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Abstract
Purpose of Review Processed electroencephalography (pEEG) is widely used in clinical practice. Few clinicians utilize the full
potential of these devices. This brief review will address the improvements in patient management available from the utilization
of all pEEG data.
Recent Findings Anesthesiologists easily learn to recognize raw pEEG patterns that are consistent with an appropriate level of
hypnotic effect. Power distribution within the waveform can be displayed in a visual format that identifies signatures of the principal
anesthetic hypnotics. Opinion on the benefit of pEEGdata in themitigation of postoperative neurological impairment remains divided.
Summary Looking beyond the index number can aid clinical decision making and improve confidence in the benefits of this
monitoring modality.

Keywords Processed electroencephalography . pEEG . Bispectral index . BIS . Alpha/delta pattern . Power spectra . Density
spectral array . Excessive anesthesia . Postoperative neurological deterioration

Introduction

Renewed interest in intraoperative processed electroencepha-
lography (pEEG) came with the introduction of the bispectral
index (BIS) device in 1996, and numerous other brands have
entered clinical practice since. Debate has centered around the
displayed index number, what it truly represents and how it
may be optimally used [1]. Throughout the lifespan of the BIS
device, emphasis has shifted from ‘depth of anesthesia,’
through ‘depth of hypnosis’ to ‘probability of recall.’ No de-
vice currently achieves the goal of being an ideal “depth of
anesthesia” monitor (Table 1) and predicts the effect of a bal-
anced hypnotic/analgesic approach to patient management.
Few professional bodies regard pEEG as an item of

mandatory intraoperative monitoring [2–4] and this article
will explore the role of pEEG in contemporary practice.

The Index Number

Given that the index number is not a reliable predictor of
response to noxious stimulation, a key goal for pEEG has been
the prevention or reduction in the incidence of accidental
awareness under general anesthesia (AAGA) [5]. It is possible
that AAGA events represent failure to suppress memory for-
mation [6] as connected consciousness is regularly demon-
strated in clinical settings [7] and memory is postulated to be
intertwined with appreciation of ‘being conscious’ [8]. Studies

Table 1 Characteristics of an “ideal” depth of anesthesia device and
index

• Tight correlation of index with brain hypnotic concentration

• Clear transitions between conscious and unconscious states

• Guarantees patient is unaware & amnesic

• Ensures non-paralyzed patient is immobile to noxious stimulation

• Unaffected by use of neuromuscular blockade

• Guides analgesic administration

• Index adjusts to hypnotic/analgesic drugs administered

• Adjusts algorithm for age group
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using BIS guidance show no benefit over a protocol defending
end-tidal volatile concentration (EtAA) ≥ 0.7 MACage in the
maintenance phase of volatile anesthesia [9, 10]. This raises
uncertainty about the value of monitoring the index number,
except when compared to AAGA detection using only clinical
signs [11]. However, the United Kingdom’s National Audit
Project 5 (NAP5) reported that only 1/3 of AAGA cases oc-
curred during the maintenance period [12], which questions
the role of EtAA alarms at induction and termination of anes-
thesia. Further studies looking specifically at the utility of
pEEG around these timepoints [13] are required before it is
relegated from AAGA mitigation during inhalational
anesthesia.

The NAP 5 document also reported a twofold increase in
the AAGA risk for patients receiving total intravenous anes-
thesia (TIVA) compared to inhalational maintenance, with the
key causative factors being drug errors and lack of training in

the safe use of the technique [14]. Consequently, pEEG is
recommended during TIVA as a surrogate for continuous de-
livery of hypnotic to the patient, and the manufacturer’s rec-
ommended range is sufficiently indicative for this objective
[14]. The key benefit of pEEG with TIVA appears to be cli-
nician education when judged by one large observational
study [15]. It may be inferred from this paper that anesthesi-
ologists underestimate dosing requirements when administer-
ing TIVA by empirical regimens. Half the clinicians in this
trial observed the effectiveness/ineffectiveness of their tech-
nique (as indicated by BIS) and altered practice subsequently.
There was a reduced incidence of AAGA compared to cases
without such feedback. Conversely, excessive hypnosis from
co-administration of propofol/remifentanil target-controlled
infusions is relatively common. This is particularly so in the
elderly or frail when easy detection of excessive hypnosis is
valuable [16].

Fig. 1 Progressive changes in the
raw EEG with increasing
concentration of GABAA

hypnotic agent. A–E show a
decrease in frequency and
increase in amplitude, followed
by burst suppression and an
isoelectric line. C shows the
sedated state with alpha and beta
oscillations but no delta
component; episodes of explicit
recall are likely.D andE show the
onset of slow delta waves and are
consistent with appropriate
surgical hypnosis (‘wind waves
riding on the background ocean
swell’). (Reproduced with
permission from [55])

481Curr Anesthesiol Rep  (2020) 10:480–487



Neuromuscular blockade (NMB) was associated with the
highest risk of AAGA in NAP5 irrespective of the hypnotic used
and was the commonest factor in cases which resulted in psy-
chological sequelae [12]. Consequently, pEEG is regularly rec-
ommended when patients must receive such agents [12, 14, 17].
Muscle activity adjacent to the frontal electrodes can be detected
and quantified (electromyography, EMG) and shows overlap
with higher frequencies in the pEEG signal [18•]. Some devices
include EMG activity in index calculation and may indicate a
falsely high index number discordant with the administered hyp-
notic concentration. Conversely, the use of NMB caused the BIS
device to display an ‘asleep’ index in volunteers who received no
hypnotic but were unchallenged by noxious stimulation [19, 20].
A key feature of the latter study is that raw EEG revealed that the
subjects were fully awake. Observation of the train-of-four re-
sponse when combining NMB and pEEG monitoring seems
mandatory if only to remove uncertainty over one possible cause
of a changing numerical value. A more comprehensive evalua-
tion of all the raw and processed data provided by the device is
warranted when patient management includes paralyzing agents,
as emphasized in a recent case report [21] and observational
study [22].

Reports are published of connected consciousness (as indi-
cated by a positive response when using the isolated forearm
technique, IFT) with both intravenous and inhalational anes-
thesia despite pEEG indices in the manufacturer’s recom-
mended range [23, 24]. Such reports sap confidence in the
technique but probably reflect unrealistic expectations of the
capabilities of the device by clinicians [25].

Presently, the focus of pEEG has shifted to the potential for
harm by ‘too deep’ anesthesia [26]. Several studies and meta-
analyses report a correlation between the suppression of brain
activity by deep hypnosis and postoperative delirium, cognitive
decline, or worsened morbidity/mortality [27, 28, 29•, 30]. This
is unlikely to be a causal relationship and consequently others
report no such association, nor benefit from alerts to this situation
[31, 32]. The reasons for such postoperative morbidity are likely
multifactorial and will require a panoply of measures in mitiga-
tion [33, 34•, 35, 36]. Despite little evidence to support pEEG for
this goal [37, 38], some professional bodies have recommended
its use during anesthesia for particular ‘risk’ groups [39–42].
Debate continues over the value of pEEG index monitoring
[43], but these devices provide at the very least a “window into
the brain” and a way to directly observe drug effect on the target
organ [44, 45].

Beyond the Index Number

Advances in the understanding of the neurophysiological
mechanisms of the principal hypnotic anesthetic agents have
been derived from the raw EEG waveform [46]. The anesthe-
siologist would not expect to interpret heart rate without

reference to the electrocardiogram trace, yet clinicians have
been conditioned to consider a single number as a representa-
tive of the action of their principal drugs. The pEEG index is
an oversimplification of information available in the raw EEG
and has multiple limitations on its accuracy (environmental
artifacts, EMG activity, miscalculation with agents acting via
receptors other than γ-aminobutyric acid type A (GABAA),
anatomical or physiological pathology, and biological age)
[18•]. Falsely low or high numbers can be displayed and urge
inappropriate action by the clinician, thereby increasing the
risk of either AAGA or excessively deep anesthesia [47].

Figure 2 a Appearance of delta waves in a raw pEEG trace. The
waveform sweep speed has been slowed to 12.5 mm/s and then frozen
to facilitate ready observation of this feature. The low-frequency filter
must be turned off to see delta waves with the BIS device. To confirm
these as delta oscillations, the number of peaks per second of frozen trace
(or seconds of trace per peak) should be measured on the screen. b
Appearance of alpha waves in a raw pEEG trace. The waveform sweep
speed has been increased to 50 mm/s before freezing in this instance. To
confirm these as alpha oscillations, the number of peaks per second of
frozen trace should be measured

482 Curr Anesthesiol Rep  (2020) 10:480–487



All devices record from electrodes placed over the anterior
cranium and display a waveform generated principally by the
frontal lobes which is plotted against time. Fast Fourier trans-
formation dissects this waveform into principal component
frequencies as the precursor to index number calculation by
proprietary algorithms and to derive further parameters such
as the power spectrum (PS), density spectral array (DSA), and
spectral edge frequency (SEF) [48]. The principal frequency
components are classified as gamma (>30 Hz), beta (13–
30 Hz), alpha (7–13 Hz), theta (3.5–7 Hz), and delta (0.5–
3.5 Hz) waves and are believed to represent activity in specific
neural networks or cortical assemblies. Interpretation of the
raw pEEG waveform is helpful in decision making when the
index value seems inappropriate for the clinical status of the
patient and delivered hypnotic concentration [47, 49, 50•, 51,
52••]. The appearance and combination of waveforms are
characteristics of different stages of altered consciousness
and may be used to track the activity of centrally acting anes-
thetic agents [53, 54]. In general, there is increasing power in
the slower frequency bands as the concentration of GABAA

receptor hypnotic rises and the presence of beta or gamma
frequencies is associated with an inadequate level of effect.

Visual inspection of the raw waveform when the patient is
awake reveals a high-frequency–low-amplitude pattern,
which shifts via a low-frequency–high-amplitude pattern
when appropriately anesthetized, to episodes of flat trace al-
ternating with bursts of activity (burst suppression, BS) and
ultimately onto an isoelectric line (Fig. 1). These latter phe-
nomena may share a common etiology with the development
of postoperative neurocognitive impairment and should act as
warning signs [35], although others have suggested a ‘cerebral
protection’ role for these states of hypnosis [16]. Several

studies have shown that even ‘naïve’ anesthesiologists can
acquire waveform recognition skills relatively quickly,
reflecting the profession’s expertise in pattern recognition
[56, 57, 58••]. The target pattern for frontal EEG waveforms
at an appropriate level of hypnosis is dominated by alpha–
delta oscillations and easily recognized by comparison to mo-
tion of the ocean surface. Delta waves undulate around the
baseline, represent the background ocean swell (Fig. 2a),
and are generated by the intrinsic rhythm of thalamocortical
neurons. Alpha waves ‘ride’ on the delta waves and are com-
parable to white foam wind waves (Fig. 2b) generated by a
pacemaker activity in thalamic reticular nuclei and thalamo-
cortico-thalamic circuits. Alpha waves are held to be sensitive
to noxious events and disappear when such stimulus is ap-
plied, returning after administration of adequate analgesia
[54]. Theta waves are present at low power during propofol
anesthesia but are more evident during hypnosis maintained
with halogenated ethers. Beta waves generally indicate light
hypnosis when accompanied by delta waves, but if the latter
are absent a beta dominant pattern suggests sedation only
rather than an adequate level of hypnosis for surgery.

Caveats exist using the alpha/delta pattern as a marker
of appropriate hypnotic effect. Alpha power generated by
GABAA receptor anesthesia becomes less pronounced as
patients age (Fig. 3) and may be difficult to identify in
patients older than 80 years [59–61]. Connected con-
sciousness as indicated by a positive IFT response has
been reported despite the presence of a prominent frontal
alpha–delta pattern [62]. Adjunctive analgesia or sedation
provided by nitrous oxide, ketamine, or dexmedetomidine
may ‘contaminate’ the raw waveform and make the opti-
mum pattern less obvious [18•, 50•].

Fig. 3 Changes in the DSA
spectrum of frontal EEG for
sevoflurane (top) and propofol
(bottom) with age. Relative power
is color-coded as per the dB scale.
The Y axis is frequency (Hz) and
the X axis is age (years). A
decrease in alpha power (8–
12 Hz) generated by each of the
agents is seen with increasing age.
The agent ‘signatures’ are
demonstrated also. Propofol has
two bands of high power in the
alpha and delta ranges, whereas
sevoflurane shows the typical
“fill-in” effect due to high power
in the theta band (5–7 Hz).
Reproduced with permission
from reference [59])
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Analysis of the relative power distribution within the pEEG
waveform can contribute to decision making. A power spec-
trum display reveals the comparative activity within the five
key frequency bands. If appropriate hypnosis has been
achieved with propofol, two characteristic peaks are seen in
the alpha and the delta bands, with inclusion of power in the
theta band for halogenated ethers. This is easy to visualize if
compared to the profile of a cycle racemountain stage (Fig. 4a).

Power distribution can also be summarized and presented
as the numerical frequency below where 50% (median) and

95% (spectral edge frequency, SEF) of the total power are
present. The pattern consistent an alpha/delta appearance of
the raw trace shows the median point in the delta band and
SEF within the alpha band.

The density spectral array (DSA) is potentially the most
useful of the visual graphical analyses [50•]. Power is color-
coded (from red = high to blue = low) and combined with an
X-Y diagram of time vs. frequency. Red linear tracks
representing high power in alpha and delta frequencies are
painted across the time axis when propofol or halogenated
ether achieves an appropriate concentration (Fig. 4b).
Excellent descriptions of the utility of DSA are available
[52••]. Unique ‘signatures’ are observed for anesthetic agents
acting principally at GABAA, N-methyl-D-aspartate, and
alpha-2 receptors and explain the discrepancies experienced
using the latter two agents with ‘standard’ pEEG indices [50•].
Changes of cerebral neurophysiology with advancing age are
reflected in the DSA trace as a diminution of power in the
alpha band during anesthesia [59–61]. This diagnostic advan-
tage of the spectrogram over BIS in the assessment of hypno-
sis during multimodal anesthesia has been highlighted recent-
ly in an interesting case report [21].

Excessive concentrations of hypnotic are recognized by
burst suppression (BS) or an isoelectric trace, features seen
only with general anesthesia or in pathophysiological circum-
stances. Burst suppression is a flat trace interrupted by short
periods of high amplitude multi-frequency activity and
expressed as a percentage of a defined measurement epoch
(usually 60 s) without this activity. Failure to reduce hypnotic
concentration allows BS to progress to a persistent isoelectric
state. Although more common in elderly patients, BS may
occur unexpectedly in biologically young subjects who have
a ‘physiologically’ old brain. The concentration of hypnotic at
which suppression commences is suggested as a marker of
patient sensitivity to hypnotics and of propensity for postop-
erative neurological sequelae [63•]. The importance of this
association/causation is debated [38, 64]. The authors of a
recent meta-analysis [65] did not find an advantage for
pEEG in the prevention of such deterioration, but they empha-
sized that their findings were heavily influenced by the nega-
tive results of the ENGAGES study [66], which has itself
attracted critique [67]. Until further data become available, it
seems appropriate to target the avoidance of BS or an isoelec-
tric state as a more meaningful use of pEEG rather than
achieving a “depth of anesthesia” [50, 51, 52••].

Future Trends

Processed EEG is an important sensor for closed-loop anesthesia
delivery systems. When combined with total intravenous anes-
thesia, improved control of hypnotic effect has been shown and
resulted in shorter recovery times, savings in hypnotic costs, and

Fig. 4 a Visual presentation of pEEG power distribution between five
principle frequency bands and the accompanying simultaneous raw
waveform for a subject receiving propofol/remifentanil TIVA. Notable
power peaks are seen in the alpha and delta regions, consistent with
appropriate hypnosis from this mode of anesthesia. Scale of the X and Y
axes for the raw waveform are respectively 1 s and 50 μV per graticule. b
Visual presentation of pEEG power as a density spectral array and the
accompanying simultaneous rawwaveform (marked by the vertical white
line) for a subject receiving propofol/remifentanil TIVA. High-power
tracts are seen in the alpha and delta regions, consistent with
appropriate hypnosis from this mode of anesthesia. Power is color-
coded as per the displayed scale, and the X axis represents the time of
day. Scales of the X and Y axes for the raw waveform are respectively 1 s
and 30 μV per graticule
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a possible lessening of postoperative neurological impairment
[68, 69]. Few anesthesia workstations provide the facility for
feedback control of inhalational concentration by pEEG and such
studies are eagerly awaited.

Monitoring of sedation levels by pEEG in critical care en-
vironments was proposed recently as a rational method for
managing limited pharmaceutical resources during the
COVID-19 pandemic [70]. However, a meta-analysis of data
from studies in more controlled circumstances found no ben-
efit of BIS monitoring on clinical outcomes or resource utili-
zation [71]. Continuous EEG monitoring placed and
interpreted by a neurophysiologist has utility in critical care
practice for diagnosis and prognosis in a range of clinical
conditions. Caution has been urged when using processed
EEG devices for applications other than sedation monitoring
in this environment [72].

Summary and Conclusion

No monitoring device directly influences safety or outcome.
The onus remains with the anesthetic provider to use all infor-
mation available and steer their actions in a ‘best practice’
direction. Oversimplification of pEEG monitoring to a single
number has raised more questions than it answering and cre-
ating uncertainty about its benefit. Understanding the different
components of pEEGmonitoring allows a comprehensive and
nuanced interpretation of the data and a firmer base for clinical
decision making, although the underpinning science requires
further clarification by appropriately powered studies. Further
refinements in signal acquisition and calculation algorithms
are needed to reflect the disruption of larger scale neural net-
works held to be global effect of anesthetic drugs upon the
brain. Such improvements will move pEEG devices closer to
the goal of indicating true ‘depth of anesthesia’ [73].
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