood and/or lymphatic
vessels to be circulating tumor cells (CTCs); extravasation of
CTCs to secondary sites as disseminated tumor cells (DTCs) (7);
dissemination to distant organs; and formation of a micro-
metastatic niche and construction of macrometastases. In
addition, to survive and initiate the secondary cancer foci, cells
need the capability of evading immune defenses, delivering to
distant sites, adapting to supportive niches such as angiogenesis
(8), and inducting retro-differentiation to gain stemness (9).
Frontiers in Oncology | www.frontiersin.org 2
1.2 The E3 Ubiquitin Ligases
Ubiquitination is a post-translational modification of proteins,
which is essential for nearly all biological processes, including cell
growth, autophagy, apoptosis, and differentiation. It is a three-
step enzymatic cascade: i) A ubiquitin-activating enzyme (E1)
mediates the activation of the carboxyl-terminal glycine residue
of ubiquitin in an ATP-dependent manner. ii) The activated
ubiquitin is then transferred to E1 followed by the transfer of
ubiquitin to a thiolester of a ubiquitin-conjugating enzyme (E2)
to format the thiolester linkage. iii) A ubiquitin protein ligase
(E3) confers substrate specificity by recognizing the target
proteins and mediating the conjugation of ubiquitin molecules
to a lysine residue on the targeted protein via an isopeptide bond
(10). E3’s ability to specifically recognize and target substrates
makes it a key regulator in the ubiquitin process.

The fate of ubiquitinated proteins is dependent on the
different types of ubiquitin linkage. It has been characterized as
mono-ubiquitination or poly-ubiquitinated chains. Mono-
ubiquitination involves the transfer of a single ubiquitin to a
substrate. E3 ligases can also connect several ubiquitin molecules
together using the C-terminus of one subunit and one of the
seven lysine (K) residues (K6, K11, K27, K29, K33, K48, K63) or
the N-terminal methionine (M1) on the other, to form a
homotypic or branched ubiquitin chain (11). The recruitment
of polyubiquitinated proteins to the proteasome is a classic
protein turnover pathway (Figure 2A). Ubiquitin-dependent
proteasomal degradation involves the polyubiquitination of
substrate catalyzed by E1, E2, and especially E3 (12, 13).
Subsequently, polymers linked through K11 or K48 (14, 15)
trigger substrate protein degradation by the ATP-dependent 26S
proteasome (16).

Besides, different ubiquitin topologies adopt distinct
structural conformations. Signals can be transduced by
different types of ubiquitin modification, including mono-
ubiquitination, multi-monoubiquitination, homotypic ubiquitin
FIGURE 1 | Distant metastasis colonization consists of sequential steps.
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chains, and heterotypic ubiquitin chains, which send various
‘codes’ to precisely exert degradative and non-degradative
functions including modification of protein trafficking,
interaction, and signal transduction (17, 18). For example,
linkages of homotypic K11 and K48 can drive proteasomal
degradation; K27 linkages have been implicated in regulating
Frontiers in Oncology | www.frontiersin.org 3
DNA repair (19) and autoimmunity (20); K33 linkages were
proposed to regulate trafficking; and mono-ubiquitination can
prevent protein interactions (21). SMAD4 (SMAD family
member 4) engages its signal partner SMAD2 (SMAD family
member 2) after removing its own mono-ubiquitination (18). In
addition, the mono-ubiquitination of histone H2A promotes
A

B

FIGURE 2 | Classical mechanism and structural basis of E3 ubiquitin ligases. (A) The ubiquitin-proteasome system. A ubiquitin-activating enzyme (E1) mediates the
activation of the carboxyl-terminal glycine residue of ubiquitin in an ATP-dependent manner. To format the thiolester linkage, the activated ubiquitin is then transferred to E1
followed by the transfer of ubiquitin to a thiolester of a ubiquitin-conjugating enzyme (E2). Ubiquitin protein ligase (E3) confers substrate specificity by recognizing the target
proteins and mediating the conjugation of ubiquitin molecules to a lysine residue on the targeted protein via an iso-peptide bond. Polyubiquitinated substrate recognized by
26S proteasome for degradation. (B) Classification of breast cancer metastasis–related ubiquitin E3 ubiquitin ligases based on a structural basis. The canonical E3s are
classified into two canonical types: HECT and RING. HECT E3s contains HECT domains which consist of a E2-interacting N-lobe and a catalytic Cys residue containing C-
lobe involved in ubiquitin transfer. RING-type E3s mediate the direct transfer of ubiquitin from E2 to substrate, including single RING-finger- type E3s, RING-like (Ubox)-type
E3s, and multi-subunit RING-finger-type E3s. The Cullin-RING ubiquitin ligase (CRL) family is composed of a multi-unit. Each type of E3s or members of E3 complexes has
been summarized and listed below the schematic diagram of the relevant category.
October 2021 | Volume 11 | Article 752604
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transcriptional silencing (22), while the mono-ubiquitination of
histone H2B mediates transcriptional elongation (23).

The canonical E3s are classified into two types: Homologous
to the E6AP Carboxyl Terminus (HECT) family (24) and Really
Interesting New Gene (RING) finger family (25). HECT E3
ligases were named accordingly to identify protein E6AP (E6-
associated protein), and they are characterized by a conserved C-
terminal ~350 aa HECT domain and various N-terminal
substrate-binding domains (26). HECT E3 ligases mediate a
two-step ubiquitin transfer process, in which ubiquitin is firstly
transferred from the E2-Ub intermediate to the E3 active cysteine
residue before transferring to the substrate lysine residue
(Figure 2B) (27). In contrast, The RING core is a small
domain of 40–70 residues. A cross-braced pattern of conserved
cysteine and histidine residues coordinating two zinc ions
maintains the native fold. The RING domain brings the
E2∼Ub conjugate into the proximity of the substrate bound
via substrate-recognition domains (Figure 2B). RING E3s are
further divided into two subtypes: single RING and multi-unit
RING family. The Cullin-RING ubiquitin ligase (CRL) family is
composed of a multi-unit. CRLs utilize Cullin proteins as a
central scaffold which binds to a RING-box protein (Rbx) and an
adaptor protein–substrate receptor complex through its C- and
N-termini. Most recognized CRLs are known as the SCF
(Skp-Cullin-F-box) complex, in which Cullin interacts with
Skp (S-phase kinase associated protein) proteins and utilizes
various F-box proteins, to recruit substrates and initiate
ubiquitin ligation (28). Besides, U-box E3s are also categorized
as RING-type E3s, but their molecular structure subtly differs in
that zinc-bound sites are replaced by a hydrophobic core
(29) (Figure 2B).

E3s target a broad spectrum of substrates. In cancer, the
aberrant functions of E3s are linked to deregulated oncoproteins
or tumor suppressors and affect the biological behavior of cells.
Many E3s have been reported to be associated with breast cancer
metastasis over the past few decades. In this review, we provided
an overview of E3 ubiquitin ligases that have been found to be
deregulated in breast cancer metastasis and summarized the
multistep cascade of breast cancer cell alterations in metastasis,
in which these E3 ubiquitin ligases are involved. Furthermore, we
classified E3s based on their structures and analyzed the
correlation of E3s with the survival of breast cancer patients.
Finally, we considered their potency to the therapeutic
intervention or prognostic assessment of metastatic breast cancer.
2 METHODS

2.1 Search Strategy and Selection Criteria
The literatures involved in this study were searched from the
databases PubMed and Medline (last search updated on January
1st, 2021). The key words used in the searching were “E3
ubiquitin”, “breast cancer” and “Metastasis” or “dissemination”/
“EMT”/“invasion”/“migration”/“intravasation”/“CTC”. All the
searching results were imported in the Endnote software to
eliminate duplicates.
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By scanning the titles and abstracts and further reading the
full text, the irrelevant and retracted papers were excluded. The
reference list of all selected articles was scanned to identify
potentially relevant reports. The search results followed these
including and excluding criteria:

Including criteria: 1) research limits to the E3 ubiquitin
ligases; 2) research related to human breast cancer; 3) research
focused on metastasis or steps in the metastasis mechanisms of
breast cancer; 4) studies provided sufficient experimental
evidence or clinical data to support thesis; 5) peer-reviewed
and formally published original literatures

Excluding criteria: 1) research of the regulation of E3
ubiquitin ligases; 2) research of ubiquitin-like modifiers
including SUMOylation; 3) retracted articles; 4) reviews or
letter to editors.

2.2 Data Extraction
The above searches were performed and reviewed by two authors
independently. The following items were recorded from each
study: E3 name, gene ID, substrate, role in breast cancer
metastasis, cellular function, signal pathway, verification by cell
biological experiments, breast cancer cell lines, and clinical
significance (expression difference and survival analysis).
These records were cross-checked and double- checked by
another author.

2.3 Survival Analysis
The association between the specific E3s’ ubiquitin ligase
expression and survival in breast cancer was first analyzed
using the PrognoScan database (30) as in previously
mentioned methods (31). Then, we used a Kaplan–Meier
plotter (32) to validate and illustrate as a Kaplan–Meier plot,
in which the distant metastasis–free survival (DMFS) curves for
high (red) and low (black) expression groups dichotomized at
the optimal cut-point were plotted. The logrank P-value and the
hazard ratio with 95% confidence intervals were calculated. The
threshold was adjusted to logrank P‐values at <0.05.
3 RESULTS

3.1 Description of Collected Studies
As shown in the brief flow chart (Figure 3), the records on E3
ubiquitin ligases involved in breast cancer metastasis were
screened from both the PubMed (N = 199) and Medline (N =
103) databases. After duplicate elimination, 202 records
remained. By reading the titles and abstracts of these records,
we excluded 91 literatures for the following reasons: studies in
other cancer types (N = 23); irrelevant to metastasis (N = 28) or
irrelevant to E3 ubiquitin ligase (N = 12); focused on the
regulation of E3 ubiquitin ligase (N = 17) or de-ubiquitination
(N = 3); and reviews (N = 4) and retracted articles (N = 4). Other
studies had been validated by reading the full texts. Finally,
a total of 111 literatures were included in our analysis.
October 2021 | Volume 11 | Article 752604
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3.2 Roles of E3 Ubiquitin Ligases Played
in the Multiple Steps of Breast
Cancer Metastasis
We further extracted key information from these literatures,
including E3 name, gene ID, substrate, roles in breast cancer
metastasis, cellular function (experimentally verified), signal
pathway, breast cancer cell lines, and clinical significance. This
detailed information of 54 E3 ubiquitin ligases/ligase complexes
in total have been summarized in Table 1. By their molecular
roles’ participation in the multiple steps of breast cancer
metastasis, we briefly presented them as follows.

3.2.1 Breast Cancer Cell Epithelial–Mesenchymal
Transition
EMT is thought to be a hallmark in tumor metastasis (117, 118).
By the loss of cell–cell conjunction, the epithelial cells acquire
migratory, invasive properties and trans-differentiate to
mesenchymal phenotypic cells (9). Carcinoma cells undergoing
EMT can escape from primary tumor sites, enter the circulation,
and then move out to invade distant sites where secondary
tumors or metastases begin to form (117, 119).

Not all breast cancer cells are typical EMT cells. In a study of
breast cancer aggressiveness, by profiling EMT-like subclones
from MCF-7 breast cancer cells based on EMT properties,
comparing their gene-expressing differences with other non-
EMT-like subclones, FBXO11 (F-box protein 11, a member of
the E3 ubiquitin ligase complex) was screened out. It is
concluded that FBXO11 is a candidate molecular alternative to
the canonical EMT-dependent aggressiveness in highly
differentiated luminal tumors (54). The specific roles suggest
that E3 ligase FBXO11 targets transcription factor SNAI1 (snail
family transcriptional repressor 1) protein which induces EMT,
for ubiquitination-dependent degradation (55), and regulates the
p53/p21/BCL2 pathway (54).

In cancer cells, the loss of E-cadherin results in EMT
and contributes to increased metastasis and chemoresistance
Frontiers in Oncology | www.frontiersin.org 5
(120, 121). The absence of the ubiquitin protein ligase E3
component n-recognin 5 (UBR5) has been characterized to
trigger aberrant EMT in TNBC, principally via an abrogated
expression of E-cadherin, which resulted in severe lungmetastasis
in UBR5 knockout mice. The E-cadherin transcription repressors
slug, twist, and zinc finger E-box-binding homeobox 1/2 (ZEB1/
2) are overexpressed in multiple drug-resistant (MDR) breast
cancer cells, making them more metastatic (122). The E3
ubiquitin ligase Casitas B lymphoma-b (Cbl-b) was reported to
prevent tumor metastasis by maintaining the epithelial
phenotype in MDR breast cancer cells. Cbl-b inhibits MDR
breast cancer cell migration by specifically targeting epidermal
growth factor receptor (EGFR) ubiquitination-dependent
degradation, which prevents metastatic breast cancer cell EMT
by inhibition of the EGFR-ERK/Akt-miR-200c-ZEB1 axis (37).

Not only restricted in the degradation of substrates, an RNA-
binding E3 ligase, mex-3 RNA binding family member C
(MEX3C), catalyzed protein PTEN (phosphatase and tensin
homolog) K27-linked polyubiquitination, leading to its
enzymatic functions’ switch to serine/threonine phosphatase
activity (74). Consequently, switched PTEN promotes EMT.

The roles of E3 ubiquitin ligases played in breast cancer cell
EMT include regulating transcription factors in EMT-inducing
gene expression, abrogated expressing of key proteins, and
affecting the activities of substrate proteins. The specific
modification is not only as an E3 ubiquitin ligase to influence
protein stability but also to induce the change of protein
catalytic activities.

3.2.2 Breast Cancer Cell Invasion and Migration
Escaping from the surrounding tissues of the primary tumor,
invading the blood or lymphatic vessels (intravasation), and
migrating are essential steps in breast cancer metastasis. In this
analysis, most of the E3 ubiquitin ligases (50 out of 54) have been
detected to promote or inhibit the invasion and migration of
breast cancer cells. Ubiquitin E3 ligases for tumor suppressors
FIGURE 3 | Brief flow chart for literatures searching and selection. “N” refers to “number of studies”.
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TABLE 1 | E3 ubiquitin ligases that played important roles in the multiple steps of breast cancer metastasis .

E3 Substrate Inhibit/Promote
Metastasis

Cellular Function Molecular Pathway References

Arkadia Ski Inhibit EMT TGF-beta (33)
ASB13 SNAI2 Inhibit Migration Hippo–YAP (34)
BCA2 Autoubiquitination Promote Migration and invasion EGFR (35, 36)
Cbl FAK and EGFR Promote/inhibit Cell detachment/EMT and

migration
FAK, RANKL/RANK EGFR-
ERK/Akt

(37–40)

CHIP Pfn1 Promote Migration ROCK1/Pfn1 (41, 42)
COP1 c-Jun Inhibit Migration ETV1, GSK3b/c-Jun (43, 44)
Cullin1 N/A Promote EMT, migration, invasion, and

tube formation
PI3K/AKT, NF-kB (45)

Cullin3/
SPOP

PR, Era Inhibit Migration PR, ERa (46, 47)

Cullin3/
KCTD5

N/A Promote Migration and invasion TRPM4 (48)

Cullin7 N/A Promote Invasion N/A (49)
FBXW7 NICD1/Notch1 Promote/inhibit (indirect

evidence)
Migration and invasion NOTCH/p62 (50, 51)

FBXL8 N/A Promote Migration and invasion CCND2/IRF5 (52)
FBXL14 CDCP1 Inhibit EMT, migration, and invasion PI3K/AKT (53)
FBXO11 SNAI1 Inhibit Emt SNAI1 and p53/p21/BCL2 (54, 55)
FBXO22 HDM2 Inhibit Migration and invasion p53/p21, SNAIL (56)
FBXO31 Slug Inhibit Invasion N/A (57)
FBXO32 KLF4 Promote EMT, migration, and invasion N/A (58)
GP78 HSPA5 Inhibit Migration and invasion N/A (59, 60)
HACE1 Rac1 Inhibit Migration and invasion N/A (61)
HectD1 ACF7 Inhibit EMT, migration, and invasion N/A (62)
HERC2 BRCA1 Promote (indirect evidence) Invasion (indirect evidence) BRCA1 (63)
HERC4 LATS1 Promote Migration and invasion LATS1 (64)
HRD1 IGF-1R Inhibit EMT, migration, and invasion IL6/NF-kB (65)
ITCH c-Jun, p73, p63, and ErbB4; RASSF1A;

histone H1.2
Promote EMT and invasion Hippo (66–68)

MARCH5 N/A Promote Migration and invasion Mitochondrial (69)
MDM2 P53; RB; Foxo3a Promote EMT, migration, and invasion p53/p21 (70–73)
MEX3C PTEN Promote EMT TWIST1, SNAI1, and YAP1 (74)
NEDD4 Robo1 Promote Migration and invasion (indirect

evidence)
FAK and Src (75–77)

NKLAM N/A Inhibit Tumor immunity NK killing activity (78)
NRBE3 RB Promote Migration and invasion E-cadherin (79)
NRDP1 ErbB3 and ErbB4 Inhibit (indirect evidence) Migration and invasion (indirect

evidence)
ER (80)

Parkin HIF-1a Inhibit Migration and invasion HRE/VHL (81)
PDZRN4 Kidins220 (predict) Inhibit Migration and invasion N/A (82)
PPIL2 SNAI1 Inhibit EMT, migration, and invasion SNAI1 (83)
RNF8 TWIST Promote EMT, migration, and invasion TWIST; GSK3b (84, 85)
RNF20 Histone H2B Promote (luminal)/inhibit (in

basal-like)
Migration ER (in luminal) and NF-kB (in

basal-like)
(86, 87)

RNF144A HSPA2 Inhibit Migration and invasion HSPA2 (88)
RNF208 Vimentin Inhibit Migration and invasion Vimentin (89)
SIAH1/2 p27 Promote Migration and invasion Rb (90)
SKP2 AKT Promote Indirect evidence PI3K/AKT (91)
SCF-JFK ING4 Promote EMT, invasion, and angiogenesis NF-kB (92)
b-Trcp PRLr/bCatenin Promote EMT, migration, and invasion PRL,Wnt (93, 94)
Smurf1 RhoA p120-catenin and TRAF4 Promote EMT, migration, and invasion TGFb (95–99)
Smurf2 Smurf1, CNKSR2 Promote/inhibit Migration and invasion TGFb, PI3K/AKT (100–104)
TRAF6 H2AX Promote Migration and invasion HIF1a (105, 106)
TRIM8 Era Inhibit Migration and invasion Era (107)
TRIM11 Era Promote Migration Era (108)
TRIM44 N/A Promote Migration NF-kB (109)
TRIM47 N/A Promote EMT, migration, and invasion PI3K/Akt (110)
UBR5 N/A Promote EMT, migration, and invasion STAT3, TGFa, P38MAPK (111, 112)
UBR7 H2B Inhibit EMT, migration, and invasion Wnt/b-catenin (113)
WWP1 CXCR4 (indirect evidence) Inhibit Migration TGFb/Smad (114)

(Continued)
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play important roles in tumorigenesis. The E3 ligase MDM2 has
been characterized to target both tumor suppressor p53 and RB
for proteasomal degradation, which promotes breast cancer cell
invasion and migration via the p53/p21 pathway (70, 71). Nedd4
and carboxyl terminus of Hsc-70-interacting protein (CHIP) are
two E3 ubiquitin ligases which function as regulators of tumor
suppressor PTEN (123, 124). CHIP has been confirmed to
promote breast cancer cell migration (41); the role of Nedd4 in
breast cancer cell migration is not clear.

In the migration process, b-catenin and E-cadherin are two
key proteins that function in cell–cell adhesion. SCFbTrcp has
been characterized to be the E3 ligase complex responsible for b-
catenin degradation (93). As for E-cadherin, MDM2 has also
been identified as responsible for its ubiquitin-dependent
degradation (71). The E3 ligase new RB-E3 ligase protein
(NRBE3) promotes breast cancer cell migration via E-cadherin
but is not dependent on its E3 ligase property (79). Although it
has been speculated that UBR5 might regulate E-cadherin
through targeting substrates for proteasome-dependent
degradation, both in vivo and in vitro ubiquitin assays were
required for validation (111).

3.2.3 Breast Cancer Cell Stemness
Breast cancers are heterogenous. Although breast cancer stem
cells (BCSCs) account for a very small percentage, they have the
greatest ability of self-renewal and potential of unlimited
differentiation capacity into heterogeneous tumor cell
populations, all of which contribute to regenerate tumor at
original or distant sites in vivo. Cancer cell stemness properties
can be identified by several stem cell markers such as CD34,
CD44, CD123, CD133, Oct4, Sox2, Nanog, ABCG2, and MYC
and the conduction of cell stemness sphere assays (116, 125).

Not only is MYC a stem cell marker; it is also a well-
characterized oncoprotein that is upregulated in 30–50% of
breast cancer patients. MYC is regulated by AMPKa (AMP-
activated protein kinase alpha subunit)/mTORC1 (mechanistic
target of rapamycin kinase) axis. Ubiquitin-conjugating enzyme
E2O (UBE2O), a large E2 ubiquitin-conjugating enzyme that
represents both E2 and E3 ligase activities, is found to promote
Frontiers in Oncology | www.frontiersin.org 7
AMPKa ubiquitination and degradation and then to activate the
mTORC1-MYC signal pathway in breast cancer cells. By
detection of stem cell markers and observation of cell stemness
sphere formation, it is suggested that UBE2O endowed breast
cells with cancer stemness properties (116).

In a study of the characteristics of BCSCs by selectively
sorting cells with stem cell markers, another E3 ligase, Cbl, has
been found to be involved in maintaining cancer cell stemness.
EGFR is important for cancer stem cell maintenance and
metastasis. Its turnover relies on the ubiquitin pathway. Cbl-c,
a member of Cbl family, can target EGFR for k-63 linked
ubiquitination and lysosomal degradation. By interfering with
the binding of EGFR and its E3 ubiquitin ligase Cbl-c, a
membrane protein sarcoglycan epsilon (SGCE) inhibits Cbl-c
ubiquitin ability and stabilizes EGFR and then promotes breast
cancer cell stemness (38).

Whether it is in regulating stem property–maintaining key
proteins, or in the analysis of BCSCs’ characteristics, E3 ubiquitin
ligases have been found to play roles in regulating the
pluripotency of BCSCs.

3.2.4 Angiogenesis
In the process of metastasis, to survive and initiate the secondary
cancer foci, cells need the capability of adapting to supportive
niches such as angiogenesis (8). Two members of E3 ligases
complex were found to be functional in angiogenesis.

The Skp–CUL1–F-box ubiquitin ligase complex is one of the
best-characterized multi-subunit RING finger complexes
composed of four subunits. F-box protein 42 (Fbxo42, also
known as JFK) is one of the F-box family proteins. It is
demonstrated that JFK targets ING4 for ubiquitination and
degradation through the assembly of an SCFJFK ubiquitin ligase.
ING4 is a member of the inhibitor of growth (ING) protein
family, defined as tumor suppressors by directly interacting with
p53 and promotes the transactivation of p53 and negatively
regulates NF-kB-responsive gene transcription. The NF-kB
pathway regulates the expression of several prominent pro-
angiogenic factors, including IL-6, IL-8, CCL5, and COX-2.
Degradation of ING4 by E3 ligase SCFJFk results in the
TABLE 1 | Continued

E3 Substrate Inhibit/Promote
Metastasis

Cellular Function Molecular Pathway References

xIAP TAK1 Promote Invasion TGFb/Smad (115)
UBE2O AMPka2 Promote EMT, migration, invasion, and

stemness
AMPK/mTOR (116)
October 2021 | Volume 11 | A
ASB13, ankyrin repeat and SOCS box containing 13; BCA2, breast cancer associated gene 2; Cbl‐b, Cbl proto-oncogene B; CHIP, STIP1 homology and U-box containing protein 1;
CXCR4, C-X-C motif chemokine receptor 4; SPOP, speckle type BTB/POZ protein; KCTD5, K+ channel tetramerization domain 5; FBXW7, F-box and WD repeat domain containing 7;
FBXL8, F-box and leucine rich repeat protein 8; FBXL14, F-box and leucine rich repeat protein 14; FBXO11, F-box protein 11; FBXO22, F-box protein 22; FBXO31, F-box protein 31;
FBXO32, F-box protein 32; GP78, autocrine motility factor receptor; HACE1, HECT domain and ankyrin repeat containing E3 ubiquitin protein ligase 1; HECTD1, HECT domain E3 ubiquitin
protein ligase 1; HERC2, HECT and RLD domain containing E3 ubiquitin protein ligase 2; HERC4, HECT and RLD domain containing E3 ubiquitin protein ligase 4; MARCHF5, membrane
associated ring-CH-type finger 5; MEX3C, mex-3 RNA binding family member C; NKLAM, Natural killer lytic-associated molecule; NRBE3, New RB E3 ubiquitin ligase; NRDP1, also known
as RNF41, ring finger protein 41; Parkin, parkin RBR E3 ubiquitin protein ligase; PDZRN4, PDZ domain containing ring finger 4; PPIL2, peptidylprolyl isomerase like 2; RNF, RING Finger
Protein; RASSF1, Ras association domain family member 1; SIAH1/2, siah E3 ubiquitin protein ligase 1 and 2; SKP2, S-phase kinase associated protein 2; SCF, Skp-Cullin-F-box)
complex; b-Trcp, beta-transducin repeat containing E3 ubiquitin protein ligase; SMURF1 and SMURF2, SMAD specific E3 ubiquitin protein ligase 1 and 2; TRAF6, TNF receptor
associated factor 6; TRIM8, TRIM11, TRIM44, TRIM47: tripartite motif containing 8, 11, 44 and 47; UBR5 and UBR7, ubiquitin protein ligase E3 component n-recognin 5 and 7; TWIST,
twist family bHLH transcription factor 1; WWP1, WWdomain containing E3 ubiquitin protein ligase 1; xIAP, X-linked inhibitor of apoptosis; UBE2O, ubiquitin conjugating enzyme E2 O; N/A,
Not Available in the reference literature.
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destabilization of NF-kB signaling and promotes angiogenesis. In
breast cancer animal models, it was also observed that JFK-
mediated metastasis takes the roots of lungs (92).

Another member of the SCF complex is Cullin1. In the tube
formation assay, the knockdown of Cullin1 significantly
decreased the number of complete tubule structures formed by
human umbilical vein endothelial cells (HUVECs) in vitro. In the
tail vein metastasis animal model, MDA-MB-231 cells with
Cullin1 stable knockdown showed reduced vascularization and
micro-vessels in matrigel plug (45). Cullin1 regulates the zeste 2
polycomb repressive complex 2 subunit (EZH2), which enhances
cytokine expression through the NF-kB pathway. The cytokine
expression further results in aggravating the breast cancer cell
metastasis through the PI3K–AKT–mTOR signaling pathway.
Due to the lack of ubiquitin assays, it is unclear whether EZH2 is
the substrate protein of Cullin1. Besides, in the SCF E3 ubiquitin
complexes, Cullin1 often acts as a ‘scaffold’ protein; what the
target-recognizing subunit in this complex is also needs to be
clarified further.

Both JFK and Cullin1 regulated angiogenesis in breast cancer
metastasis, through the NF-kB pathway. It is noticed that three
other E3 ubiquitin ligases, hydroxymethylglutaryl-coenzyme A
reductase degradation protein 1 (HRD1) (65), ring finger protein
20 (RNF20) (86), and tripartite motif containing 44 (TRIM44)
(109), were also found regulating the NF-kB pathway. We need
to pay attention to whether they are responsible for angiogenesis
in breast cancer metastasis in addition to their existing roles.

3.2.5 Immunity Response/Rescue
The multiple steps of metastasis rely on reciprocal interactions
between breast cancer cells and the microenvironment. Immune
cells and their mediators are known to facilitate metastasis within
the microenvironment (126). Natural killer (NK) cells play an
essential role in the defense against viruses or microbial
pathogens and malignancies produced by the body itself. In
the process of immune response, NK cells execute anti-pathogen
or anti-tumor activities that rely on the direct cytolytic activity of
these cells and produce various cytokines (127). An E3 ubiquitin
ligase, the natural killer lytic-associated molecule (NKLAM), has
been characterized to play a major role in the cytolytic activity of
NK cells and to control tumor development, dissemination, and
distant metastasis in vivo. The target substrate of NKLAM in NK
cells has not been directly determined yet (78).

Recently, ubiquitin protein ligase E3 component N-recognin
5 (UBR5) has been found to induce a CD8+ T cell–mediated
immune response. The loss of UBR5 in breast cancer cells causes
the appearance of certain putative immunogens’ strong CD8+ T
cell–mediated response in a paracrine manner (112). UBR5 has
been previously found to be involved in TNBC metastasis (111).
According to these two studies, the loss of UBR5 caused reduced
angiogenesis and triggered aberrant EMT depending on the
EMT regulators’ inhibitor of DNA binding 1 and 3 (ID1 and
ID3), which limited the metastasis of breast cancer. Although it
was indicated that UBR5 executed its biological function
principally via abrogated expression of E-cadherin, its specific
ubiquitin substrate still needs validation through both in vivo
and in vitro ubiquitin assays.
Frontiers in Oncology | www.frontiersin.org 8
More and more evidences suggest that E3 ubiquitin ligases
participate in the regulation of immunosuppression. Whether E3
can be used as combined targets of tumor immunotherapy in the
future needs further research (126, 128).

Thus, the identifying regulators of each step in the process
above should provide insights into the mechanisms that control
breast cancer metastasis and hence patient survival.
3.3 Classification of Breast Cancer
Metastasis–Related E3s Based on
the Structure
Ubiquitination is a ubiquitous form of post-translational
modification of proteins. In this process, E3s specifically bind to
the substrate proteins, mediate the ligation of ubiquitin molecules
and affect the specific proteins' turnover and functions. Thus, it is
important to clarify the mechanism in target drug research and
development (129). Do the mechanisms of these identified breast
cancer metastasis E3 ligases have commonalities?

We classified the previously summarized E3 ligases of
classical families based on their structures. The results
suggested that the E3s involved in breast cancer metastasis
belong to diversified classes, such as the HECT family, RING
family, and U-box family (Figure 2B). There are eight E3 ligases
that belong to the HECT family and are further classified into
three subfamilies, including SMAD-specific E3 ubiquitin protein
ligase 1 (Smurf1), SMAD-specific E3 ubiquitin protein ligase 2
(Smurf2), itchy E3 ubiquitin protein ligase (Itch) and WW
domain–containing E3 ubiquitin protein ligase 1 (WWP1),
NEDD4, belonging to the NEDD4 family, which contains a
WW domain, C2 domain, and HECT domain; HECT and
RLD domain which contains E3 ubiquitin protein ligases 2 and
4 (HERC2 and HERC4), as the HERC family, which contains the
common RCC1-like domain (RLD) and HECT domain; and
UBR5, as the “other” family, which contains a UBA domain, zinc
finger domain, and HECT domain.

RING E3 ligases are further divided into two subtypes: single
RING and multi-unit RING family. Several E3 ligases belong to
single RING type (listed in Figure 2B, single RING family),
performing a single-step ubiquitin transfer from the E2-Ub to
the substrate, which work as allosteric activators. As for multi-
subunit RING type, The Cullin-RING ubiquitin ligase (CRL)
family is composed of a multi-unit. Most recognized CRLs are
known as the SCF (SKP-Cullin-F-box) complex, in which
Cullin1 interacts with Skp1 or Skp2 and utilizes various F-box
proteins (shown in Figure 2B, F-box proteins) to recruit
substrates and initiate ubiquitin ligation. Cullin7 also forms a
SCF complex with SKP1 and F-box and WD repeat domain
containing 8 (FBXW8). Cullin3-RBX1 (Ring-box1) E3 ubiquitin
ligase complex requires BTB (Bric-a-brac-Tramtrack-Broad
complex) domain protein as an adaptor. Two BTB proteins,
speckle-type BTB/POZ protein (SPOP) and K+ channel
tetramerization domain 5 (KCTD5), forms a complex with
Cullin3, respectively.

Three E3 ubiquitin ligases, CHIP, NRBE3, and peptidylprolyl
isomerase like 2 (PPIL2) belong to the U-box family, which
contains a U-box domain. U-box E3s are also categorized as
October 2021 | Volume 11 | Article 752604
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RING-type E3s, but their molecular structure subtly differs in
that zinc-bound sites are replaced by a hydrophobic core (29).

There are still many E3 ligases that cannot be characterized
into classical types. Ankyrin repeat and SOCS box containing 13
(ASB13) belongs to the ankyrin repeat and suppressor of
cytokine signaling (SOCS) box (Asb), which contains six-
ankyrin repeat domain (34, 130). The UBR-box is a 70-residue
zinc finger domain present in the UBR family of E3 ubiquitin
ligases. Unlike UBR5, which also contains an HECT domain, the
structures responsible for UBR7 executing its E3 role need to be
verified by in vitro ubiquitin assays (113, 131, 132). Intriguingly,
UBE2O, an E2/E3 hybrid ubiquitin-protein ligase, displays both
E2 ubiquitin conjugating enzyme and E3 ubiquitin ligase
activities (116, 133). Compared to classical types, the specific
catalytic mechanism of several non-classical E3s will need more
efforts to be figured out in the future.

3.4 Analysis and Summary of E3 Ubiquitin
Ligases Significantly Correlated With
Breast Cancer Patients’ Survival
Since the E3s are involved in breast cancer metastasis, are they
associated with patients’ survival? Through the analysis of
literatures, we found that out of the 54 E3 ligases, 31 have
been reported to be related to the survival of patients (Table 2,
from “ASB13” to “UBE2O”). The other 23 E3 ubiquitin ligases
lack clinical data to determine whether they have clinical
significance. Although some of them have verified the specific
roles involved in metastasis by cellular experiments and animal
models, these E3 ligases’ relationships with breast cancer
patients’ survival need to be elucidated. Therefore, we used
publicly available clinical data to conduct survival analysis
(only in which the literature were claimed to have been
verified by molecular and animal experiments).

By comparing with molecular mechanism, five E3 ligases have
been found to be significantly correlated with the DMFS of breast
cancer patients. As illustrated in Kaplan–Meier plots (Figure 4),
we conducted the survival analysis of Arkadia (Figure 4A),
NKLAM (Figure 4B), PPIL2 (Figure 4C), Smurf1 (Figure 4D),
and Smurf2 (Figure 4E), which is consistent with the laboratory
mechanism previously found. Patients with high expression of
Arkadia (Hazard Ratio: 0.73; Logrank P: 0.00046), NKLAM
(Hazard Ratio: 0.77; Logrank P: 0.00086), and PPIL2 (Hazard
Ratio: 0.78; Logrank P: 0.0085), which have an inhibitory effect on
metastasis, have higher survival probability. Patients with high
expression of Smurf1 (Hazard Ratio: 1.34; Logrank P: 0.0022) and
Smurf2 (Hazard Ratio: 1.52; Logrank P: 1.9e-07) have lower
survival probability. Combining this analysis results with
summarized literature reports, E3 ubiquitin ligases which are
significantly correlated with patients’ survival were presented
in Table 2.

Interestingly, we found that some results of survival analysis
were contrary to the molecular mechanism. For example, if all
subtypes of breast patients were considered together, a higher
expression of MDM2 showed better survival (Hazard Ratio: 0.81;
Logrank P: 0.015) (Figure 4F), which was obviously contrary to
known molecular mechanisms. MDM2 has been well proven to
Frontiers in Oncology | www.frontiersin.org 9
be an E3 ubiquitin ligase that simultaneously targets tumor
suppressor protein RB and P53 to degradation. We further
analyzed different subtypes and found that it was opposite in
patients with luminal A (Hazard Ratio: 1.5; Logrank P: 0.0041)
(Figure 4G) and basal subtype (Hazard Ratio: 0.69; Logrank P:
0.019) (Figure 4H). This suggests that the heterogeneity of breast
cancer cannot be ignored. In addition, it might be affected by the
expression level or mutation of ubiquitin substrates, such as the
status of p53 mutation or loss of RB. The context-dependent role
of E3s and breast cancer subtypes need to be considered more in
future survival analyses.
4 DISCUSSION

In the past decades, dozens of studies have demonstrated that
many E3 ubiquitin ligases play very important roles in breast
cancer metastasis. E3 ligases were involved in the multiple steps
of breast cancer metastasis, including EMT, invasion and
migration, cell stemness, angiogenesis, and immunity response
in the tumor microenvironment.

Typical E3s’ functions comprise of recognition and recruiting
a specific protein to be modified and then catalyzing ubiquitin
molecule discharge from an active-site cysteine onto the
recruited substrate or a substrate-linked ubiquitin. Through
this posttranslational modification, E3 ligases can alter the fate
of their protein substrates, transducing different signals, which is
critical for breast cancer metastasis. For example, the E3 ligase
Cbl-b mediates the ubiquitination and degradation of EGFR,
which inhibits metastatic breast cancer cells’ EMT. And another
E3 ligase, MEX3C, catalyzes the tumor suppressor PTEN with
K27-linked polyubiquitination and alters its enzymatic function,
which leads to the accumulation of the master regulators of
EMT, including twist family bHLH transcription factor 1
(TWIST1), Yes1-associated transcriptional regulator (YAP1),
and SNAI1.

In light of the vital roles of E3 ubiquitin ligases in breast cancer
metastasis, targeting them for cancer therapy has gained
increasing attention. Notably, bortezomib, a proteasome
inhibitor, was approved by the Food and Drug Administration
(FDA) of United States to treat multiple myeloma and certain
lymphomas, which encourages more and more researchers to
screen the small molecular inhibitors of particular E3 ligases for
anti-metastatic breast cancer. We queried with the key words of
each E3 ubiquitin ligase names and their aliases in the AACT
(Public Access to Aggregate Content of ClinicalTrials.gov, https://
aact.ctti-clinicaltrials.org/) database, which is a publicly available
relational database that contains information (protocol and result
data elements) about every study registered in ClinicalTrials.gov.
However, only the inhibitor for MDM2 has been registered for
breast cancer treatment in undergoing clinical trials. It offers great
opportunity for future pharmacological exploitation.

Though it is believed that inhibiting and redirecting
ubiquitination in vivo are new therapeutic strategies, especially
specific inhibitors of E3 ubiquitin ligase will be discovered and
developed as a novel class of anticancer drugs in the foreseeable
October 2021 | Volume 11 | Article 752604
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TABLE 2 | E3s are significantly correlated with patients’ survival.

E3s Clinical Significance

Population DetectionType Method of
Detection

Expressing Difference Categorization Survival
Analysis

HR 95%CI Logrank
P

ASB13 NA mRNA RNA-seq Expressing difference High vs. Low OS 0.67 NA 5.7e–09
BCA2 3,554 mRNA RNA-seq Expressing difference (in

subtype cell lines)
High vs. Low OS (in

subtypes)
LuminalA:
1.21

1–1.46 0.046

LuminalB:
1.41

1.14–1.75 0.0018

Basal:
1.25

0.96–1.64 0.1

HER2+:
1.54

1.01–2.34 0.044

Cbl‐b 292 Protein IHC Expressing difference Positive vs.
Negative

OS,
DFS

OS: 0.550 0.341–0.888 0.013
DFS:
0.616

0.414–0.917 0.016

COP1 105 Protein IHC Expressing difference Positive vs.
Negative

OS, RFS RR: 0.65 0.149–6.732 P < 0.001

Cullin7 103 Protein IHC Expressing difference Positive vs.
Negative

OS NA NA P < 0.05

FBXL14 1,764 mRNA RNA-seq Expressing difference High vs. Low RFS NA NA P < 0.0001
FBXO11 OS: 1,402

RFS: 3,951
MFS: NA

mRNA RNA-seq Expressing difference High vs. Low OS, OS: 1.37 1.08–1.74 0.01
RFS RFS: 1.46 1.31–1.63 P < 0.0001
MFS MFS: 0.64 NA 0.04

FBXO22 410 Protein IHC Expressing difference Positive vs.
Negative

OS,
DFS

OS: 0.604 0.398–0.918 0.018
DFS:
0.536

0.315–0.912 0.021

GP78 108 Protein IHC Expressing difference Positive vs.
Negative

OS, DFS NA NA <0.001

HACE1 1,764 mRNA RNA-seq Expressing difference High vs. Low RFS 1.40 1.20–1.64 <0.0001
HectD1 1,864 mRNA RNA-seq Expressing difference High vs. Low OS NA NA 1.00e–16
HERC4 161 mRNA RNA-seq Expressing difference High vs. Low OS NA NA 0.029
HRD1 170 Protein IHC Expressing difference Positive vs.

Negative
OS NA NA <0.01

ITCH OS: 1,115 mRNA RNA-seq Expressing difference Low vs. High OS, RFS,
DMFS, PPS

OS: 1.47 1.15–1.87 0.0016
RFS: 3,455; RFS: 1.39 1.24–1.56 2.2e–08
DMFS: 1,609 DMFS:

1.39
1.14–1.71 0.0013

PPS: 351 PPS: 1.3 1–1.68 0.047
MARCH5 RNA: 1,081;

IHC: 65
mRNA
Protein

RNA-seq
IHC

Expressing difference High vs. Low
Positive vs.
Negative

OS NA NA 0.048
0.029

Parkin RNA: 3,951
IHC: 168

mRNA
Protein

RNA-seq
IHC

Expressing difference High vs. Low
Tumor vs. non-
tumor

RFS, DMFS NA NA 2.4e–13
0.0090

PDZRN4 81 mRNA
Protein

RNA-seq
IHC, WB

Expressing difference Low vs. High OS, DFS OS: 1.663 1.013–2.731 0.044
DFS:
1.840

1.126–3.007 0.015

RNF8 IHC: 202
RNA: 3,315

Protein
mRNA

IHC
RNA-seq

Expressing difference Low vs. High OS, RFS,
DMFS, PPS

OS: 1.31 1.02–1.68 0.035
RFS: 1.15 1.03–1.29 0.013
DMFS:
1.43

1.17–1.76 0.00056

PPS: 1.22 0.93–1.6 0.16
RNF144A 166 Protein IHC Expressing difference Low vs. High OS, DMFS NA NA <0.05
RNF208 3,951 mRNA qRT-PCR

RNA-seq
Expressing difference in
subtype

Low vs. High RFS 0.76 0.69–0.85 <0.001

SIAH2 235 Protein IHC Expressing difference Low vs. High OS (ER+) 0.68 0.52–0.89 <0.005
SKP2 80 Protein IHC Expressing difference in

subtype
Low vs. High OS (Her2+) NA NA 0.0002

SCF-JFK NA mRNA RNA-seq Expressing difference Low vs. High OS LuminalA:
0.94

NA 0.035

Basal:
7.24

0.035

TRAF6 212 Protein IHC Expressing difference Low vs. High DMFS NA NA <0.001

(Continued)
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future, we are still facing significant challenges so far. Firstly, the
specific substrate of E3 ligase had been elucidated in few studies
and needs to be identified, especially in the process of breast cancer
metastasis. Recent advances in high-throughput screening
chemical methods have revolutionized our ability to match E3
ubiquitin ligases with their cellular targets (134), like the UBAIT
(ubiquitin-activated interaction traps strategy), which relies on a
ubiquitin molecule covalently fused to the E3 ligase of interest
being charged onto E2 enzymes. Using the affinity enrichment of
tagged UBAITs with following mass spectrometry can identify
substrates of several E3s (135). Both in vivo and in vitro ubiquitin
assays are also suggested to be used for the validation of E3 ligase
substrates. Secondly, the substrate recognition specificity of E3
ligases needs to be understand more deeply in breast cancer
metastasis, which is critical for the efficient small-molecule
inhibition of substrate degradation. Comparing proteins
modified in cell lysates versus when an E3 ligase is depleted will
allow the identification of substrates (134, 136). Thirdly, structural
bases and ubiquitin mechanisms facilitate with further exploit
pharmacological strategy. For example, typical HECT family E3s
harbor catalytic cysteines that first receive ubiquitin molecule from
a bound E2~Ub intermediate and then directly deliver the
ubiquitin to the substrate protein, which can pharmacologically
Frontiers in Oncology | www.frontiersin.org 11
target the catalytic cysteines of E3s (134). Instead, there are still
several non-classical E3s whose structure and specific ubiquitin
transfer mechanisms remain unknown. Finally, E3 ligases exhibit
distinct or even opposite functions in different breast cancer
subtypes, suggesting that a subtype-specific approach to E3
ligase substrates and inhibitor screening is required. A good
example is K+ channel tetramerization domain 10 (KCTD10), a
BTB protein, as an adaptor protein that forms E3 ubiquitin ligase
complex with Cullin3. CUL3/KCTD10 ubiquitinated RhoB for
K63-linked ubiquitin degradation and promote HER2-positive
breast cancer cell proliferation (137, 138). Two downstream
proteins of RhoB, RAC1 (Rho GTPase) and CNKSR1
(connector enhancer of kinase suppressor of Ras1), were found
to be significantly correlated with the prognosis of HER2-positive
breast cancer patients (138, 139). Beyond small-molecule
inhibitors, proteolysis-targeting chimeras (PROTACs), which
can induce the recruitment of E3 to target protein, have recently
emerged as significant future therapeutic opportunities (140, 141).

In addition, breast cancer cell–secreted exosomes have been
found to play roles in the microenvironment and enhance the
invasiveness of recipient cells, which contribute to breast cancer
invasion through the EGFR signaling (142, 143). An exosome-
mediated delivery of the intrinsic PTEN-stabilizing factor PTEN-
TABLE 2 | Continued

E3s Clinical Significance

Population DetectionType Method of
Detection

Expressing Difference Categorization Survival
Analysis

HR 95%CI Logrank
P

TRIM8 IHC: 91
RNA: NA

Protein
mRNA

IHC
RNA-seq

Expressing difference Low vs. High OS All type:
0.69

0.58–0.81 3.8e–06

ER+: 0.71 0.53–0.96 0.025
TRIM11 NA mRNA RNA-seq Expressing difference Low vs. High OS OS: 1.63 1.2–2.22 0.005

RFS RFS: 1.57 1.01–2.42 0.027
TRIM44 129 Protein IHC Expressing difference Low vs. High OS NA NA 0.031

DMFS NA NA 0.027
UBR5 IHC: 54

RNA: NA
Protein
mRNA

IHC
RNA-seq

Expressing difference Tumor vs. non-
tumor
Low vs. High

mRNA OS NA NA 0.011

UBR7 47 mRNA RNA-seq Expressing difference Low vs. High DMFS 0.31 0.1–0.98 0.036
WWP1 33 and 179 Protein IHC Expressing difference Positive vs.

Negative
DMFS NA NA <0.05

UBE2O RNA: 3,951
IHC: 50

mRNA
Protein

RNA-seq
IHC, WB

Expressing difference Low vs. High OS, DMFS IHC OS:
NA

NA P < 0.05

mRNA
OS: 1.63

1.3–2.04 1.5e–05

DMFS:
1.54

1.25–1.89 4e–05

Arkadia 2,765 mRNA RNA-seq NA Low vs. High DMFS 0.73 0.62–0.87 0.00046
MDM2 2,765 mRNA RNA-seq Expressing difference Low vs. High DMFS All type:

0.81
0.69–0.96 0.015

LuminalA:
1.5

1.14–1.99 0.0041

Basal:
0.69

0.5–0.94 0.019

NKLAM 2,765 mRNA RNA-seq NA Low vs. High DMFS 0.77 0.66–0.9 0.00086
PPIL2 2,765 mRNA RNA-seq Expressing difference Low vs. High DMFS 0.78 0.65–0.94 0.0085
Smurf1 2,765 mRNA RNA-seq NA Low vs. High DMFS 1.34 1.11–1.62 0.0022
Smurf2 2,765 mRNA RNA-seq NA Low vs. High DMFS 1.52 1.3–1.78 1.9e–07
Octo
ber 2021 | V
olume 11 | Art
IHC, immunohistochemical (IHC) staining; WB, western blot; OS, overall survival; DFS, disease-free survival; RFS, relapse-free survival; DMFS, distant metastasis-free survival; PPS, post-
progression survival; BCSS, breast cancer–specific survival; HR, hazard ratio; 95%CI, 95% confidence intervals; RR, relative risk; NA, not available in the reference literature.
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CT (Carbon Terminus) has been found to protect PTEN from E3
ligase–mediated proteasomal degradation and then inhibit breast
cancer cell proliferation and migration (144). It suggests that
not only intracellular ubiquitination but also intercellular
Frontiers in Oncology | www.frontiersin.org 12
ubiquitination (like exosome- mediated migratory delivery)
should be followed with interest in the future.

With >700 E3 ligases in the human genome, including but not
limited to the 54 E3s that have been identified to be involved in
A

B

D

E

F

G H

C

FIGURE 4 | The survival curves comparing patients with high and low expressions of E3s in breast cancer patients. As a supplement to the literatures, the survival
analysis of Arkadia (A), NKLAM (B), PPIL2 (C), Smurf1 (D), and Smurf2 (E), which were illustrated as a Kaplan–Meier plot. Distant metastasis–free survival curves for
high (red) and low (black) expression groups dichotomized at the optimal cut-point. The survival analysis of MDM2 in breast cancer was shown as all types (F),
luminal A (G) subtype, and basal subtype (H), respectively. Logrank P-value and the hazard ratio with 95% confidence intervals was calculated. The threshold was
adjusted to logrank P‐values at < 0.05.
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breast cancer metastasis, it has become clear that some of them
are promising therapeutic targets or prognostic markers for
breast cancer.
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