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Abstract

Background: Hereditary proximal spinal muscular atrophy (SMA) is a severe neuromuscular disease of childhood
caused by homozygous loss of function of the survival motor neuron (SMN) 1 gene. The presence of a second,
nearly identical SMN gene (SMN2) in the human genome ensures production of residual levels of the ubiquitously
expressed SMN protein. Alpha-motor neurons in the ventral horns of the spinal cord are most vulnerable to reduced
SMN concentrations but the development or function of other tissues may also be affected, and cardiovascular
abnormalities have frequently been reported both in patients and SMA mouse models.

Methods: We systematically reviewed reported cardiac pathology in relation to SMN deficiency. To investigate
the relevance of the possible association in more detail, we used clinical classification systems to characterize
structural cardiac defects and arrhythmias.

Conclusions: Seventy-two studies with a total of 264 SMA patients with reported cardiac pathology were
identified, along with 14 publications on SMA mouse models with abnormalities of the heart. Structural cardiac pathology,
mainly septal defects and abnormalities of the cardiac outflow tract, was reported predominantly in the most
severely affected patients (i.e. SMA type 1). Cardiac rhythm disorders were most frequently reported in patients
with milder SMA types (e.g. SMA type 3). All included studies lacked control groups and a standardized approach
for cardiac evaluation.
The convergence to specific abnormalities of cardiac structure and function may indicate vulnerability of specific
cell types or developmental processes relevant for cardiogenesis. Future studies would benefit from a controlled
and standardized approach for cardiac evaluation in patients with SMA.

Keywords: Spinal muscular atrophy, SMA, Werdnig-Hoffmann, Kugelberg-Welander, Cardiac pathology, Cardiac
abnormalities

Background
Hereditary proximal spinal muscular atrophy (SMA) is
an important genetic cause of infantile mortality and
childhood disability. Degeneration of α-motorneurons in
the ventral horns of the spinal cord is the most salient
feature but other organs, in particular the heart, may also
be affected as suggested by numerous case reports [1, 2].
SMA is caused by deficiency of the survival motor

neuron (SMN) protein due to homozygous loss of func-
tion of the SMN1 gene. The human SMN locus contains

a second, nearly identical, SMN copy (SMN2) that
contains a critical point mutation in exon 7, resulting in
exclusion of exon 7 from most SMN2 mRNA transcripts.
SMN2 therefore produces residual levels of full length
SMN2 mRNA and functional SMN protein [3–7]. SMN
protein is ubiquitously expressed and is part of multiprotein
complexes that probably have both general and motor
neuron specific functions, including small nuclear ribo-
nucleic protein (snRNP) assembly, pre-mRNA splicing,
post-transcriptional gene regulation, axonal mRNA trans-
port, ubiquitination homeostasis, maintenance and neur-
onal differentiation of embryonic stem cells and embryonic
organ development [6, 8–13]. Variation in SMN2 copy
numbers, which partly explains differences in SMN protein
levels between patients, is the most important modifier of
SMA severity. The severity spectrum encompasses prenatal
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SMA (type 0), infantile onset severe SMA (type 1), an inter-
mediate form (SMA type 2), childhood onset SMA (type 3),
and adult onset SMA (type 4). Higher copy numbers are
associated with milder forms of SMA [5, 6].
The identification of non-neuromuscular complications

of severe SMA, including disorders of the heart and
cardiovascular system, may help to elucidate pathogenic
pathways and are furthermore of increasing clinical
importance since therapies that aim to attenuate or reverse
SMN deficiency may be introduced soon.
To study the evidence for an association of SMA

with cardiac pathology in more detail, we performed a
systematic review of the available clinical and experi-
mental literature.

Methods
Search
We searched MEDLINE and Embase for articles on
SMA and cardiac pathology published up to January 31st
2016, using a combination of the following terms: ‘spinal
muscular atrophy’, ‘Werdnig Hoffmann’ and ‘Kugelberg
Welander’, ‘heart’, ‘cardiac’, and ‘ECG’. Numerous word vari-
ations were included and specific types of cardiac abnor-
malities were added to the search, including ‘congenital
heart disease’, ‘atrial septal defect’, ‘ventricular septal defect’,
‘cardiac malformations’, and ‘arrhythmias’, in order to iden-
tify as many relevant articles as possible. The query that
retrieved the largest number of relevant results was used
and is shown in Table 1.
The MEDLINE database was searched using PubMed.

In addition, Scopus, OvidSP, and Web of Science were
used to obtain as many relevant original papers as
possible. For OvidSP, the following resources were
selected: ‘MEDLINE’, ‘OLD MEDLINE’ and ‘MEDLINE
In-Process’. Similar terms were used for all searches,
tailored to the specific requirements of each search
engine. No field limitations or language restrictions
were applied. We used indexed search terms, if applic-
able, to ensure inclusion of relevant related terms.
MeSH-indexed terms were not used in order to pre-
vent missing recently published articles that had not

yet been MeSH-indexed at the time of our search. For
articles possibly relevant to our search but unavailable
online, we searched university library catalogues using
‘Picarta’ (http://www.picarta.org/) to check for offline
availability, and contacted the author(s) of the original
publications if e-mail or correspondence addresses were
available.

Selection of relevant articles
Two of the authors [CAW, MS] independently conducted
the search and selection processes. After screening title and
abstract of all obtained articles, potentially relevant papers
were screened full text using predefined inclusion and ex-
clusion criteria (Table 2). Both clinical and experimental
studies of patients and mouse models were included. We
also systematically checked the references of all included
papers and used Thomson Reuters’ ‘Web of Science’ for a
cited references search and a related articles search, to en-
sure identification of all relevant literature. Details of the
search and selection process are summarized in Fig. 1.

Data extraction
After all relevant data was extracted from the selected
papers [by CAW], two authors [CAW and ACB] independ-
ently categorized structural (congenital) cardiac defects
using the 2012 version of the European Paediatric Cardiac
Code (International Paediatric and Congenital Cardiac
Code (IPCCC) Short List) [14, 15] that distinguishes 8
groups, based on affected anatomical areas of the heart
(Table 3). We also classified abnormalities of cardiac rhythm
using the system suggested by Korpas [16], which is based
upon mechanisms of origin, i.e.: arrhythmias due to ab-
normal impulse initiation or abnormal impulse conduc-
tion. Impulse initiation disorders were further subdivided
into 3 groups, based upon the area of the cardiac conduction
system involved: sinoatrial (sinus) node, supraventricular, or
ventricular (Table 5). Initial classification disagreements were
resolved by consensus. A comprehensive overview of all re-
trieved cases of SMA patients with cardiac pathology is
shown in Additional file 1: Tables S1–S3.
The small number of both patients and SMA model mice

with histological abnormalities of cardiac tissue precluded
the use of available classification systems, nor was it
possible to classify cardiac abnormalities in SMA mouse
models due to significant methodological differences
between studies. A comprehensive overview of all included
SMA mouse models is shown in Additional file 1: Table S5.

Results
We retrieved 3002 articles with our initial search. After
selection, 72 articles met our predefined inclusion criteria,
including 4 articles of which only the abstract was available
[17–20]. These abstracts contained sufficient detailed infor-
mation and were included for further analysis. We were

Table 1 Details on systematic search

Search terms used for PubMed search

Topic Querya

SMA (“spinal muscular atrophy” OR muscular atrophb

OR “werdnig hoffmann” OR “kugelberg welander”)

Cardiac Pathology AND
(“heart” OR “cardiac” OR cardiolb OR ventricb

OR “septum” OR “ECG”)
aSimilar terms were used in all searches, tailored to the specific requirements
of each search engine. The addition of specific cardiac abnormalities did not
retrieve relevant additional results and were therefore excluded from our
final query
bindicates that word variations of the search term were also searched
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unable to obtain full text or detailed abstracts of 15 possibly
relevant articles. Twelve of these articles were identified in the
original search, whilst the other 3 were found through the
related articles search (Additional file 1: Table S4, [21–35]).
We identified a total of 264 published cases of SMA

patients with cardiac pathology. Seven studies contained
descriptions of patients with several SMA types, 28 studies
of SMA type 1 only and 23 studies of SMA type 3 only. We
found a total of 14 studies on cardiac pathology in SMA
mouse models (Additional file 1: Tables S1–S3 and S5).

Cardiac pathology in patients with SMA type 1
We identified 77 patients with SMA type 1 (‘Werdnig-
Hoffmann Disease’) and cardiac pathology [36–69]. Most
studies used well defined clinical criteria for the diagnosis

of SMA. Tests for homozygous SMN1 deletion were
performed in 36 (47%) patients and confirmed in 31: five
patients did not have a homozygous SMN1 deletion. It
was not specified whether these patients had intragenic
SMN1 point mutations, or a different neuromuscular dis-
order. The diagnosis in these 5 patients was based upon
clinical characteristics combined with supportive infor-
mation from muscle biopsies (n = 5), EMG (n = 4) and
autopsy findings (n = 2) [44, 50, 54, 59].
Thirty-three out of 77 (43%) patients had electrocardio-

gram (ECG) abnormalities. ECGs of 15 patients (19%)
showed severe symptomatic bradycardias, defined as a heart
rate of less than 40 beats per minute. Baseline tremors were
reported in the other 18 (23%) patients. These ECG baseline
tremors were initially interpreted as abnormalities or even

Fig. 1 Flowchart of search and selection process. Summary of search and selection process of eligible articles for inclusion. *: predefined inclusion
and exclusion criteria were applied, as shown in Table 2. WoS: ‘Web of Science’

Table 2 Criteria used for critical selection of papers retrieved from our search

Applied criteria for the selection of relevant papers

Inclusion criteria Diagnosis of SMA types 1–4a or SMA mouse model; presence of cardiac abnormalities; original study with identifiable case(s).

Exclusion criteria No diagnosis of SMA or substantial doubts about diagnosis; diagnosis of non 5q-SMA (e.g.: SMARD, distal SMA); no cardiac
pathology present; SMA with additional chromosomal abnormalities associated with (congenital) heart disease (e.g. trisomy 21);
cardiac abnormalities due to medication or in moribund patients (e.g. bradycardia); redundant publication of previously reported
case(s); congress reports; mouse model of non 5q-SMA (e.g. IGHMBP2 model); animal research other than mouse models; only
abstract available with unidentifiable cases.

aThis also includes the SMA subtypes, e.g. ‘type 0’, ‘type 1a’, ‘type 1b’, ‘type 3a’ and ‘type 3b’. SMA spinal muscular atrophy; SMARD spinal muscular atrophy with
respiratory distress; IGHMBP2 Immunoglobulin Mu Binding Protein 2
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as being suggestive of cardiac pathology, but nowadays
they are interpreted as artefacts due to peripheral
muscle tremors. Two patients were diagnosed with a ‘late
form of Werdnig-Hoffmann’ but it is unclear whether
these two patients had SMA type 2 or 3 and were misclas-
sified or had a relatively mild form of SMA type 1 (i.e. type
1c) with longer survival [70, 71]. The two children, aged
10 and 12, had echocardiographic abnormalities compat-
ible with left ventricular hypertrophy (Additional file 1:
Table S1, patients 8 and 9) [39].
The remaining 42 patients (55%) with SMA type 1 had

structural cardiac defects. We used the IPCCC diagnostic
classification system as outlined in Table 3 [14, 15].
Twenty-one of the 42 patients (50%) had a single struc-

tural abnormality of the heart. This included 11 (26%)
patients with an atrial septal defect (ASD) and 5 (12%) with
an isolated ventricular septal defect (VSD). The other 21
patients (50%) had multiple structural cardiac abnor-
malities. The combination of an ASD (IPCCC group 4)
and VSD (IPCCC group 6) was reported relatively fre-
quently (n = 5; 12%). Hypoplastic left heart syndrome was
also found in 5 (12%) patients. Additional file 1: Table S1
includes details on all included patients. Figure 2 illus-
trates the reported structural cardiac pathology in SMA
type 1.
We next assessed the relationship between SMN2 copy

numbers and the severity of cardiac pathology. SMN2 copy
numbers were available for only 13 of the 77 patients with
SMA type 1 (17%). Ten patients had 1 SMN2 copy and 3
had 2 SMN2 copies (Table 4) [46, 53, 56, 63, 65–68].

Cardiac pathology in patients with SMA type 2
We found 5 studies with a total of 63 patients with SMA
type 2 and cardiac pathology [37, 40, 41, 49, 72]. No

genetic tests to confirm the diagnosis were performed.
Clinical characteristics, sometimes combined with docu-
mented muscle biopsy (n = 21) and EMG results (n = 8),
were used for diagnosis. Many of the original publica-
tions mentioned the use of ancillary investigations to
support the diagnosis (e.g. EMG, muscle biopsy, autopsy)
but did not further specify the tests.
All 63 patients had ECG baseline tremors (Additional

file 1: Table S2). A small number of patients also had
one or more additional ECG abnormalities [72]. This
included disorders of impulse initiation (n = 2; both with
a sinus tachycardia), disorders of impulse conduction
(n = 2; both with a right bundle branch block), signs of
atrial enlargement (n= 3) or ventricular enlargement (n= 4),
signs of myocardial damage (abnormal Q-waves n= 2, ST-
changes n= 3), or signs of ventricular hypertrophy (n = 7).

Cardiac pathology in patients with SMA type 3
We identified 124 patients with SMA type 3 (‘Kugelberg-
Welander Disease’, ‘Wolfhart-Kugelberg-Welander Disease’)
and cardiac pathology [17–20, 36, 37, 40, 41, 47, 49, 72–91].
Genetic tests to confirm homozygous deletion of SMN1
were performed in 5 patients (4%) and confirmed in 4
[47, 86, 88, 89, 91]. It remains unclear whether this one

Fig. 2 Structural cardiac pathology in SMA type 1. Areas of the heart
frequently reported to show cardiac defects in patients with SMA
type 1 (n = 42) are shown in color. Rarely affected and unaffected
areas are shown in shades of grey. Numbers indicate 1: atrial
septum; 2: cardiac outflow tract; 3: patent ductus arteriosus; 4:
ventricular septum

Table 3 Classification of structural cardiac defects in SMA type
1 patients

Diagnostic groups Reported
occurrence

1. Abnormalities of position and connection of heart 2x

2. Tetralogy of Fallot and variants 1x

3. Abnormalities of great veins –

4. Abnormalities of atria and atrial septum 23x

5. Abnormalities of atrioventricular valves and
atrioventricular septal defect

3x

6. Abnormalities of ventricles and ventricular septum 17x

7. Abnormalities of ventriculo-arterial valves and great
arteries

7x

8. Abnormalities of coronary arteries, arterial duct and
pericardium

6x

Reported structural (congenital) cardiac abnormalities were classified into 8
groups, in accordance with the European Paediatric Cardiac Code (IPCCC short
list) [14, 15]. Table 3 shows details on a total of 42 patients, some of whom
had more than one structural cardiac abnormality
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patient might have had a hemizygous deletion in combin-
ation with an intragenic SMN1 point mutation, or ‘non-
5q’ SMA [88]. SMN2 copy numbers were not available for
any of the patients (Additional file 1: Table S3).
Sixty-seven (54%) of the 124 patients had tremors of

the ECG baseline only. Six patients (5%) had both ECG
abnormalities and structural cardiac pathology [80, 82].
One presented with mitral and tricuspid valve prolapse
(IPCCC group 5), five patients had a prolonged QT time
interval combined with one or more structural abnor-
malities: mitral valve prolapse (n = 3, IPCCC group 5), a
hypertrophic interventricular septum (n = 2, IPCCC group
6) or a hypertrophic (n = 1) or atrophic (n = 1) posterior
ventricular wall. One of these patients also had a dimin-
ished left ventricular end diastolic volume.
Two patients had structural abnormalities of the heart

without abnormalities of the cardiac rhythm. One, with
genetically confirmed SMA type 3a, had a complex cardiac
malformation consisting of an ASD, L-transposition of the
great arteries, functional single ventricle and a patent
ductus arteriosus (IPCCC groups 2, 4, 6, and 8) [47].
The other patient had an ASD (ostium secundum type,
IPCCC group 2) [90].
Thirty-nine (31%) of the 124 patients with SMA type 3

had abnormalities of the cardiac rhythm only. With
details provided in the original publications we were able
to further classify cardiac rhythm abnormalities of 24
patients (19%), using a classification system suggested
previously (Table 5) [16].
Additionally, 9 patients (7%) were reported with ECG

signs suggestive of myocardial damage (e.g. Q-waves or

Table 4 SMN2 copy numbers in patients with SMA type 1 and cardiac abnormalities

Reference Patient no. SMN2 copy number Cardiac pathology IPCCC diagnostic group(s)

Devriendt (1996) [46] 1 1 copy Small VSD Group 6

Macleod (1999) [53] 2 1 copy χ ASD Group 4

3 1 copy χ ASD and mitral hypoplasia Groups 4 and 5

García-Cabezas (2004) [56] 4 1 copy ASD (secundum type) Group 4

Rüdnik-Schöneborn (2008) [63] 5 1 copy Large ASD (sinus venosus type), multiple VSDs
and PDA

Groups 4, 6 and 8

6 1 copy Common atrium (i.e. a very large ASD) and PDA Groups 4 and 8

7 1 copy Large ASD (secundum type) and VSD Groups 4 and 6

8 2 copies Small VSD and PDA Groups 6 and 8

Lumaka (2009) [65] 9 2 copies ASD (secundum type) Group 4

Rüdnik-Schöneborn (2010) [66] 10 1 copy Large ASD, mild pulmonary and mild aortic stenosis Groups 4 and 7

11 1 copy AVSD Group 5

Parra (2012) [67] 12 1 copy HLHS Group 6

Ekici (2012) [68] 13 2 copies Dextrocardia and Tetralogy of Fallot Groups 1 and 2

The number of SMN2 copies of 13 patients with SMA type 1
Abbreviations: IPCCC International Paediatric and Congenital Cardiac Code; VSD ventricular septal defect; ASD atrial septal defect; PDA patent ductus arteriosus;
AVSD atrioventricular septal defect; HLHS hypoplastic left heart syndrome. χ = SMN2 copy numbers were calculated based on the SMN:MPZ ratio provided by the
authors in the original publication [53]

Table 5 Arrhythmias in SMA type 3
Arrhythmias in patients with SMA type 3

Arrhythmia type Anatomical site
of origin

Reported ECG abnormalities
(number of times observed in
patients with SMA type 3)

Impulse initiation
disorder

Sinus/SA node
initiation disorders

Sinus arrest (2)

Sinus dysfunction (1)

Sinus tachycardia (1)

Supraventricular
initiation disorders

Atrial fibrillation (5)

AV junctional rhythm (5)

Supraventricular extrasystoles
(2)

Atrial flutter (2)

Atrial tachycardia (1)

Ventricular initiation
disorders

Ventricular extrasystoles (2)

Non-sustained ventricular
tachycardias (2)

Impulse conduction
disorders

n/a Left anterior hemiblock (4)

AV-block (n.o.s.) (3)

Right bundle branch block (3)

1st degree AV block (3)

Complete AV block (2)

2nd degree AV block,
Mobitz I (Wenckebach) (1)

Prolonged junctional recovery
time (1)

Reported arrhythmias in patients with SMA type 3 (n = 24). Some
patients had more than one ECG abnormality. Also see Additional file 1:
Table S3
Abbreviations: SA sinoatrial; AV atrioventricular; n.o.s. not otherwise
specified;
n/a not applicable
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ST-changes) [72, 73, 76, 77, 80, 81], two patients had
systolic pump function abnormalities [86, 88], and 2
others had ECG abnormalities that could not be classi-
fied further [20, 83].
Finally, information on histological cardiac abnormal-

ities from autopsy (n = 5) or cardiac biopsy (n = 3) was
available for 8 patients (6%). Myocardial fibrosis was the
most frequent finding (n = 4) [19, 73, 75–78, 89]. Two
studies contained detailed descriptions of the myocardial
histology, including findings of deranged, atrophic and
degenerated myocytes and myocardial fibers [75, 78].
Ultrastructural myocardial changes, such as focal degener-
ation of myocardial cells, were also noted [75].

Cardiac pathology in SMA mouse models
We found 14 studies that reported the presence of cardiac
pathology in SMA mouse models (Additional file 1:
Table S5) [10, 92–104]. Methods used to evaluate and
classify cardiac involvement differed considerably between
studies, complicating a comparison of reported outcomes.
The most important macroscopic findings were decreased
heart size including decreased left ventricular (LV) mass
[10, 92–94, 96, 102, 104]. This finding could at least par-
tially be explained by reduced body size and weight. Fur-
thermore, reduced thickness of the LV wall and
interventricular septum (IVS) were frequently reported [10,
94, 96, 99, 100, 102]. Abnormal cardiogenesis of the IVS,
LV and arterial walls, which also accounts for thinning and
partial flattening of the cardiac arterial walls, was suggested
as a possible underlying cause in one study [94].
The most prominent microscopic finding was myocardial

fibrosis [94, 96, 98, 100]. Other abnormalities included
vascular remodelling, including decreased numbers of
coronary capillaries, and ultrastructural changes, e.g.
abnormal expression of postnatal cardiac development
markers indicating loss of contractile components
(Additional file 1: Table S5).
Microscopic abnormalities of the cardiac autonomic

nervous system (ANS) were also reported, including
reduced neuronal branching and presence of thinner
cardiac sympathetic ANS nerves [93, 95]. Abnormalities of
the cardiac ANS or cardiac rhythm were reported in most
studies. Bradyarrhythmias were reported in almost all
studies [92–97, 101, 103, 104]. Few studies included
detailed information on murine cardiac rhythm, which
precludes further classification. The available data suggest
that both disorders of impulse initiation and impulse con-
duction can be found in mouse models of SMA.
The main finding indicating reduced cardiac function

was a significant reduction in pumping efficiency, i.e. re-
duced stroke volume and cardiac output, mainly due to
left ventricular dysfunction [92, 93, 104]. All findings are
summarized in Additional file 1: Table S5.

Discussion
Vulnerability to SMN deficiency may not be confined to
motor neurons. Cardiovascular abnormalities are among
the most frequently reported non-neuromuscular com-
plications in SMA [2]. In this systematic review, we
identified 264 published possible cases of SMA with
cardiac abnormalities and 14 studies reporting cardiac
involvement in SMA mouse models. Structural cardiac
pathology was almost exclusively reported in patients
with SMA type 1, while acquired cardiac pathology,
including arrhythmias and conduction abnormalities,
were reported more frequently in less severely affected
patients. Detailed classification of the reported abnor-
malities suggests convergence to specific pathologies in
patients with SMA that may be linked to downstream
effects of SMN deficiency. We did not identify large
controlled studies that indicate the presence of cardiac
pathology in SMA, preventing a definite conclusion as
to whether the incidence of cardiac abnormalities is
increased in SMA.
Structural cardiac abnormalities in SMA type 1 were

almost exclusively defects of atrial and ventricular septa
and/or defects of the cardiac outflow tract. Ventricular
septal defects (VSD), pulmonary stenosis, a patent ductus
arteriosus (PDA), and atrial septal defects (ASD) are, how-
ever, the most common structural cardiac abnormalities
in newborns, with a reported incidence of approximately
1% [105–110]. Low SMN protein levels may increase the
odds of abnormal cardiac development. This hypothesis is
supported by several observations: interventricular septum
abnormalities were also observed in animal models of
severe SMA, and abnormal embryonic cardiogenesis
induced by low SMN protein levels was identified as a
possible underlying cause in one study [94]. Moreover,
there was an over-representation of patients with SMA
type 1 and cardiac defects who had only one SMN2
copy, which is associated with the lowest residual SMN
protein levels that are compatible with life at birth [5].
The association between the lowest SMN2 copy number
and occurrence of non-neuromuscular pathology, including
cardiac abnormalities, has been suggested previously [63].
Disturbances of cardiac rhythm were a second abnor-

mality reported across the spectrum of SMA severity, i.e.
in SMA types 1–3. Leaving out baseline tremors, which
are to be considered an artefact caused by the characteristic
peripheral tremor in patients with SMA, impulse initiation
disorders were the most common cardiac rhythm ab-
normalities. Taking into account the very low reported
incidence of for example atrial flutter or atrial fibrilla-
tion in patients under the age of 50 years [111, 112],
impulse initiation disorders occurred at a strikingly
young age in patients with SMA (atrial flutter, n = 2,
ages 24 and 49 years [77, 80]; atrial fibrillation, n = 4,
reported ages ranging from 29 to 35 years [17, 19, 88]).
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This may suggest a developmental origin associated
with SMN deficiency. In theory, both dysfunction of either
the cardiac electrical conduction system or the ANS, which
influences cardiac rhythm in vivo, may underlie cardiac ar-
rhythmias [113]. Significant abnormalities of the cardiac
ANS were also found in SMA mouse models [93, 95].
Myocardial fibrosis was reported in 8 patients and

may contribute to arrhythmias in SMA [19, 73, 76, 89].
Fibrosis of the myocardium was also a frequent finding
in both severe and intermediate SMA mouse models, in
which arrhythmias were virtually omnipresent. Bradycardia
was reported most often, due to delays in the cardiac
electrical conduction system, causing various types of
atrioventricular and bundle branch blocks. It should be
noted that myocardial fibrosis is a hallmark of normal
aging [114], and the limited number of patients pre-
cludes a definite conclusion whether impulse conduc-
tion disorders in SMA are caused by presenile cardiac
fibrosis secondary to SMN deficiency.
There are several other possible explanations how

SMN deficiency causes cardiac abnormalities, including
specific mRNA-splicing defects that could interfere with
normal cardiac development [11, 115]. Low SMN levels
have already been shown to influence embryonic organ
development in animal models, including cardiogenesis
[2, 6, 116]. Furthermore, very low levels of SMN protein
may predispose to dysfunction of specific cell types other
than alpha-motor neurons, that are involved in cardio-
genesis [117–119]. A potential candidate cell type is the
neural crest cell (NCC), as a subset of NCCs migrate
and differentiate into cardiac neural crest cells (cNCCs)
that are involved in development of the musculoconnective
tissue (tunica media) of the great vessels, cardiac outflow
tract septa (dividing the conotruncus into the aorta and
pulmonary trunk) and, to some extent, septation of the
atria and ventricles [120–126]. SMN protein deficiency may
alter the function of downstream signalling pathways that
are important for the migratory process of NCCs [123].
Furthermore, although the cardiac electrical conduction
system itself originates from cardiomyocytes [127], the
cardiac ANS that contributes to arrhythmias, develops
from NCCs [113].
Several limitations of this systematic review need to be

addressed. First, we cannot exclude the possibility of
publication bias towards cases with particular findings or
with severe forms of SMA and heart disease. Published
cases may, therefore, not be representative of all cardiac
pathology in SMA and single cases could have been missed
if they were not represented in the databases used. How-
ever, given the relatively large number of patients included,
it is unlikely that these cases would have substantially influ-
enced our overall findings. Furthermore, publications and
reports differed significantly in clinical detail and the time
of diagnosis. Many studies were published before genetic

testing for homozygous SMN1 deletion became widely
available (i.e.: cases before 1995) which leaves open the pos-
sibility of inclusion of disorders other than SMA, in par-
ticular for SMA types 2 and 3. The cases of patients with
SMA and heart disease included in our work were pub-
lished between the late 1960s [73] and 2015 [91]. During
this period, significant modifications of diagnostic criteria
and classifications of SMA types occurred [128, 129]. Al-
though these changes are largely irrelevant with regard to
observing a cardiac abnormality in a patient with SMA, we
had to assume the correct diagnosis of SMA (in the ab-
sence of genetic confirmation of the diagnosis) and severity
in some patients. With a view to addressing these issues, at
least in part, we reviewed all available clinical data of
included cases (Additional file 1: Tables S1–S3) in an at-
tempt to maximise diagnostic accuracy. Finally, consider-
able differences in the diagnostic methodology for
cardiac evaluation, ranging from a limited number of
diagnostic tools to assess cardiac pathology, to a more
comprehensive combination of ECG, radiographs, echo-
cardiography, or autopsy, clearly results in differences in
quality of observations between studies.

Conclusions
On the basis of the data available, if present, structural
abnormalities of the heart are predominantly expected in
the more severely affected SMA patients (i.e. SMA type 1),
disturbances of the cardiac rhythm in the more mildly
affected patients (i.e. SMA types 2 and 3). Future studies
would benefit greatly from a controlled, standardized, uni-
form, and comprehensive protocol for cardiac work-up of
genetically confirmed cases of SMA.

Additional file

Additional file 1: Tables S1, S2, and S3: provide an overview of all
included studies and all individual cases of patients with SMA and
cardiac pathology. Table S4: overview of articles (n = 12) possibly
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