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�� Periprosthetic joint infections (PJI) represent one of the most 
catastrophic complications following total joint arthro-
plasty (TJA). The lack of standardized diagnostic tests and 
protocols for PJI is a challenge for arthroplasty surgeons.

�� Next generation sequencing (NGS) is an innovative diag-
nostic tool that can sequence microbial deoxyribonucleic 
acids (DNA) from a synovial fluid sample: all DNA present 
in a specimen is sequenced in parallel, generating millions 
of reads. It has been shown to be extremely useful in a 
culture-negative PJI setting.

�� Metagenomic NGS (mNGS) allows for universal pathogen 
detection, regardless of microbe type, in a 24–48-hour 
timeframe: in its nanopore-base variation, mNGS also 
allows for antimicrobial resistance characterization.

�� Cell-free DNA (cfDNA) NGS, characterized by lack of the 
cell lysis step, has a fast run-time (hours) and, together 
with a high sensitivity and specificity in microorganism 
isolation, may provide information on the presence of 
antimicrobial resistance genes.

�� Metagenomics and cfDNA testing have reduced the time 
needed to detect infecting bacteria and represent very 
promising technologies for fast PJI diagnosis.

�� NGS technologies are revolutionary methods that could 
disrupt the diagnostic paradigm of PJI, but a comprehen-
sive collection of clinical evidence is still needed before 
they become widely used diagnostic tools.
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Introduction
Musculoskeletal infection is a leading cause of chronic 
pain and major disability. The incidence of musculoskel-
etal infection, including periprosthetic joint infection 

(PJI), is increasing in association with an ageing popula-
tion having serious comorbidities such as diabetes, obe-
sity, chronic heart disease and immunodepression.1,2 
Recent reports place the overall infection rate following 
orthopaedic surgery at approximately 5%, including a 
PJI incidence of up to 2%.3 Periprosthetic joint infection 
is one of the most catastrophic and difficult to manage 
complications following total joint arthroplasty (TJA), as it 
can result in knee arthrodesis or above-the-knee amputa-
tion. In the last ten years, the number of PJIs has dramati-
cally increased, having a major impact on sustainability. 
The five-year mortality rate following PJI has increased to 
values similar to oncology patients4 and hospital read-
mission rates following total hip arthroplasty explants 
are already double those for many cardiac and oncologic 
procedures.4 Periprosthetic joint infections present two 
major challenges to the scientific community: (1) identifi-
cation of the infecting microorganisms due to the increas-
ing number of culture-negative PJIs, and (2) treatment of 
the infection due to increasing antibiotic resistance. Early 
identification and treatment are key to avoid an epidemic 
escalation of PJI, and musculoskeletal infection in general.

Costs associated with the management of musculo-
skeletal infection vary widely but are considerably higher 
than those associated with preceding interventions, such 
as elective TJA. Infections requiring prompt surgical inter-
vention, such as septic arthritis, have higher costs than 
those without intervention.5 The average hospital cost for 
a patient suffering from a musculoskeletal infection may 
be up to $185,000, leading to an estimated cost of $32 
billion dollars to treat hospital-acquired infections world-
wide.6 Moreover, managing TJA infections caused by 
antibiotic-resistant bacteria is more costly than for antibi-
otic-sensitive strains.7–9 Staphylococcus aureus is the most 
common culturable pathogen present in culture-positive 
musculoskeletal infection, and methicillin resistance in this 
organism (MRSA) is increasing in frequency.10–17 Ander-
son et al10 showed that MRSA infections were associated 
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with increased hospital charges of $20,000 or more and 
a 2.6-times higher mortality rate within three months of 
surgery. Parvizi et al7 showed a significantly higher cost of 
care for treatment of MRSA PJI compared with antibiotic-
sensitive strains ($107,000 vs. $68,000 per case). This 
places a substantial burden on the United States health-
care system.14,18

The clinical appearance of PJI depends on the virulence 
of the pathogenic agent, the nature of the infected tis-
sue, the infection route, and the length of disease evolu-
tion. Periprosthetic joint infection might present acutely 
with severe pain, high fever, local warmness, and some-
times surgical wound secretions, while the presenting 
signs of chronic infections are progressive pain, the for-
mation of cutaneous fistulae and/or drainage of purulent 
secretions. Currently, surgeons and infectious disease and 
internal medicine physicians seeking to diagnose PJI use a 
multidisciplinary test battery that includes: tests to detect 
local inflammation, such as synovial fluid white blood cell 
(WBC) count and synovial tissue histology;19 measurement 
of the levels of systemic markers of inflammation, such as 
serum C-reactive protein (CRP), erythrocyte sedimentation 
rate (ESR) and interleukin-6 (IL-6);20 imaging studies such 
as standard radiographs, technetium-labelled bone scans, 
magnetic resonance imaging, computed tomography (CT), 
and positron-emission tomography;21 and several bacterial 
identification and isolation techniques (e.g., Gram stain, 
culture). Because early detection and treatment of PJI are 
major goals, several scientific societies in the field of ortho-
paedics and many authors, including the current authors, 
recently published algorithms on how to approach a pain-
ful TJA in the presence of a suspected PJI.22–24

The diagnosis of PJIs continues to be a moving target 
and is subject to extensive debate. This is in part due to 
the lack of a single ‘gold standard’ test, and the marked 
heterogeneity in the design and conduct of studies evalu-
ating the accuracy of different diagnostic modalities. The 
Musculoskeletal Infection Society (MSIS) convened a 
workgroup in 2011 in an effort to create a standardized 
definition for PJI.22 This definition was later modified in 
2013 and 2019 as a result of an International Consen-
sus Meeting on PJI:25–28 the final document of this joint 
effort proposed a new stepwise approach to PJI diagnosis 
which included serological, microbiological and histo-
logical tests without demonstrating the superiority of any 
one test. A very recent literature review29 tried to identify 
gaps and limitations in the current literature and set forth 
recommendations for the design of future PJI diagnostic 
algorithms. This literature review was prompted by many 
findings. First, many patients with normal levels of sys-
temic markers of inflammation, such as serum CRP and 
ESR, are infected. Furthermore, due to the lack of homo-
geneity across studies, index test and reference standard 

domains showed high risk of bias for WBC and the utility 
histological analysis, respectively.30–32 Additionally, leuko-
cyte esterase testing lacked standardization with regard to 
the strip reagent used, and the exclusion of bloody sam-
ples limited sample sizes.33

The consensus in the current literature25–28 is that 
identification of the causative microorganism is the main 
determinant for success in diagnosing and treating PJIs. 
Standard culture of periprosthetic tissue specimens on 
agars and in broths, traditionally used for the detection 
of causative microorganisms in patients suspected as hav-
ing PJI, has shown low sensitivity34,35 ranging from 39% to 
70% in several reports.36,37 Several factors are associated 
with decreased yield with culture and failure to isolate a 
microorganism. First, premature administration of anti-
biotics may compromise culture yield; thus, ideally, anti-
biotic treatment should be withheld until organisms are 
grown in culture.38,39 Second, culturing techniques may 
also influence culture yield, particularly for less-virulent  
organisms such as Cutibacterium acnes or coagulase- 
negative Staphylococcus.40 Extending the incubation 
period and obtaining a sufficient number of samples may 
increase the sensitivity of culture.40,41 Culture-negative PJIs 
represent a ‘clinical nightmare’ for the treatment team. A 
preferred method of treating culture-negative PJI has not 
been determined and several studies have shown out-
comes for culture-negative PJIs were worse than for cul-
ture-positive PJIs,42,43 with a treatment failure rate of up to 
73%.44 Thus, culture-negative PJIs are relatively frequent 
and have an unacceptable rate of treatment failure. A 
recent review by Rothenberg et al45 showed that implant 
sonicate culture enhances PJI diagnostic accuracy by iden-
tifying pathogens that are inaccessible to traditional intra-
operative tissue and synovial fluid cultures.

Molecular techniques that can identify DNA in a sam-
ple have been recently proposed as a solution to over-
come the challenge of diagnosing and treating PJI.46 Next 
generation sequencing (NGS), which has the ability to 
quickly sequence DNA, represents a modern and innova-
tive diagnostic methodology because of the potential to 
promptly and efficiently identify the infecting organism 
and its antibiotic resistance capabilities in order to tailor 
medical and surgical treatments. The purpose of this arti-
cle is to review the current, sparse literature on the use of 
the next generation sequencing technology in a PJI setting 
and to evaluate its sensitivity and specificity in comparison 
with standard diagnostic protocols. MEDLINE, Scopus and 
Google Scholar were searched (keywords: NGS, mNGS, 
next generation sequencing, PJI, metagenomics, nanop-
ore) for randomized clinical trials, quasi-randomized clini-
cal trials, controlled clinical trials and observational studies 
that assessed sensibility and specificity of next generation 
sequencing as a diagnostic tool for PJI.
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Next generation sequencing (NGS) is a technique 
where all or a subset of the deoxyribonucleic acids 
(DNA) present in a specimen, from the host or from 
microorganism(s), are sequenced in parallel, generating 
millions of reads per instrument run. Reads are the basic 
element produced by DNA sequencing and are composed 
of a series of sequential bases (A-adenine; G-guanine; 
T-thymine; C-cytosine) reflecting the sequence of the 
input DNA fragment. The length of each read may vary 
from 75 to ~10,000 bp, and technologies that produce 
the longest reads are ideal for assembling complete 
genome sequences. DNA sequencing allows for culture-
free detection and identification of single or multiple 
microorganisms without the need for a priori knowl-
edge of a PJI. The transformation of raw sequence data 

into clinically applicable information for PJI treatment 
requires rigorous analyses (Fig. 1) and early limitations 
in sequence accuracy have been mitigated by recent 
improvements in hardware and reagents.

NGS shows promise in the context of PJI for organism 
detection since Tarabichi et al47 first demonstrated the 
utility of 16S-amplicon targeted NGS for detecting Strep-
tococcus canis in a culture-negative PJI patient. In fact, 
recent evidence suggests that NGS may be more sensitive 
at identifying organisms (at a rate of up to 89% for cul-
ture-negative PJI) than conventional culture (Table 1).48–51 
The 16S rRNA gene has become the most used region for 
bacterial identification because it is present in all bacte-
ria; because smaller portions of the gene, called variable 
regions, can be sequenced instead of the entire genome; 
and, finally, because tools that have been developed for 

Table 1.  Sensitivity and specificity comparison between next generation sequencing (NGS), standard culture and culture from sonication fluid from all 
studies included in the systematic review

NGS (sensitivity and specificity) Standard culture (sensitivity and 
specificity)

Sonication fluid (culture)
(sensitivity and specificity)

Wang et al, 201959 sens = 94%
spec = 95%

 

Ivy et al, 201854 sens = 84%
spec = 100%

sens = 92%
spec = 100%

 

Tarabichi et al, 201848 sens (any) = 89.3%
spec (any) = 73.0%
sens > 59.5% single organism = 71.4%
spec > 59.5% single organism = 94.6%

Deep-tissue specimens
sens = 60.7%
spec = 97.3%

 

Street et al, 201755 sens = 88%
spec = 88%

sens = 68%
spec = 82%

Note. sens, sensitivity; spec, specificity.

Next generation sequencing (NGS) workflow for periprosthetic
joint infection (PJI) diagnosis.

Symptoms: -  General (e.g. Fever, Chills, etc.)
-  Local (e.g. Erythema, Effusion,
Wound dehiscence, Drainage)

Standard Laboratory Tests:
-  Sample collection (Synovial Fluid)
-  Traditional micro-organism identification,
resistance testing (Culture and Sensitivity)

Pathogen identification through referencing genome/genotype databases

PATIENT TREATMENT

SEQUENCING AND BIOINFORMATICS
• Classic Next-Generation Sequencing or NGS
• Metagenomic NGS
• Cell free NGS

Fig. 1  Next generation sequencing (NGS) workflow for periprosthetic joint infection (PJI) diagnosis.
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the analysis of 16S rRNA sequences are relatively straight-
forward even for novice bioinformaticians.52,53

While previously cost prohibitive, the price of this diag-
nostic technique has dramatically decreased in recent 
years, making it accessible for clinical use. The technique 
may be particularly useful when there is strong clinical 
suspicion of PJI and cultures or other diagnostic tests are 
negative,41,48 which is an extremely frequent scenario  
in PJIs.

Metagenomic next generation sequencing (mNGS)

Unbiased metagenomic next generation sequencing 
(mNGS), which has the ability to broadly detect all classes 
of organisms directly from patient samples, represents 
a method that allows for universal pathogen detection 
regardless of microbe type (bacteria, fungi, parasites and 
viruses). All the DNA of a specimen is sequenced in par-
allel resulting in isolation and amplification of both host 
and pathogen nucleic acid within 24–48 hours of speci-
men collection. This timeframe differs significantly from 
the 3–7 days usually necessary to run standard serologic 
assays for synovial fluid bacterial detection.

The generalized workflow (Fig. 2) for mNGS in PJI 
diagnosis includes two components: (a) a wet lab proto-
col in which samples are collected and processed, then 
DNA is extracted, prepared into a sequencing library, 
and sequenced; (b) a dry lab computational pipeline that 
includes microbial identification, statistical analysis, and 
interpretation.50

Interestingly, the length of the sequencing process 
depends on the platform used, the length of the reads and 
the amount of data generated (Table 2); the turnaround 
time relative to conventional methods plays a major role 
in determining the clinical relevance of NGS results at the 
time of decision making.

Metagenomic NGS (mNGS) is even more promising 
than standard NGS as a screening tool for PJI. Ivy et al54 
showed, in a series of 168 synovial fluid samples collected 

from subjects with culture-positive or culture-negative 
PJIs, that mNGS yielded additional pathogens not detected 
by culture. Street et al sequenced sonication fluid from 
infected orthopaedic implants, including prosthetic 
devices, and showed that mNGS had 88% species-level 
sensitivity versus sonication fluid culture.55 Huang et al, in 
a consecutive series of 49 PJI, showed that the sensitivity 
of mNGS for diagnosing PJI was 95.9%, which was signifi-
cantly higher than that of comprehensive culture (79.6%) 
while the specificity between mNGS and comprehensive 
culture was similar (95.2% and 95.2%, respectively).56 In 
the same study,56 mNGS was found to be most useful in 
identifying organisms that usually require special culture 
conditions (i.e. Mycoplasma and Mycobacterium) and in 
a scenario where patients had received antibiotics within 
two weeks prior to resection arthroplasty.

Weaver et al57 demonstrated, in the synovial fluid 
from seven PJIs, that whole-genome shotgun sequenc-
ing (WGSS) is an ideal tool to detect strains when culture 

Table 2.  The five major sequencing platforms: advantages and disadvantages in terms of accuracy, efficiency and cost

Sequencing
platform

Chemistry Avg read length (bp) Advantages Disadvantages

Illumina Sequencing by synthesis ≤300 High A
accuracy

Short reads,
Long turnaround
High cost

Thermo Fisher Sequencing by synthesis ≤400 High accuracy Short reads,
Long turnaround
High cost

Pacific Biosciences Sequencing by synthesis ≥500 Long reads Variable accuracy
High cost
Long turnaround

Oxford Nanopore Measures the changes in current 
as molecules pass through the 
nanopore

≥500 Long reads
Short turnaround
Low cost

Low accuracy

454 GS Junior (Roche) Pyro-sequencing ≥500 Long reads
Short turnaround

High error rate in homopolymer

Metagenomic next generation sequencing (mNGS) workflow

Synovial fluid collection

Nucleic Acid Extraction
Conversion of RNA to cDNA

Library Preparation

Next Generation Sequencing (NGS)
Run-Time: range 9 to 48 hours

Data Analysis using Fast Processing Bioinformatics
Taxonomic Reads Classification

Pathogen identification (Typing and Phylogeny)
Resistance/Virulence databases

Fig. 2  Metagenomic next generation sequencing (mNGS) 
workflow.
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did not, notably for dormant, culture-resistant and rare 
microbes. Interestingly, in all their samples, multiple 
microorganisms with multiple virulent factors were pre-
sent. This and other reports58,59 suggest that PJIs are 
polymicrobial at the microbial DNA level in a significant 
proportion of sequenced PJI cases, increasing the fear in 
the adult reconstruction orthopaedic community. This 
fear was confirmed by Namdari et al58 who showed, in 
a series of 44 revision shoulder arthroplasties, that NGS 
data demonstrated that bacterial loads in revision arthro-
plasty are most commonly polymicrobial and a definition 
of infection that uses cultures is more prone to ‘probable 
contaminants’ than NGS. Because of this, further data 
regarding ‘normal’ microbiota in the shoulder, knee or 
hip joints are necessary to determine which organisms are 
truly pathogenic and which are ‘regular’ commensals.

Wang et al59 utilized mNGS to evaluate the efficacy of 
targeted antibiotics for the treatment of culture-negative 
PJI in comparison to an empirical antibiotic therapy, show-
ing a better infection control rate, lower antibiotic-related 
complications and a shorter duration of systemic antibi-
otic therapy when targeted antibiotics were used accord-
ing to mNGS results.

Modern NGS platforms (Table 2) have revolutionized 
biomedical research, and the technology is continually 
improving, exemplified by a novel approach to NGS using 
nanopore technologies (Oxford Nanopore Technologies –  
ONT) that was introduced to the research market. Instead 
of using a sequencing-by-synthesis approach, an ionic 
current is passed across the flow cell during sequenc-
ing, allowing for the different bacterial nucleotide bases 
(A-adenine; G-guanine; T-thymine; C-cytosine) to be deter-
mined by the changes in current as they pass through the 
nanopores.60 This technology allows for real-time analysis 
while sequencing is ongoing, significantly reducing the 
turnaround time (Table 2). Wang et al61 compared the 
classic metagenomic NGS, nanopore-based metagenomic 
sequencing and classical culture for the diagnosis of pros-
thetic joint infections from collected joint fluid, peripros-
thetic tissue and sonication fluid. Interestingly, the two 
metagenomic methods showed a similar sensitivity rate but 
the nanopore-based metagenomic sequencing method 
showed a better specificity and a quicker turnaround 
time (14–22 hours). The use of nanopore sequencing for 
PJI diagnosis has also allowed for the characterization of 
antimicrobial resistance (AMR), fundamental information 
in order to improve patient outcomes. Both Petersen et 
al52 and Wang et al59 showed that long-read nanopore 
sequencing was able to identify and map the presence or 
absence of resistance genes, from which the phenotype of 
resistance can be inferred. Interestingly, in the Wang et al 
study,59 nanopore sequencing detected more AMR reads 
with broader coverage than NGS sequencing, downplaying 
the role of the classical antibiogram.

Cell-free DNA next generation sequencing (cfNGS)

A very recent innovation in the field of NGS is repre-
sented by cell-free DNA next generation sequencing 
(cfNGS). This method differs from mNGS62 by lacking a 
cell lysis step, which serves to break open microbial cells 
in order to isolate DNA. In the case of cfNGS, DNA is iso-
lated directly from the sample without first lysing cells. 
Sequencing of cell-free DNA (cfDNA) has recently been 
shown to enable non-invasive diagnosis of several indi-
cations that previously required invasive procedures, 
including the diagnosis of foetal abnormalities, detection 
of transplanted organ rejection, and characterization or 
monitoring of cancer.63–68

CfNGS has been shown to be sensitive enough to identify 
pathogens in patients pre-treated with antibiotics up to 30 
days prior to initial sample collection.64 The major advan-
tage and unique characteristic of cfNGS is the fast run-time, 
which typically can be completed within hours. Direct real-
time sequencing of samples provides accurate informa-
tion compared to laboratory culture, can detect additional 
unculturable organisms, and provides information regard-
ing the presence of antimicrobial resistance genes.63,64 
Interestingly, cfNGS has not been tested on synovial fluid to 
diagnose PJI but represents a very appealing new frontier.67 
Following a previously published workflow for microbial 
cfDNA sequencing in plasma,64 a proposed workflow for 
cfDNA sequencing of PJI synovial fluid is shown in Fig. 3.

Limitations
The ability to quickly and broadly detect all classes of 
organism from patient synovial fluid is the major advan-
tage of NGS and mNGS as PJI diagnostic tools. However, 
NGS, even if promising, has several limitations. Significant 
concerns exist regarding the performance, validity and 
clinical significance of the detected organisms. Despite 

Cell-free DNA (cfDNA) next generation sequencing (NGS) workflow

Synovial fluid Collection “High Speed” DNA extraction
and NGS library prep

Report on microorganism
Isolation (< 24 hrs)

GACTCG

Microbial DNA Fragments
Identification

+
Filtering Contamination

Fig. 3  Cell-free DNA (cfDNA) next generation sequencing 
(NGS) workflow.
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NGS-based methods having increased sensitivity for iden-
tifying organisms compared to culture,48,62,63 trade-offs 
exist in their clinical application.

A major limitation of the use of NGS technologies for 
infectious disease and PJI diagnostics is represented by the 
possibility of false-positives due to contamination. Unfor-
tunately, detection of normal human body flora or con-
taminating organisms in laboratory reagents can lead to 
organism misidentification. Moreover, the yield of DNA was 
shown to be lower in gram-positive cocci and fungi com-
pared to bacilli,56 indicating that mNGS requires strict stor-
age and transport conditions to decrease the risk of nucleic 
acid degradation. More studies are needed to determine 
optimal storage and transport conditions and to identify 
contaminants.

While this review has focused on NGS sensitivity, a low 
specificity, resulting in a high rate of false-positives,46,48 
has been demonstrated. However, negative mNGS results 
may reassure the treating orthopaedic surgeon that a PJI 
is unlikely to be present: this ‘rule-out’ test character-
istic may be helpful in a total joint arthroplasty revision 
scenario (single-stage vs. double-stage determination). 
Unfortunately, because of their turnaround times, mNGS 
and nanopore-based metagenomic sequencing are not 
yet available for intraoperative use, and this represents a 
major limitation of these technologies.

Another limitation is the fact that there are not yet 
FDA-cleared or approved tests using NGS technologies 
for infectious diseases.69 The current guidelines for NGS/
mNGS testing have been developed in clinical fields (e.g. 
oncology) that differ from infectious diseases and have only 
recently been adapted to infectious disease diagnostics.69

NGS is also more expensive than culturing and other 
traditional microbiological tests,70 even when taking into 
account the multiple cultures recommended for diagnosis 
of PJI.23 Regardless, the current authors suggest that the 
cost-effectiveness of NGS/mNGS assays for PJI pathogen 
detection should be compared to the costs of intensive 
care unit stays and more invasive diagnostic procedures.

Another limitation of NGS/mNGS technologies is repre-
sented by the run-time. Classic NGS requires three to five 
days41,46–48,68,70–73 to identify microorganisms, sometimes 
reducing the clinical applicability of NGS. However, ‘in-
house’ mNGS can have a much shorter turnaround time 
of less than two days. Unfortunately, to meet this time-
frame while also minimizing the risk for contamination,68 
standard laboratories will need space dedicated to and 
designed for NGS, highly specialized equipment, trained 
lab technicians and bioinformatics expertise.

Perspective
Preoperative, perioperative and intraoperative diagnosis 
and identification of pathogens involved in PJI represent 

a challenge, as up to 70% of cases that meet the criteria 
for PJI are synovial fluid culture-negative.63 PJI treatment is 
accomplished through targeted surgical and microbiologi-
cal management, which is contingent on an accurate and 
strictly perioperative diagnosis and pathogen identification. 
Standard clinical management in the absence of identified 
aetiology drives up the use of empiric, broad-spectrum anti-
biotics in an attempt to encompass all possible pathogens 
and risks not treating an organism and even missing actual 
PJI cases. Different NGS technologies have shown the capa-
bility of identifying pathogen DNA in synovial fluid: mNGS 
could become, in the near future, a cost-effective and time-
efficient method to diagnose and treat culture-negative PJI 
in particular and musculoskeletal infections in general.

The current authors recognize the major technical chal-
lenge of NGS testing: the vast majority of sequenced DNA 
is human, from host contamination,68 despite efforts to 
reduce this in the laboratory preparation. Depletion of 
host DNA contamination will eventually facilitate greater 
pathogen genome sequencing coverage. An optimized 
DNA extraction protocol still needs to be developed in 
order to sequence longer fragments and to implement a 
fast-read method,55 which could allow real-time selective 
sequencing of pathogen DNA over human DNA normally 
present in the synovial fluid, increasing the proportion of 
bacterial reads and improving diagnostic power. In fact, 
multiple studies62,73 have shown that the mere detec-
tion of bacterial DNA does not mean infection, and thus, 
it is clinically important to identify the microorganisms 
that are normal flora in a total joint arthroplasty setting 
(‘joint microbiota’).58 The fact that these microorganisms 
may not necessarily be involved and active in the disease 
process, and the ultimate ability of NGS technologies to 
identify true infecting microorganisms, all need to be 
determined by future studies.

Conclusion
NGS is a revolutionary technology that could disrupt the 
diagnostic paradigm of PJI. New types of NGS are excit-
ing, their rapid evolution often outpaces a mandatory and 
comprehensive collection of clinical evidence. Multicen-
tre trials evaluating patient outcomes will be necessary to 
translate NGS into a useful clinical test.
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