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Abstract

INTRODUCTION: Digital voice analysis is an emerging tool for differentiating cogni-

tive states, but it poses privacy risks as automated systems may inadvertently identify

speakers.

METHODS: We developed a computational framework to evaluate the trade-off

between voice obfuscation and cognitive assessment accuracy, using pitch-shifting

as a representative method. This framework was applied to voice recordings from

the Framingham Heart Study (FHS, n = 128) and the DementiaBank Delaware (DBD,

n = 85) corpus, both featuring responses to neuropsychological tests. Speaker obfus-

cation was measured via equal error rate (EER), and diagnostic utility was assessed

through machine learning models distinguishing cognitive states: normal cognition

(NC), mild cognitive impairment (MCI), and dementia (DE).

RESULTS: With the top 20 acoustic features, our framework achieved classification

accuracies of 62.2% (EER: 0.3335) on the FHS dataset for NC, MCI, and DE differen-

tiation, and 63.7% (EER: 0.1796) on the DBD dataset for NC and MCI differentiation,

using obfuscated speech files.

DISCUSSION: Our results demonstrate the feasibility of privacy-preserving voice

markers, offering a scalable solution for voice-based cognitive assessments.
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Highlights

∙ We developed a computational framework using pitch-shifting and acoustic trans-

formations to balance speaker privacy and diagnostic utility in voice-based cognitive

assessments.
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∙ We evaluated the framework on two independent datasets, Framingham Heart

Study (FHS, n = 128) and DementiaBank Delaware (DBD, n = 85) corpus, assess-

ing the trade-off between privacy (measured by equal error rate [EER]) and

classification accuracy.

∙ Our framework achieved classification accuracies of 62.2% (EER: 0.3335) for distin-

guishing normal cognition (NC), mild cognitive impairment (MCI), and dementia in

the FHSdataset and 63.7% (EER: 0.1796) forNCandMCI differentiation in theDBD

dataset, using obfuscated speech files.

∙ Our framework demonstrates that pitch-shifting levels can preserve diagnostic util-

ity while protecting speaker identity, offering a scalable and privacy-preserving

solution.

1 BACKGROUND

Digital voice recordings contain valuable information that can indi-

cate an individual’s cognitive health,1 offering a non-invasive and

efficient method for assessment. Research has demonstrated that dig-

ital voice measures can detect early signs of cognitive decline by

analyzing features such as speech rate, articulation, pitch variation,

and pauses, which may signal cognitive impairment when deviat-

ing from normative patterns.2 Advancements in data-driven frame-

works, particularly machine learning, have further enhanced the utility

of voice-based assessments by uncovering complex patterns linked

to cognitive states, including normal cognition (NC), mild cognitive

impairment (MCI), and dementia (DE).3–11 Machine learning mod-

els can analyze large datasets of voice samples to detect subtle

changes, providing an objective and scalable approach to cognitive

assessment.12–14 This technology holds potential for early screening in

clinical settings aswell as remotemonitoring, which could be especially

valuable in resource-limited environments. Consequently, voice-based

diagnostics are emerging as a promising complement to traditional

assessments like neuropsychological tests and neuroimaging.

The use of voice data as an assessment tool for neurodegenera-

tive diseases like Alzheimer’s is increasingly relevant in today’s aging

population, where early detection of cognitive decline can improve

patient outcomes through timely interventions.15 However, voice data

introduces privacy challenges due to the personally identifiable infor-

mation (PII) embedded in recordings, such as gender, accent, and

emotional state, as well as subtler speech characteristics that can

uniquely identify individuals. These risks are amplified when voice

data are processed by automated systems,16 raising concerns about

re-identification and potential misuse of data. Consequently, there

is a growing demand for privacy-preserving techniques that protect

speaker identity without compromising the diagnostic utility of the

data. Existing anonymization methods, such as voice scrambling or

noise addition, primarily aim to mask speaker identity but often fail

to preserve the features critical for cognitive assessment. Advanced

machine learning techniques, including voice conversion,17 and adver-

sarial learning,18 have been developed to address these issues by

altering or separating identity-related features from task-relevant

ones.Differential privacymethods have also been explored,19–21 intro-

ducing controlled noise to provide formal privacy guarantees, while

feature-level obfuscation techniques, such as perturbing or sanitiz-

ing embeddings,22 show promise in balancing privacy and utility.

Despite these advancements, achieving an optimal trade-off between

privacy preservation and diagnostic accuracy remains a challenge,

especially in sensitive domains like cognitive assessments, where pre-

serving discriminative features is important. While numerous studies

have focused on privacy protection in speech data, few have specifi-

cally addressed voice obfuscation in the context of cognitive assess-

ments. One recent study proposed a privacy-preserving framework for

dementia detection, using prosody-based disentanglement of speaker

embeddings to obscure speaker identity while maintaining diagnostic

accuracy.23 Such approaches, which effectively address both privacy

concerns and the preservation of cognitive features, have the potential

to advance the use of voice data in diagnostic applications.

In this study, we developed a computational framework to eval-

uate how obfuscated voice features support cognitive assessment

(Figure 1). Using techniques such as pitch-shifting for voice obfusca-

tion as an example, we analyzed the extent to which derived acoustic

features preserved their utility for assessment of cognitive status.

This framework was applied to voice data from the Framingham

Heart Study (FHS) and the DementiaBank Delaware (DBD) corpus,

both consisting of spoken responses to neuropsychological tests. We

employed six classification algorithms to evaluate the diagnostic utility

of speech features post-obfuscation. To balance speaker privacy and

cognitive feature utility, we implemented a weighted linear interpo-

lation approach, which allowed us to adjust the balance between the

extent of obfuscation and the preservation of cognitive assessment

features. By addressing the dual challenge of privacy risks and diagnos-

tic needs, our framework represents a step forward in enabling secure

and effective use of voice data for cognitive assessments.
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2 METHODS

2.1 Study population

We obtained voice recordings from the FHS and the DBD corpus

(Table 1).8,9,24–27 FHS is a community-based longitudinal observa-

tional study initiated in 1948, which has provided insights into the

epidemiology of cardiovascular disease and its risk factors across mul-

tiple generations.26 In 1999, FHS initiated a series of investigations

into brain structure and cognitive function, recruiting participants for

brain MRI scans and neuropsychological testing. The FHS dataset

encompasses a variety of neuropsychological tests that assess multi-

ple cognitive domains, includingmemory, attention, executive function,

language, reasoning, visuoperceptual skills, and premorbid intelli-

gence. The cognitive status of participants, classified as NC, MCI, or

DE, was determined over time by the FHS dementia diagnosis review

panel. For each participant, cognitive status was assigned based on the

diagnosis date closest to the recording date, either on or before the

recording date, or within 180 days thereafter. DementiaBank,27 part

of the TalkBank project, is an open-access repository for multimedia

spoken language data aimed at advancing research on language and

cognition in dementia. The newly established DBD corpus builds on

this initiative by collecting standardized discourse data fromNC adults

and thosewithMCI. Participants completed a90-min session viaZoom,

which included a discourse protocol eliciting four types of speech:

picture description, story narrative, procedural discourse, and per-

sonal narrative, along with a cognitive-linguistic battery. The dataset,

available on the DementiaBank website, includes CHAT-formatted

transcripts linked to audio recordings, demographic data, and test

results.

The FHS speech recordings were obtained in WAV format, with

an average duration of 74.36 ± 26.62 min and a sampling rate of

22,050 Hz. The DBD recordings, initially in MP3 format with an aver-

age duration of 10.81 ± 4.82 min, were converted to WAV format

at a sampling rate of 22,050 Hz to ensure consistency in process-

ing. Both datasets included recordings and transcripts of interactions

between examiners and participants, encompassing both questions

and responses. Diarization was then applied to isolate participant

speech by removing examiner interactions, ensuring the analysis

focused on acoustic features relevant to cognitive impairment. The

FHS dataset comprised 128 speech samples from participants cate-

gorized as NC, MCI, or DE. As of July 2, 2024, data collection for the

DBD dataset is ongoing; thus far, it included 85 speech samples from

participants with either NC orMCI.

2.2 Derivation of acoustic features

We extracted acoustic features from voice recordings on both cohorts

using the Python librosa package.28 A total of 12 distinct sets of

features were derived, including statistical measures such as mini-

mum, maximum, mean, standard deviation, and median, resulting in

481 features. The extracted features included parameters like ampli-

RESEARCH INCONTEXT

1. Systematic review: Voice-based assessments have

emerged as a non-invasive method for detecting cogni-

tive decline, leveraging acoustic and linguistic markers

such as speech rate, articulation, and pitch variation to

differentiate between normal cognition (NC), mild cogni-

tive impairment (MCI), and dementia (DE). Despite their

diagnostic potential, voice data carries inherent privacy

risks due to identifiable characteristics embedded in

speech. Traditional anonymization methods, including

voice scrambling and noise addition, often compromise

key cognitive markers, limiting their effectiveness in

clinical applications.

2. Interpretation: This study introduces a computational

framework that applies pitch-shifting to protect speaker

identity while preserving acoustic features essential for

cognitive assessment. Using data from the Framingham

Heart Study (FHS) and DementiaBank Delaware (DBD)

corpus, pitch-shifting levels were identified that balance

speaker obfuscation (measured by equal error rate [EER])

with diagnostic utility (classification accuracy). By safe-

guarding privacy without degrading cognitive markers,

this approach provides a solution for voice-based diag-

nostics.

3. Future directions: The findings demonstrate the feasi-

bility of pitch-shifting as a potential privacy-preserving

strategy for voice-based cognitive assessments. Future

research should focus on adaptive privacy techniques to

meet diverse privacy requirements, validate the frame-

work across additional datasets and demographic groups,

and explore its integration into broader digital health

platforms to ensure secure applications.

tude, root mean square (RMS), spectral coefficients, bandwidth, cen-

troid, flatness, roll-off frequency, zero-crossing rate, tempo, Chroma

Energy Normalized Statistics (CENS), and Mel-Frequency Cepstral

Coefficients (MFCC) with delta features.29 The MFCC delta features

were calculated using Savitzky-Golay filtering to capture temporal

derivatives.30

The extracted acoustic features encompass a range of measures

that capture various characteristics of the audio signals. Amplitude

reflects the signal’s loudness or intensity, while the RMS provides a

quantitativemeasureof the signal’s overall power. Spectral coefficients

represent the frequency distribution, offering insights into the signal’s

harmonic structure. The bandwidth measures the range of frequen-

cies present, and the spectral centroid indicates the “center of mass”

of the frequency spectrum,which corresponds to the perceived bright-

ness of the signal. Spectral flatness quantifies the degree to which the

spectrum resembles noise (flat) versus a tonal signal (peaked), and the
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F IGURE 1 Pitch-shifting obfuscation framework for balancing privacy and diagnostic utility. This framework applies pitch-shifting and
additional transformations (e.g., time-scale modification, timbre change, F0 alteration, and noise addition) to anonymize speaker identity while
preserving cognitive features critical for diagnostic utility. Neuropsychological voice recordings from the FraminghamHeart Study (FHS) and
DementiaBank Delaware (DBD) corpus were processed, involving diarization to isolate participant speech from examiner dialogue, followed by
merging participant-specific voice data and extracting top acoustic features using a random forest model. Obfuscated voice files were assessed for
privacy (via equal error rate, EER) and diagnostic utility (using six classification algorithms: Random Forest, Support VectorMachine [SVM],
k-Nearest Neighbors [kNN], Multi-Layer Perceptron [MLP], adaptive boosting (AdaBoost), and Gaussian Naive Bayes) across three cognitive
states: normal cognition (NC), mild cognitive impairment (MCI), and dementia (DE).

TABLE 1 Study population

Dataset

Cognitive

status Male percentage (%) Age (mean± std)

Speech duration

(mean± stdminutes)

FHS (N= 128) NC (N= 40) Male= 60 (47%) 82.84± 8.22 74.36± 26.62

MCI (N= 10) NC= 25 (19%) NC= 80.37± 10.46 NC= 75.05± 25.3

DE (N= 78) MCI= 6 (5%) MCI= 80.3± 7.63 MCI= 57.83± 24.08

DE= 29 (23%) DE= 84.43± 6.39 DE= 76.13± 26.87

Dementia Bank (N= 85) NC (N= 34) Male= 27 (32%) 71.36± 7.38 10.81± 4.82

MCI (N= 51) NC= 5 (6%) NC= 68.23± 5.82 NC= 12.1± 5.7

MCI= 22 (26%) MCI= 73.45± 7.57 MCI= 9.94± 3.91

Note: Demographic and cognitive status characteristics of the Framingham Heart Study (FHS) and DementiaBank Delaware (DBD) datasets. The table pro-

vides information on the number of participants (N), cognitive status classification (normal cognition [NC], mild cognitive impairment [MCI], dementia [DE]),

percentage of male participants, average age with standard deviation (mean± std), and average speech duration inminutes (mean± std) for both datasets.

roll-off frequencydefines thepoint belowwhich a specified percentage

of spectral energy is concentrated. The zero-crossing rate measures

how frequently the signal waveform crosses the zero-amplitude axis,

often correlating with signal sharpness or noisiness. Tempo refers to

the perceived speed or rhythm of the audio. CENS capture pitch and

harmonic content across the chromatic scale, offering insights into

melodic and harmonic patterns. Finally, MFCCs and their derivatives

(delta features) model the spectral envelope in a perceptually mean-

ingful way, making themparticularly valuable for characterizing timbre

and speech-related features.

2.3 Evaluation of privacy and cognitive integrity

Our framework is designed to balance speaker privacy with cognitive

diagnostic utility by leveraging acoustic feature extraction, obfusca-

tion methods, and evaluation metrics. To achieve speaker obfuscation,

we applied pitch-shifting at levels ranging from 0.25 to 5 semitones

and incorporated additional transformations, such as time-scale modi-

fications and noise addition, to alter vocal characteristics. Privacy was

quantified using the equal error rate (EER) from an automatic speaker

verification (ASV) system,31 while diagnostic utility was measured by

the classification accuracy (ACC) of machine learning models used to

differentiate cognitive states.

To systematically evaluate the effects of pitch-shifting, we normal-

ized pitch shifts on a scale from 0.05 to 1, creating 20 configurations.

For each configuration, we calculated classification accuracy across six

machine learning algorithms: Random Forest, Support VectorMachine

(SVM), k-Nearest Neighbors (kNN), Multi-Layer Perceptron (MLP),

adaptive boosting (AdaBoost), and Gaussian Naive Bayes. Further, sta-

tistical analyses were conducted on 20 distinct EER and ACC values

to compute the mean, standard deviation, and corresponding p-values.
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Data normality was assessed using the Shapiro-Wilk test. For nor-

mally distributed data, a one-sample t-test was performed, while the

Wilcoxon signed-rank test was applied to non-normally distributed

data to determine statistical significance. This approach allowed us to

assess how acoustic transformations impacted the ability to classify

cognitive states accurately. Privacy degradation was evaluated by cal-

culating the EER for original versus obfuscated voice files, providing a

robust measure of speaker identity protection. To explore the trade-

off between privacy and diagnostic utility, we combined EER and ACC

using aweighted linear interpolation approach, quantified by anoverall

performancemetric defined as

𝜌 = 𝛼 (EER) + (1 − −𝛼) (ACC) , (1)

whereα represents the privacy level ranging from0 to1. Settingα=0.5

gave equal importance to privacy and utility.

2.4 Additional transformations to enhance
privacy

In addition to pitch-shifting, we explored a range of acoustic transfor-

mations to enhance speaker obfuscation. Time-scale modification was

employed to adjust the speed of the audio signal, which introduced

temporal variability to the vocal characteristics. Timbre change was

implemented to modify the harmonic quality of the voice, effectively

altering its tonal color and making speaker identification more chal-

lenging. Fundamental frequency (F0) alterationwas utilized to shift the

natural pitch contour of the voice, introducing variations in vocal inflec-

tion that further masked speaker identity. Finally, controlled noise

addition was applied to introduce subtle distortions in the audio sig-

nal, reducing the fidelity of speaker-specific acoustic features while

retaining critical components needed for cognitive assessment.

3 RESULTS

3.1 Acoustic features for cognitive assessment

The FHS dataset had a longer average speech duration (74.36 ± 26.62

min) compared to the DBD dataset (10.81 ± 4.82 min). Longer sam-

ples provided a broader range of acoustic features and richer vocal

characteristics for analysis. To identify the most important acoustic

features relevant for cognitive assessment, supervised learning tech-

niques were employed, with each participant’s speech data labeled

according to their cognitive status: NC, MCI, or DE. A random for-

est algorithm, utilizing an ensemble of 100 decision trees, was applied

to classify the recordings based on cognitive status and assess the

importance of each feature for predictive performance. The resulting

importance scores were normalized between 0 and 1, and ranked.

The top 20 acoustic features with the highest importance scores

were selected from both datasets for further analysis (Data S1 and

S2). In the FHS dataset, key features included statistical measures

of MFCC, MFCC delta, zero-crossing rate, CENS, and spectral band-

width. Similarly, in the DBD dataset, prominent features comprised

statistical measures of MFCC, MFCC delta, and CENS. To evaluate

the impact of feature selection on classification accuracy, the top-k

features were iteratively included (ranging from k = 1 to k = 481),

and six classification algorithms: Random Forest, SVM, kNN, MLP,

AdaBoost, and Gaussian Naive Bayes, were applied using 10-fold

cross-validation (Data S3 and S4). The classification tasks involved dis-

tinguishing betweenNC,MCI, andDE for theFHSdataset andbetween

NC andMCI for the DBD dataset.

The performance trends revealed Random Forest as the most

robust algorithmacross varying feature dimensions, achieving an accu-

racy of approximately 70% using 20 features in the FHS dataset.

SVM showed similar performance, whereas kNN and MLP exhibited

decreased accuracy and higher fluctuation with additional features

(Figure 2A). For the DBD dataset, Random Forest and Gaussian Naive

Bayes demonstrated minimal accuracy variation with an increasing

number of features, whereas other algorithms experienced a decline

in accuracy (Figure 2B). Reducing the feature set to the top 20 fea-

tures improved average classification accuracy by 0.0149 for the FHS

dataset and 0.1523 for the DBD dataset across all algorithms (Table

S1). This demonstrates that a reduced feature set not only maintains

classification performance but also enhances computational efficiency.

Additionally, employing Random Forest with the top-ranked features

yielded improved area under the curve (AUC) scores for cognitive

state classification tasks. For instance, the NC/MCI binary classifica-

tion task in the DBD dataset showed an AUC improvement of up to

0.2 compared to using the full feature set (Figures 3A,B). These results

highlight the potential of selecting a focused set of high-impact acous-

tic features to improve diagnostic utility, computational efficiency, and

overall model performance in voice-based cognitive assessments.

3.2 Balancing privacy and diagnostic utility

Our results demonstrate a trade-off analysis between privacy (quanti-

fied byEER) anddiagnostic utility (measuredby classification accuracy)

for FHS and DBD (Figure 4). In both datasets, the optimal balance

between privacy and utility was determined through weighted linear

interpolation using a total performance metric (ρ). The FHS dataset

achieved a peak ρ of 0.478 at a pitch-shifting level of 3.25 semi-

tones, while the DBD dataset attained a maximum ρ of 0.408 at a

pitch-shifting level of 2.75 semitones.

The two plots illustrate the relationship between classification

accuracy (utility) and privacy levels (denoted by EER) for the FHS and

DBD datasets. Privacy levels are manipulated using pitch-shifting

transformations applied to voice recordings, with higher values of EER

corresponding to greater obfuscation of speaker identity. In the FHS

dataset (Figure 4A), the red line represents the trend of classification

accuracy as a function of privacy level, while the shaded region indi-

cates the 95% confidence interval. Themean and standard deviation of

EER and classification accuracy are 0.33 ± 0.013 (p-value = 4.38e-28)

and 0.624 ± 0.017 (p-value = 4.38e-28), respectively. The initial
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.

(A) (B)

F IGURE 2 Impact of acoustic feature count onmodel accuracy. Classification accuracy as a function of the number of acoustic features for six
machine learning algorithms (Random Forest, Support VectorMachine (SVM), k-Nearest Neighbors (kNN), Multi-Layer Perceptron (MLP),
adaptive boosting (AdaBoost), and Gaussian Naive Bayes) applied to digital voice recordings from the (A) FraminghamHeart Study (FHS) and (B)
DementiaBank Delaware (DBD) corpus.

(A) (B)

F IGURE 3 Model performance. Receiver operating characteristics (ROC) curves demonstrating classification performance of models trained
on the top 20 acoustic features for classification of cognitive status in (A) the FraminghamHeart Study (FHS) cohort and (B) the Dementia Bank
Delaware (DBD) corpus. (A) Area under the curve (AUC) values for distinguishing normal cognition (NC), mild cognitive impairment (MCI), and
dementia (DE) in the FHS cohort. (B) An overall AUC for distinguishing NC fromMCI cases in the DBD cohort.

accuracy is approximately 0.646, which gradually declines to around

0.598 at the maximum privacy level. This trend demonstrates the

trade-off between privacy preservation and diagnostic utility, where

increasing privacy reduces classification accuracy. The spread of data

points around the trendline reflects variations in model performance,

likely influenced by different feature combinations and classifiers. For

the DBD dataset (Figure 4B), the red line similarly depicts the trend of

classification accuracy across privacy levels, with a more pronounced

negative slope compared to the FHS dataset. The mean and standard

deviation of EER and classification accuracy are 0.157 ± 0.115 (p-

value=1.91e-06) and0.641±0.049 (p-value=7.52e-06), respectively.

The accuracy begins at approximately 0.722 and steadily decreases to

around 0.572 as privacy levels increase. This sharper decline suggests

that pitch-shifting has a stronger impact on cognitive feature preser-

vation in shorter-duration recordings, which characterize the DBD

dataset. The shaded confidence interval highlights variability, with

larger fluctuations observed at higher privacy levels. Together, these

plots highlight the inherent trade-off in balancing privacy and utility in

voice-based cognitive assessments. Lower privacy levels retain more

diagnostic utility, while higher privacy levels compromise accuracy.

To enhance the privacy capabilities of our framework, four addi-

tional transformation layers, time-scale modification (scale: 1.2), tim-

bre alteration (scale: 1.1–1.3), fundamental frequency (F0) adjustment

(scale: 1.1–1.3), and noise addition (scale: 0.001), were applied to
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(A) (B)

F IGURE 4 Privacy-utility trade-off analysis. (A) Regression plot displaying the relationship between privacy, measured as equal error rate
(EER), and utility, measured as classification accuracy, for the FraminghamHeart Study (FHS) dataset. Model performance was evaluated across 20
distinct pitch-shifting levels (0.25 to 5 semitones), with a 95% confidence interval shown. The green dashed lines indicate a trade-off point,
achieving an EER of 0.3335 and an accuracy of 0.6220, corresponding to a total performance score of 0.478 at α= 0.5. This balance was achieved
at a pitch-shifting level of 3.25 semitones. (B) Similar regression plot for the DementiaBank Delaware (DBD) dataset, illustrating the relationship
between EER and classification accuracy across the same 20 pitch-shifting levels. The green dashed lines identify a trade-off, with an EER of 0.1796
and an accuracy of 0.6372, resulting in a total performance score of 0.408 at α= 0.5. The optimal trade-off corresponds to a pitch-shifting level of
2.75 semitones.

(A) (B)

F IGURE 5 Privacy-utility trade-off with additional enhancements. Comparison of standard pitch-shifting and an enhanced approach
incorporating additional transformations, including time-scale modification (scale: 1.2), timbre alteration (scale: 1.1–1.3), fundamental frequency
(F0) adjustment (scale: 1.1–1.3), and small noise addition (scale: 0.001). Performance was evaluated across three transformation levels: low,
medium, and high. (A) Privacy-utility analysis on the FraminghamHeart Study (FHS) dataset, showing changes in equal error rate (EER) and
classification accuracy as transformation intensity increases. (B) Privacy-utility analysis on theDementiaBankDelaware (DBD) dataset, illustrating
the impact of varying transformation levels on EER and classification accuracy.

the optimally pitch-shifted voice files. These transformations were

implemented incrementally at low, medium, and high levels. Results

showed that adding these transformations improved privacy while

reducing classification accuracy, reflecting the privacy-utility trade-

off (Figures 5A,B). For the FHS dataset, privacy enhancement was

observed as the EER score increased from 0.3335 (optimal pitch-

shifting level of 3.25 semitones) to 0.4746 at the high transformation

level. However, this improvement in privacy came at a cost, with clas-

sification accuracy decreasing from 0.6220 to 0.5725 (Data S5). Simi-

larly, in theDBDdataset, the EER score improved from0.1796 (optimal
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pitch-shifting level of 2.75 semitones) to 0.3630 at the high trans-

formation level, while classification accuracy declined from 0.6372

to 0.5812 (Data S6). These results underscore a significant trade-

off: while additional transformation layers enhance privacy by making

speaker obfuscation more robust, they also diminish the diagnostic

utility of the framework in distinguishing between cognitive states.

This trade-off must be carefully managed depending on the specific

application requirements, balancing privacy needs against diagnostic

accuracy.

4 DISCUSSION

Our findings highlight the intricate trade-off between preserving

speaker privacy and maintaining the diagnostic utility of acoustic

features for cognitive assessments. The differences in optimal pitch-

shifting levels observed between the FHS and DBD datasets reflect

these dataset-specific factors. The longer average speech duration in

the FHS dataset enabled the retention of a richer range of acoustic

features, resulting in a more balanced trade-off between privacy and

utility. Conversely, the shorter average duration of recordings in the

DBD dataset required more aggressive pitch-shifting to achieve com-

parable levels of privacy, albeit at theexpenseof classificationaccuracy.

These results emphasize the importance of considering dataset-

specific factors when applying the proposed framework, particularly

when translating it to diverse real-world settings. The implications of

this work extend beyond the immediate context of dementia diag-

nostics. For instance, as voice data becomes increasingly integral to

telemedicine and remote patient monitoring, these techniques could

be adapted to protect patient identities while enabling meaningful

clinical insights. Moreover, this study underscores the importance of

dataset-specific considerations, suggesting that generalizable privacy-

utility frameworks must account for varying data characteristics, such

as recording length and feature distribution.

Our study has a few limitations. Using pitch-shifting as an obfus-

cation method inherently involves trade-offs, as vocal frequency is

a critical feature in speech-based cognitive assessment. While our

primary aimwasnot to advocate for pitch-shifting as theoptimal obfus-

cation method, it served as a practical example to demonstrate the

utility of our framework in balancing privacy preservation and diag-

nostic utility. We acknowledge that altering vocal frequency modifies

aspects of the original speech signal, potentially impacting cognitive

assessments. This limitation highlights the broader challenge faced by

obfuscation techniques, as any such method is likely to alter vocal fea-

tures. To address this, our weighted linear interpolation framework

provides a systematic approach to adjust the balance between privacy

and diagnostic utility, allowing flexibility to explore varying levels of

obfuscation tailored to specific applications. Our study also focused

on a limited set of acoustic features and classification algorithms.

Future work should explore a broader range of features, including

temporal and prosodic elements, and additional machine learning

methods to enhance classification accuracy across diverse populations.

Expanding the research to more diverse cohorts would strengthen the

generalizability and clinical applicability of pitch-shifting techniques.

Another limitation is the potential for re-identification in white-box

scenarios, where an attacker familiar with the pitch-shifting method

could reverse-engineer the obfuscation. Exploring adaptive models to

counteract such attacks could improve security.

In conclusion, our study introduces a computational framework for

balancing privacy preservation and diagnostic utility in voice-based

cognitive assessments. By leveraging techniques such as pitch-shifting

as means of voice obfuscation, we demonstrated the ability to mit-

igate privacy risks while preserving the diagnostic value of acoustic

features. Using weighted linear interpolation, our approach identifies

optimal trade-offs, setting the stage for future exploration of more

advanced obfuscationmethods in digital health applications. This work

contributes to theethical andpractical integrationof voicedata inmed-

ical analyses, emphasizing the importance of protecting patient privacy

while maintaining the integrity of cognitive health assessments. These

findings pave the way for developing standardized, privacy-centric

guidelines for future applications of voice-based assessments in clinical

and research settings.
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