
Citation: Gu, S.; Zang, X.; Jiang, L.;

Gu, T.; Meng, F.; Huang, S.; Cai, G.;

Li, Z.; Wu, Z.; Hong, L. Differential

MicroRNA Expression in Porcine

Endometrium Related to

Spontaneous Embryo Loss during

Early Pregnancy. Int. J. Mol. Sci. 2022,

23, 8157. https://doi.org/10.3390/

ijms23158157

Academic Editor: Alfredo Ciccodicola

Received: 28 June 2022

Accepted: 21 July 2022

Published: 24 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 International Journal of 

Molecular Sciences

Article

Differential MicroRNA Expression in Porcine Endometrium
Related to Spontaneous Embryo Loss during Early Pregnancy
Shengchen Gu 1,†, Xupeng Zang 1,†, Lei Jiang 1, Ting Gu 1 , Fanming Meng 2, Sixiu Huang 1,3,4,
Gengyuan Cai 1,3,4, Zicong Li 1,3,4,5, Zhenfang Wu 1,3,4,5,* and Linjun Hong 1,3,4,*

1 National Engineering Research Center for Breeding Swine Industry, College of Animal Science,
South China Agricultural University, Guangzhou 510642, China; 15153918918@stu.scau.edu.cn (S.G.);
xupeng_zang@stu.scau.edu.cn (X.Z.); jianglei@stu.scau.edu.cn (L.J.); tinggu@scau.edu.cn (T.G.);
sxhuang815@scau.edu.cn (S.H.); cgy0415@scau.edu.cn (G.C.); lizicong@scau.edu.cn (Z.L.)

2 State Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory of Animal Breeding
and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences,
Guangzhou 510642, China; mengfanming@gdaas.cn

3 Guangdong Provincial Key Laboratory of Agri-Animal Genomics and Molecular Breeding, College of
Animal Science, South China Agricultural University, Guangzhou 510642, China

4 Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou 510642, China
5 State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources,

Guangzhou 510642, China
* Correspondence: wzf@scau.edu.cn (Z.W.); linjun.hong@scau.edu.cn (L.H.)
† Shengchen Gu and Xupeng Zang contributed equally to this work.

Abstract: Litter size is an important indicator to measure the production capacity of commercial pigs.
Spontaneous embryo loss is an essential factor in determining sow litter size. In early pregnancy,
spontaneous embryo loss in porcine is as high as 20–30% during embryo implantation. However, the
specific molecular mechanism underlying spontaneous embryo loss at the end of embryo implan-
tation remains unknown. Therefore, we comprehensively used small RNA sequencing technology,
bioinformatics analysis, and molecular experiments to determine the microRNA (miRNA) expression
profile in the healthy and arresting embryo implantation site of porcine endometrium on day of
gestation (DG) 28. A total of 464 miRNAs were identified in arresting endometrium (AE) and healthy
endometrium (HE), and 139 differentially expressed miRNAs (DEMs) were screened. We combined
the mRNA sequencing dataset from the SRA database to predict the target genes of these miRNAs.
A quantitative real-time PCR assay identified the expression levels of miRNAs and mRNAs. Gene
Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses were per-
formed on differentially expressed target genes of DEMs, mainly enriched in epithelial development
and amino acids metabolism-related pathways. We performed fluorescence in situ hybridization
(FISH) and the dual-luciferase report gene assay to confirm miRNA and predicted target gene binding.
miR-205 may inhibit its expression by combining 3′-untranslated regions (3′ UTR) of tubulointer-
stitial nephritis antigen-like 1 (TINAGL1). The resulting inhibition of angiogenesis in the maternal
endometrium ultimately leads to the formation of arresting embryos during the implantation period.
This study provides a reference for the effect of miRNA on the successful implantation of pig embryos
in early gestation.

Keywords: spontaneous embryo loss; miRNA; implantation; endometrium; pig

1. Introduction

Litter size is an essential economic indicator in the production and management of
the pig industry [1]. Ovulation, sperm motility, fertilization rate, and embryo prenatal
death affect the final number of offspring [2]. After fertilization, the main factor affecting
litter size is the embryo’s prenatal death. The most significant embryo loss occurs during
embryo implantation in early pregnancy; the embryo mortality rate is as high as 30%
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during the period between the day of gestation (DG) 10 and 30 [3]. Previous research has
demonstrated that the main factor influencing spontaneous embryo loss in early pregnancy
is abnormalities in mother–fetal communication. These interactions are controlled by the
exchange of signals between the embryo and endometrium, such as: estrogen, microRNAs,
extracellular vesicles, cytokines, chemokines, growth factors, mRNA destabilizing factors,
and other substances. The failure of adjustment and coordination all contribute to sponta-
neous embryo loss. Insufficient blood supply to the uterus has been demonstrated to cause
spontaneous embryo loss [3–7]. Previous studies found that vascular endothelium growth
factors, hypoxia-inducible factor 1-α, IFN-γ, etc., all affect the angiogenesis between mother
and fetus, ultimately leading to healthy and arresting embryos [8,9].

Small RNAs, including miRNAs, small interfering RNAs (siRNAs), and Piwi-interacting
RNAs (piRNAs), play important roles in growth and development and genome integrity [10,11].
microRNA (miRNA) is known to regulate immune cell development and angiogenesis [12].
miRNA is a general term that refers to a class of RNA molecules of about 22 nt in length, en-
dogenously expressed, conservative, and lack coding characteristics. The most commonly
accepted mechanism is that at the post-transcriptional level, the seed sequence of miRNA
is complementary to 3′-untranslated regions (3′ UTR) of mRNA, thereby inhibiting mRNA
expression or degrading mRNA [13,14]. miRNAs mainly exist in various tissues and extra-
cellular vesicles (EV) [14]. Numerous investigations in multiple species have indicated that
miRNA is involved in embryonic development and in vitro oocyte maturation [14–20]. It
has been shown that miR-181a and miR-181c are required for embryo implantation and
placentation [13]. Previous research revealed that miRNAs in the endometrium are closely
linked to immune response and angiogenesis-related genes [18]. As previously reported,
miRNAs contribute to pregnancy establishment by influencing critical gene networks in
immune cells, especially miR-233, miR-155, and miR-146b, which have immunomodulatory
effects [21]. We selected sows at the end of the implantation period on DG 28 due to a
higher percentage of spontaneous embryo loss. This work combines previously reported
mRNA sequencing data with small RNA (sRNA) sequencing data in porcine endometrium
at healthy and arresting embryo implantation sites on DG 28 [4]. Considering that miR-205
inhibits the expression levels of tubulointerstitial nephritis antigen-like 1 (TINAGL1), we in-
ferred that miR-205 inhibits angiogenesis in maternal endometrial tissues, thereby reducing
the nutrient supply to the embryo to inhibit the embryo development from the endometrial
level; meanwhile, previous studies have shown that TINAGL1 is a positive regulator of
angiogenesis that increases endothelial cell invasion and angiogenic sprouting As presented
in Figure 1, we performed high-throughput sequencing, bioinformatic analysis, and experi-
mental validation of arresting endometrium (AE) and healthy endometrium (HE) in sows
on DG 28. The data is expected to provide a favorable reference for studying the molecular
regulatory mechanism of spontaneous embryo loss at the end of embryo implantation.
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Figure 1. This flow chart displays the design ideas and experimental and analytical procedures of
this study. The specific details are shown in the text.

2. Results
2.1. Analysis of miRNA Sequencing Results

Four samples per group were sequenced using the SE50 sequencing strategy. They
were 55,191,250 and 57,050,149 raw reads obtained from porcine AE and HE tissue on
DG 28, respectively. After excluding low-quality with 5′ adapter contaminant, without 3′

adapter and poly A/T/G/C reads, the two groups ended up with 54,855,390 and 56,720,713
clean reads. Clean reads account for 99.39% and 99.42% of raw reads in AE and HE on DG
28, respectively (Table S1, Supplementary Materials). Due to the length of animal sRNA
ranging from 18 to 35 nt, and after 18–35 nt length screening of all clean reads, 53,821,520
and 55,755,655 reads were screened in AE and HE, respectively. miRNA is about 21–22 nt,
and the length distribution of sRNA can assist us in determining the sRNA category;
therefore, a miRNA length screening was performed (Figure 2A). The miRNA length was
mainly distributed in 21, 22, and 23 nt, with 22 nt exhibiting the highest proportion. It
was 36.86% and 32.49% in AE and HE on DG 28, respectively, indicating that 22 nt long
miRNAs are a significant proportion of sRNA in the eight samples from two states. The
category distribution of sRNA following length screening was determined by comparison
to the reference sequence. The total matching rate in the two states is 98.17%.
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Figure 2. Summary of small RNA (sRNA) sequencing results of 8 samples from two states.
(A) sRNA length distribution, miRNA mainly distributed in 21–23 nt, in which 22 nt accounted
for the highest proportion. (B) sRNA classifications in 8 samples from arresting endometrium
(AE) and healthy endometrium (HE) were annotated into the reference sequence. (C) The density
distribution of miRNA expression.

These sRNA reads were compared to the miRBase database to determine the sequence,
length, precursor sequence, occurrence frequency, and other related information of sRNA.
In total, 52,785,605 and 54,780,288 sRNA reads were obtained from eight samples in AE
and HE states, respectively. Furthermore, 38,967,952 (73.82%) and 41,204,005 (75.22%) reads
were matched with known miRNAs in AE and HE sRNA libraries, and 590,471 (1.12%)
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and 492,504 (0.90%) reads were matched with novel miRNA in AE and HE sRNA libraries.
The remaining sRNA reads were classified into other components, such as ribosomal
RNA (rRNA), transfer RNA (tRNA), small nuclear RNA (snRNA), and small nucleolar
RNA (snoRNA), as well as exon and intron regions of the gene (Figure 2B). Finally, the
TPM density distribution of miRNA expression in AE and HE samples exhibited a similar
distribution state (Figure 2C).

2.2. Correlation Analysis of AE and HE Samples and Differential Expression Analysis of miRNA

Principal component analysis (PCA) and correlation analysis were utilized to demon-
strate the disparity between different biological replicates of the same state and various
states’ differences. As illustrated in Figure 3A,B, samples belonging to the same group were
clustered together, whereas Pearson correlation coefficients within the group were high.
Different groups clustered in various areas, with significant differences.
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Figure 3. Correlation and miRNA expression levels in porcine endometrial samples. (A) Principal
component analysis (PCA) between arresting endometrium (AE) and healthy endometrium (HE)
samples. (B) Pearson correlation coefficients between samples show the correlation. The color scale
is ramped up from 0.95 (blue, low correlation) to 1.00 (red, high correlation). (C) Venn diagrams of
357 known miRNAs in AE and HE samples. (D) Venn diagrams of 107 novel miRNAs in AE and
HE samples.

To investigate spontaneous embryo loss-related miRNAs in the endometrium, 464 miRNAs
were identified in AE and HE samples, including 357 known miRNAs and 107 novel
miRNAs (Table S2, Supplementary Materials). Among 357 known miRNAs, 336 were
co-expressed in AE and HE, while 7 and 14 miRNAs were specifically expressed in AE and
HE, respectively (Figure 3C, Table S3, Supplementary Materials). For 107 novel miRNAs,
81 were co-expressed in the above two types of samples, while 16 and 10 miRNAs were
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specifically expressed in AE and HE, respectively (Figure 3D, Table S4, Supplementary
Materials). The top 20 miRNAs with the highest expression levels in AE and HE are listed
in Table S5 (Supplementary Materials). We used q-value < 0.05 as the screening criterion
for differentially expressed miRNAs (DEMs); 139 DEMs were found. Compared with HE
samples, 66 miRNAs were highly expressed, and 73 miRNAs were low expressed in AE
samples (Figure 4A). Hierarchical cluster analysis revealed the expression status of miRNA
in AE and HE (Figure 4B). Finally, the top 20 DEMs of AE and HE samples were created
(Table S6, Supplementary Materials).
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2.3. Prediction of Target Genes of DEMs

The target genes were predicted by taking the intersection part of miRanda and
RNAhybrid software prediction results, as shown in Table S7 (Supplementary Materials).
The mRNA sequencing data in the SRA database and miRNA sequencing data in this paper
were jointly analyzed. The screening principles of miRNA–mRNA pairs were as follows:
miRNA was significantly differentially expressed, mRNA was significantly differentially
expressed, and miRNA and mRNA presented targeted interaction predicted by algorithms,
with a Pearson correlation coefficient of <−0.8 between miRNA and mRNA. The interaction
network of 139 miRNAs and their corresponding target genes was mapped. As illustrated
in Figure 5, miR-671-5p, miR-885-3p, miR-365-5p, and miR-205 have many target genes
and may regulate the expression of many genes, as shown in Table S8 (Supplementary
Materials), indicating that these miRNAs may be critical for post-implantation embryo
development from the endometrial level.
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Figure 5. miRNA-mRNA interaction network diagram. Green triangles represent miRNAs, blue
dots represent mRNAs, lines between miRNA–mRNA indicate interaction and the purple gradient
of the line represents the absolute value of the correlation coefficient (dark color—large correlation
coefficient, strong correlation. light color—small correlation coefficient, weak correlation), and the
thickness of the line represents the p-value for predicting the significance of the miRNA–mRNA
negative correlation (thick, the difference is extremely significant, thin, significant difference).

2.4. Quantitative Real-Time PCR (qRT-PCR) Verified the Sequencing Results

To validate the accuracy of sequencing results, we selected eight DEMs and eight
differentially expressed mRNAs to examine the sequencing results by qRT-PCR assay.
Among the eight miRNAs validated above, miR-205, miR-365-5p, miR-671-5p, and miR-885-
5p presented more target genes; miR-217, miR-503, miR-504, and miR-375 were obtained
by random selection. Among the eight differentially expressed mRNAs, TINAGL1 was the
predicted target gene of miR-205, Hepatic and Glial Cell Adhesion Molecule (HEPACAM)
was the predicted target gene of miR-365-5p and miR-671-5p, and T-Box Transcription
Factor 6 (TBX6) was the predicted target gene of miR-671-5p and miR-885-3p. Their
expression levels were determined using qRT-PCR (Figure 6). The final results showed
that the qRT-PCR results were consistent with the sequencing results, which confirmed the
sequencing results’ reliability.
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red bar represents AE, the blue bar represents HE, mean ± the standard deviation (SD) denotes the
results, * represents p-value < 0.05, ** represents p-value < 0.01.

2.5. Functional Enrichment of DEMs in Endometrial Tissue

To understand that miRNA regulates target genes and target genes regulate biological
activities, possible differential expression target genes of miRNA were predicted to be
enriched into Gene Ontology (GO) functional annotation and the Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathway enrichment based on hypergeometric tests. GO en-
richment analysis showed that the target genes were mainly involved in tissue development,
epithelium development, muscle structure development, morphogenesis of epithelium,
epithelial tube morphogenesis, and regulation of nervous system development (Figure 7A;
Table S9, Supplementary Materials). KEGG analysis showed that 262 pathways were en-
riched, the first 30 of which were listed (Figure 7B; Table S10, Supplementary Materials) and
mainly involved in Antifolate resistance, Glycine, serine and threonine metabolism, folate
biosynthesis, Pyrimidine metabolism, Serotonergic synapse, Arachidonic acid metabolism,
and Circadian entrainment. At the same time, many reproductive-related pathways were
enriched, such as steroid hormone biosynthesis, ovarian steroidogenesis, and the Estrogen
signaling pathway.

2.6. miR-205 Directly Targets 3′ UTR of TINAGL1 to Reduce Its Expression

miR-205 is the top known high expression miRNA in AE compared to HE. The
fluorescence in situ hybridization (FISH) assay was used to determine the localization
of miR-205 in AE and HE samples, which was abundantly expressed elevated in AE
luminal epithelium and glandular epithelium, and at the same time, slightly expressed
in HE (Figure 8). It is consistent with our previous analysis of sequencing results and
qRT-PCR results.

When mRNA sequencing data and target gene prediction software were combined,
miR-205 was found to have many target genes, of which TINAGL1 is linked to embryonic
development and angiogenesis. Therefore, we demonstrated the combination of the seed
region of miR-205 and 3′ UTR of TINAGL1 using a dual-luciferase reporter gene assay
system. The seed region of miRNA was entirely complementary with TINAGL1 3′ UTR
but unmatched with a 3′ UTR mutation (Figure 9A). The plasmid construction results are
depicted in Figure 9B.
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Figure 7. Functional enrichment of differentially expressed target genes of differentially expressed
miRNAs (DEMs). (A) Gene Ontology (GO) enrichment results were divided into three categories:
red bars represent biological processes, light blue bars represent cellular components, and dark blue
bars represent molecular functions. There are 10 GO terms for each type. (B) The top 30 terms in the
Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis.
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Figure 8. Fluorescence in situ hybridization (FISH) localized expression of miR-205 to the uterine
section samples in the two statuses of arresting endometrium (AE) and healthy endometrium (HE).
At 28 days of pregnancy, the expression level of miR-205 was abundantly expressed in AE lumi-
nal epithelium and glandular epithelium, and at the same time, it was slightly expressed in HE
tissues. Hybridization buffer without probes was used as a negative control group (NC; (Figure S1,
Supplementary Materials)). Legend: LE, luminal epithelium; GE, glandular epithelium. Scale bar
100 um.

To exclude the interaction between miR-205 and PGL3 plasmid, miR-205 mimic or
miR-205 NC was co-transfected into 293T cells with the PGL3 NC. Co-transfection of miR-
205 mimics into 293T cells with TINAGL1 3′ UTR WT plasmid resulted in a significant
decrease in firefly/Renilla luciferase activity compared with co-transfection miR-205 NC
into 293T cells with TINAGL1 3′ UTR WT plasmid group. Neither miR-205 mimic nor
miR-205 NC was co-transfected into cells with TINAGL1 3′ UTR MT plasmid, and there
were no significant differences in results between the two groups (Figure 9C). The above
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experiments revealed that miR-205 inhibited the TINAGL1 gene expression by directly
targeting 3′ UTR of the TINAGL1 and the predicted targeted binding region was accurate.
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Figure 9. miR-205 targets the 3′-untranslated regions (3′ UTR) of tubulointerstitial nephritis antigen-
like 1 (TINAGL1). (A) miR-205 seed sequence and TINAGL1′s 3′ UTR predicted complementary
pairing sites. (B) TINAGL1 3′ UTR wide type (WT) was constructed downstream of the firefly
luciferase reporter gene in the pGL3 promoter vector. (C) miR-205 mimic or miR-205 negative control
(NC) was co-transfected into 293T cells with the PGL3 negative control (NC), TINAGL1 3′ UTR
WT plasmid, and TINAGL1 3′ UTR mutant (MT) plasmid. In the groups that co-transfected miR-
205 mimic and TINAGL1 3′ UTR wide type, the firefly/Renilla luciferase activity was significantly
decreased compared with the control group. Demonstrating that miR-205 may target TINAGL1
to affect luciferase activity. Data are presented as mean ± the standard error of the mean (SEM),
*** represents p-value < 0.001.

3. Discussion

Since the discovery of the first miRNA lin-4, research on miRNA has recently grown
in popularity. miRNA has been demonstrated to regulate the expression of about 20–30%
of genes [22]. Research indicates that some miRNAs are correlated with germ cell de-
velopment, embryonic development, mother–fetal exchange, and placentation [20,23,24].
This study used high-throughput sRNA sequencing technology to determine the RNA
expression profile of AE and HE tissue on DG 28 to increase our understanding of the
molecular mechanism in the endometrium involved in embryo development following
implantation. Finally, 464 miRNAs were identified in AE and HE, including 357 known
miRNAs and 107 novel miRNAs. These findings promote miR-205 to suppress endometrial
angiogenesis by targeting TINAGL1, thereby inhibiting the post-implantation development
of embryos.

Prior data reported that glucose transporter type 4 (GLUT4) in the endometrial epithe-
lium affects embryo development [25]. When we conducted GO enrichment analysis on
DEM’s differentially expressed target genes in AE compared with HE, we found that the
biological process of significant enrichment is epithelial development. Previous studies
showed that osteopontin expressed by uterine epithelium interacts with integrins on the
placenta and affects embryo attachment and placentation in pigs [26].

KEGG pathway enrichment analysis can help us understand the molecular functions
of DEMs by identifying the biological processes involved in the target genes corresponding
to these DEMs. Some pathways enriched by these target genes are involved in reproductive
processes, such as the NF-kappa B signaling pathway, Notch signaling pathway, Rap1
signaling pathway, and cell adhesion molecules. The following are some previous studies
on these pathways. Han et al. demonstrated that after infecting porcine with circovirus type
2, the NF-kappa B signaling pathway could promote interleukin-1beta (IL-1β) and IL-10
anti-inflammatory cytokines in porcine alveolar macrophages, thereby killing germs [27].
In humans, the weakened Notch signal is associated with endometriosis. In addition,
downregulating Forkhead box other 1 (FOXO1) expression eventually leads to decidua
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damage [28]. The Rap1 signaling pathway is a crucial immune-related pathway and cancer-
related pathway [29,30]. The expression of cell adhesion molecules is critical for embryo
implantation and pregnancy establishment [31]. Simultaneously, during the estrus cycle
and DG 15 to 16, the most significantly enriched biological pathways of differentially
expressed genes in the endometrium are cell adhesion molecules pathways [32]. These
pathways enriched by target genes above indicate that miRNA regulates the expression of
target genes and then influences corresponding molecular biological pathways.

The top three miRNAs highly expressed in AE and HE tissues are miR-21-5p, miR-
148a-3p, and miR-143-3p. Studies demonstrated that miR-21-5p can promote Thp-1 cells
and non-small cell lung cancer cell proliferation [33,34]. In another study, it could promote
extracellular matrix degradation and angiogenesis [35,36]. miR-148a-3p can enhance the
bactericidal and antibacterial ability of macrophages [37]. miR-143-3p has been demon-
strated to inhibit the proliferation, migration, and invasion of ovarian cancer, hepatocellular
carcinoma cells, endometriotic stromal cells, and osteosarcoma cells [38–41].

The top miRNAs with more targets are miR-365-5p, miR-671-5p, miR-885, and miR-205.
Studies have shown that miR-365-5p can target RNA-binding protein with serine-rich
domain 1 (RNPS1), Keratin 14 (KRT14), and DnaJ heat shock protein family (Hsp40) member
B6 (DNAJB6) in porcine Alveolar Macrophages, thereby affecting interferon-mediated
immune response [42]. Previous studies have shown that the differentially expressed
miR-671-5p in the endometrium of Meishan and Duroc sows affects maternal placental
development by targeting the Estrogen Receptor 1 (ESR1) gene [5,43]. Among the genes
targeted by the above miRNAs. Deborah et al. showed that TBX6 plays an important
role in mesoderm specification in mouse embryos [44]. Anna-Katerina et al. showed that
TBX6 regulates left/right patterning in mouse embryos through effects on nodal cilia and
perinodal signaling [45].

miR-205 regulates epithelial to mesenchymal transition by targeting Zinc-finger E-
box Binding Homeobox 1 (ZEB1) and Smad Interacting protein 1 (SIP1), which helps the
embryonic development process [46]. Previous studies have shown that the matricellular
protein TINAGL1 is a pro-angiogenic factor that plays a vital role in angiogenesis during
pregnancy [47,48]. At the same time, studies have shown that TINAGL1 supports the
structure and function of blood vessels. TINAGL1 is a crucial component of Reichert’s
membrane, allowing gas and nutrient exchange between the maternal placenta and the
embryo, supporting embryonic development after implantation [49,50].

Finally, TINAGL1 plays an essential physical and biological role in mouse embryonic
development [47,51]. Based on the two assays of the FISH and dual-luciferase report
gene and the literature reports mentioned above, we speculated that in the AE, TINAGL1
is targeted by its highly inversely related miR-205 to inhibit expression. TINAGL1 is a
promoter of angiogenesis, and finally, miR-205 inhibits maternal endometrium angiogenesis
by inhibiting TINAGL1. However, more studies are required to confirm this conjecture.

4. Materials and Methods
4.1. Animal Sample Collection

All animals used in this study were approved by the Animal Care and Use Ethics
Committee of South China Agricultural University (permit number: SYXK-2019-0136).
The animal sample collection process was identical to our previously published paper [4].
Briefly, four Tibetan sows with similar weight and size (Parity 2) were selected. The first
artificial insemination occurred immediately after the first estrous cycle and the second
insemination occurred after 12 h. Sows were slaughtered at a local abattoir on DG 28 to
obtain AE and HE samples in each sow’s uterus. Swine uterus samples were collected and
shipped to the laboratory in an ice box, and then uterine samples were cut longitudinally
from the anti-mesometrial side. According to generally accepted guidelines, we distinguish
between healthy and arresting embryos based on embryo size, weight, and vascularity
of the placental membranes. When the embryo is relatively large and heavy, the blood
vessels of the placental membrane are abundant, it is considered to be a healthy embryo,
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and when the state of the embryo is reversed, we define it as arresting embryo [6,8,52].
After statistics, the ratio between healthy embryos and arresting embryos is about 3:1–4:1.
After dissociating the embryos, we dissected the endometrium of the different embryo
attachment sites as AE and HE, respectively [53]. On the one hand, uterine samples
consisting of myometrium and endometrium were fixed in paraformaldehyde for the
following paraffin section preparation and FISH histological observation. On the other
hand, after collecting and labeling AE and HE samples and carefully transferring them, the
samples were first frozen in liquid nitrogen and subsequently transferred to a freezer at
−80 ◦C for long-term preservation for RNA extraction.

4.2. Library Preparation for sRNA Sequencing

All RNAs were extracted from endometrial tissue samples using TRIzol reagent
(Invitrogen, Carlsbad, CA, USA) following the manufacturer’s instructions. A 1% agarose
gel assay confirmed the lack of decomposition and contamination of the extracted RNA. A
NanoPhotometer® spectrophotometer measured RNA purity at 260 and 280 nm (IMPLEN,
Westlake Village, CA, USA). Accurate RNA concentrations were measured using the
Qubit® RNA Assay Kit in Qubit® 2.0 Fluorometer (Life Technologies, Carlsbad, CA, USA).
RNA integrity number (RIN) was measured using the RNA Nano 6000 Assay Kit of the
Agilent Bioanalyzer 2100 system (Agilent Technologies, Santa Clara, CA, USA). RIN values
exceeded 7.60.

A total of 3 µg RNA per sample were used as the basis for small RNA library con-
struction. The sequencing library was performed using NEBNext® Multiplex Small RNA
Library Prep Set for Illumina® (NEB, Ipswich, MA, USA). First, index codes were added to
each sample as a sample property. The NEB 3′ SR Adaptor was ligated to the 3′ end of the
miRNA, and the SR RT Primer hybridized with the excess of 3′ SR adaptor, converting the
single-stranded DNA Adaptor into a double-stranded DNA molecule, thereby inhibiting
adaptor dimer formation. This double-stranded DNA was not a substrate mediated by T4
RNA Ligase 1 and, therefore, could not be attached to the 5′ SR adaptor in the subsequent
ligation reaction. At the same time, the 5′ end adaptor was ligated to the 5′ end of the
miRNA, the first-strand cDNA was synthesized using M-MuLV reverse transcriptase (NEB,
Ipswich, MA, USA), and then the PCR process was conducted by use of LongAmp Taq 2X
Master Mix (NEB, Ipswitch, MA, USA), SR primer, and index primer. The PCR product
was purified by 8% agarose gel, and the DNA fragment of 140–160 bp (miRNA length and
the length of 3′ adapter and 5′ adapter) was recovered by cutting the gel and placed in 8 µL
of elution buffer.

After library creation, the sRNA library was diluted to 1 ng/µL. DNA High Sensitivity
Chips determined library quality on the Agilent Bioanalyzer 2100 system (Agilent Tech-
nologies, Santa Clara, CA, USA). Q-PCR was performed to detect the exact concentration
of constructed library. Finally, the sRNA library was sequenced at Illumina HiSeq 2500
platform (Illumina, San Diego, CA, USA).

4.3. Sequencing Data Analysis

The raw reads obtained by sequencing are subjected to the quality control described
below. Error rate, Q20, Q30, and GC-content of each sample’s raw reads sequencing data
were calculated.

By removing reads with an N proportion more significant than 10%, with 5′ adapter
contaminants, without 3′ adapter or the insert tag, having to ploy A/T/G/C, and low-
quality reads, raw reads can be converted into clean reads. Using length screening treatment,
clean reads can be further screened. Generally, animal sRNA length ranges from 18 to 35 nt,
and sRNA length distribution can help identify the sRNA category.

After length screening, the clean reads were compared to the reference sequence
using Bowtie (v.0.12.9), and their expression level was analyzed [54]. miRBase20.0 was
employed as a miRNA reference database [55]. mirDeep2 (v.2.0.0.5) was utilized to match
known miRNA. The available software miREvo (v.1.1) and mirDeep2 (v.2.0.0.5) were
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comprehensively used to predict novel miRNA [55,56]. Reads were classified as miRNA,
rRNA, tRNA, snRNA, snoRNA, repeat, novel miRNA, exon, intron, and others (Table S11,
Supplementary Materials).

4.4. Identification of DEMs

To eliminate the effect of sequencing depth and RNA length on read counts, the read
count of miRNA was normalized into transcripts per million (TPM) for the next screening
of DEMs [57]. Differential expression analysis was performed using the DESeq R package
(v.1.8.3) on AE and HE libraries to obtain each miRNA’s fold change and p-value [58].
The Benjamini–Hochberg method was used to convert the original p-value to a q-value to
improve the analysis’s reliability [59,60]. A q-value < 0.05 was defined as the threshold of
significant differential expression. This experiment included four biological replicates in
AE and HE, respectively. The results of differential expression analysis and cluster analysis
were represented by a volcano diagram and hierarchical clustering heatmap.

4.5. Target Gene Prediction

The target genes of DEMs were predicted using miRanda (v.3.3) and RNAhybrid
(v.2.0) software [61,62]. Only once the target gene was identified in both software was it is
considered the final target gene of miRNA. DEMs in this experiment were combined with
mRNA sequencing data uploaded to the SRA database by Zang et al. [53]. We obtained
the intersection of the following four data sets: Pearson correlation coefficients between
miRNA and mRNA < −0.8, DEMs, differentially expressed mRNAs, miRNAs and mRNAs
were targeted interactions (Table S12, Supplementary Materials), and finally, network
interaction diagrams were constructed using Cytoscape (v.3.9.1) software to illustrate the
interrelationships between miRNAs and mRNAs [63].

4.6. Functional Analysis of DEMs

To elucidate the biological functions and pathways underlying DEMs, we conducted
GO and KEGG pathway analyses on target genes predicted by DEMs. GO is the standard
of gene functional classification, and KEGG is a database integrating genomic, chemical,
and systemic functions [64]. GO analysis mainly included molecular function, biological
process, and cellular component. Rich factor and q-value were utilized as parameters to
select the top 30 enriched pathway terms to display in KEGG pathway analyses.

4.7. Validation of miRNA and mRNA Expression via qRT-PCR

Using qRT-PCR methods, eight samples from AE and HE groups were used to verify
the accuracy of sRNA and mRNA sequencing data [65]. Three biological replicates were
performed in two technical replicates [66]. Eight DEMs and eight mRNA were selected for
qRT-PCR. The miRNA and mRNA primer sequences are listed in Table S13 (Supplementary
Materials). All miRNA in the sample was reverse transcribed into cDNA using the PolyA
RT-PCR method, miRNA reverse transcription reagents were provided by the Mir-X miRNA
First-Strand Synthesis Kit (Takara, Dalian, China), and mRNA reverse transcription reagents
were supplied by the PrimeScriptTM RT reagent Kit with gDNA Eraser (Takara, Dalian,
China); all reagents were used following the manufacturer’s instructions. We performed
qRT-PCR in the Applied Biosystems® QuantStudio™ 7 Flex Real-Time PCR System (Thermo
Fisher, Singapore) using PowerUp™ SYBR™ Green Master Mix (Thermo Fisher, Vilnius,
Lithuania). As previously studied, U6 and Hypoxanthine Phosphoribosyltransferase 1
(HPRT1) were used as internal reference genes for miRNA and mRNA, respectively [67,68];
meanwhile, according to the previous miRNA and mRNA sequencing data, U6 and HPRT1
were stably expressed in AE and HE with similar expression levels. In summary, we
selected the above two genes as internal reference genes. The relative expression level of
miRNA and mRNA was calculated using a comparative cycle threshold (2−∆∆Ct).
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4.8. FISH Assay

The FISH assay was used to detect the localization and relative quantification of
miR-205 in endometrial tissue; the probe sequence of miR-205 is 5′-AGGAAGTAAGGTGG-
CCTCAGAC-3′. The basic process was as follows. The clean tissue was placed in 4%
paraformaldehyde (Servicebio, Wuhan, China) fixed fluid for more than 12 h, then de-
hydrated with graded ethanol (SCRC, Shanghai, China), and then embedded in paraffin.
After the paraffin was sliced with a microtome (Leica, Shanghai, China), the sections were
extracted using a water bath slide (Kedee, Jinhua, China) and incubated for 2 h at 62 ◦C.
The paraffin sections were placed in BioDewax and Clear solution (Servicebio, Wuhan,
China) for 15 min and were dehydrated twice in pure ethanol for 5 min. Then, they were
dehydrated in 85% and 75% graded ethanol for 5 min each and washed in DEPC (Amresco,
Solon, Ohio, USA) dilution. The sections were boiled in the retrieval solution for 15 min
and allowed to cool naturally. Liquid Blocker PAP Pen (Servicebio, Wuhan, China) was
used for tissue labeling, and Proteinase K (20 µg/mL) was used for digestion. After rinsing
with pure water, they were rinsed three times with phosphate-buffered saline (PBS). Then,
pre-hybridization solution was added dropwise to the sections and incubated for 1 h at
37 ◦C. The pre-hybridization solution was removed, the probe-containing hybridization
buffer (Servicebio, Wuhan, China) was added dropwise, and the hybridization was per-
formed overnight in a 37 ◦C incubator (labotery, Tianjin, China). Then, the hybridization
solution was removed, washed with 2 × SSC (Servicebio, Wuhan, China) solution for
10 min, washed twice with 1 × SSC solution for 5 min each, and washed with 0.5 × SSC
solution for 10 min. Next, DAPI (Servicebio, Wuhan, China) staining solution was added
dropwise to the sections, incubated in the dark for 8 min, and anti-fluorescence quenching
sealing tablets (Servicebio, Wuhan, China) were added dropwise after rinsing. Finally, the
sections were observed under a fluorescence microscope (Nikon, Tokyo, Japan), and images
were collected.

4.9. Dual-Luciferase Report Gene Assay

TINAGL1 3′ UTR wide-type (WT) and TINAGL1 3′ UTR mutant (MT) were constructed
downstream of the firefly luciferase reporter gene in the pGL3 promoter vector, resulting in
TINAGL1 3′ UTR WT plasmid and TINAGL1 3′ UTR MT plasmid, with the original PGL3
promoter vector as a PGL3 negative control (NC). Considering that 293T cells have a higher
transfection efficiency, they were used as target cells for transfection. After cell resuscitation,
293T cells were subcultured and inoculated into 96-well plates with 10,000 cells per well.
Finally, we co-transfected the three types of plasmids into 293T cells with miR-205 mimic
or miR-205 negative control (NC) according to the manufacturer’s instructions. At the
same time, we did not transfect the plasmid and miRNA, but only cells and transfection
reagent were kept as a negative control group. Three technical repetitions were conducted
per group.

After 48 h of co-culture, luciferin and coelenterazine were added to the cells using
a dual-luciferase reporter gene assay kit (Beyotime Biotechnology, Shanghai, China) and
following the manufacturer’s instructions. Finally, we used an Infinite M100 Pro (TECAN,
Grödig, Austria) microplate reader to detect the numerical size of luciferase and perform
further statistical analysis to calculate the ratio of firefly luciferase values to Renilla lu-
ciferase values.

4.10. Statistical Analysis

The t-test was employed to determine the significance of qRT-PCR and dual-luciferase
reporter gene assay using GraphPad Prism software (v.9.3.1). A p-value < 0.05 was consid-
ered statistically significant.

5. Conclusions

sRNA sequencing technology determined miRNAs of AE and HE on DG 28 in pigs. A
total of 357 known miRNAs and 107 novel miRNAs were identified. After comparing AE
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and HE tissues, 139 DEMs were identified (66 high expression and 73 low expression). The
GO analysis indicates that these DEMs may affect embryonic development by regulating
biological processes related to epithelial development and amino acid metabolism. The
results of differential expression analysis of miRNA and published differentially expressed
mRNA expression profiles were analyzed together. The interaction network between
miRNA and target genes, GO function, and KEGG pathway analysis was performed to
determine the molecular association between miRNA, mRNA, and post-implantation
embryo development from the endometrial level. Finally, our findings help us to gain a
better understanding of the role of miRNAs in the regulation of embryonic development
following implantation and embryonic survival in pigs.
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