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Abstract

The magnitude and apparent complexity of the brain’s connectivity have left explicit networks largely unexplored. As a
result, the relationship between the organization of synaptic connections and how the brain processes information is poorly
understood. A recently proposed retinal network that produces neural correlates of color vision is refined and extended
here to a family of general logic circuits. For any combination of high and low activity in any set of neurons, one of the logic
circuits can receive input from the neurons and activate a single output neuron whenever the input neurons have the given
activity state. The strength of the output neuron’s response is a measure of the difference between the smallest of the high
inputs and the largest of the low inputs. The networks generate correlates of known psychophysical phenomena. These
results follow directly from the most cost-effective architectures for specific logic circuits and the minimal cellular
capabilities of excitation and inhibition. The networks function dynamically, making their operation consistent with the
speed of most brain functions. The networks show that well-known psychophysical phenomena do not require
extraordinarily complex brain structures, and that a single network architecture can produce apparently disparate
phenomena in different sensory systems.
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Introduction

The relationship between the organization of synaptic connec-

tions and how the brain processes information is poorly

understood. For some reflex responses the connectivity has been

discovered by direct observation, and some theoretical networks

have been proposed to explain other simple neural responses, e.g.,

[1–5].

The explicit networks introduced here are formal logic circuits

that can discriminate degrees of state, and combinations of degrees

of state, of any number of neurons. This is different from

mathematical models that characterize and manipulate that

information, and different from implicit networks that depend

on assumed capabilities of unspecified component networks. As

such, these networks may provide a more tangible model for how

information is processed by the brain.

The following exposition first illustrates the difficulty of the task

by describing what is required to interpret the information

contained in several olfactory sensor cell responses to a mixture of

odorants. Then logic circuits are described that can effectively

summarize the sensory information and provide for perceptual

and cognitive distinctions. Although many models have been

proposed for neuronal encoding of information, only the minimal,

known cellular capabilities of excitation and inhibition are needed

to derive the network properties. A neuron with excitatory and

inhibitory input is shown to function as a simple logic gate. Several

of these logical primitives are connected to form general logic

circuits that can perform negations and conjunctions of any

number of propositions. The architectures of these circuits are

different from the standard architectures of electronic logic circuits

in several ways. In addition to the classical logic of discrete true

and false values, these logic circuits perform fuzzy logic operations

that can deal with degrees of certainty. This is a powerful tool in

processing ambiguous or incomplete information.

To demonstrate the capabilities of these logic circuits, they are

shown to generate neural correlates of complex psychophysical

olfactory phenomena for mixtures and varying concentrations of

odorants. To illustrate the general nature of the networks’

capabilities, the networks are shown to produce identical

phenomena for color vision. This demonstrates that the networks’

transformation of input data provides basic information processing

for the perceptual and cognitive operations of the brain. In

conclusion, the networks’ differences from the brain and from

other models of brain function are discussed.

Analysis

Odor Discrimination
In a classic series of experiments, it was shown that each

olfactory receptor cell expresses exactly one odorant receptor gene

that produces one type of odorant receptor [6]. Humans have

been found to have 388 classes of olfactory receptors [7]. The

exact number is not critical here. Each of these cell types responds

with varying sensitivity to several related molecules, and cells in

different classes have different sensitivities. Each odorant molecule

activates several classes of olfactory cells with varying intensity.

Most odorants are composed of several odorant molecules. The

particular combination of odorant molecules in each odorant

induces a corresponding combination of olfactory receptor cell

responses that are transmitted to the brain.

Consider the problem of discriminating odors based on the

signals from receptor cells. To take a simple example, suppose an

odorant is composed of six different types of molecules, and each

of six olfactory receptor types is sensitive to one of these molecules.
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Some of the more obvious possible models for discriminating the

odorant have significant problems. Perhaps the simplest model

would produce a different sensation for the response of each

receptor type. Providing a perception of each component of a

pattern does not provide a basis for identifying the pattern; it

merely shifts the pattern, and the problem of identifying it,

elsewhere in the brain. Another possibility is to connect a neuron

to the receptors in such a way that it is activated if and only if all

six of the receptor types are active. This model does not take the

odorant’s concentration into account. Since each olfactory

receptor cell responds with varying sensitivity to several related

molecules, a few odorant molecules to which a receptor is highly

sensitive can elicit the same response as many molecules to which

it is only slightly sensitive. Without some means of separating the

effect of the type of molecule from the effect of concentration on

receptors’ responses, information about the odorant’s identity will

remain conflated with concentration.

Still another mechanism could normalize the strengths of the six

responses to correct for different odorant concentrations and then

compare the normalized responses to a stored set of values

representing the particular odor. This model has computational

obstacles. Although normalizing several values is a simple process

mathematically, connecting logic gates to implement such a

procedure is not, regardless of the kind of hardware used. The

same is true of the other two processes – comparing several values

and arriving at a single conclusion based on the comparisons.

Moreover, nonlinearities in neural response functions greatly

increase the complexity of the task. Although the brain is capable

of such computationally intensive operations, the required logic

circuits would be quite large and complex.

A far more difficult problem than the above example is

discrimination of the individual odors in a mixture of odorants. To

the extent that such discrimination is possible, a biologically

adaptive olfactory system should have this ability. The patterns of

receptor responses produced by odorant mixtures can be quite

complex, especially when two or more of the components of a

mixture contain some of the same or similar molecules that

activate the same receptor types. Even a mixture of just two

odorants can elicit a wide variety of receptor responses when both

the proportion of each odorant and the concentration of the

mixture are varied. Identifying the component odorants is

correspondingly challenging.

One of the basic concepts of information theory is that the

smaller the probability of an event, the more information it

contains. This means that if a particular molecule is present in

most odorants, its absence holds more information about an

odorant’s identity than its presence. For example, suppose an

olfactory receptor type X is sensitive to a molecule that is present

in all but four odorants. Signals from one or more receptor types

but not from X narrow the identity of an odorant to four

possibilities. An odorant that does not contain the common

molecule has such a small probability, and therefore conveys so

much information, that just two additional bits of information are

necessary to identify the odorant among the four possibilities. Even

if a molecule is present in only a few odorants, its absence still

carries some information about an odorant’s identity.

Because of the information contained in null responses, the set

of receptor types that are best suited to identify an odorant may

contain receptor types that are not sensitive to the odorant as well

as types that are. As a simple example, suppose an odorant is the

only odorant that elicits relatively high intensity responses from

receptor types X1 and X2 and relatively low intensity responses

from types X3 and X4. Discrimination of the odorant can be based

on some measure of the extent to which all four of these conditions

are satisfied. One possibility is a neuron whose response intensity is

a measure of the difference between the smaller of the responses

from receptors X1 and X2 and the larger of the responses from X3

and X4.

Neuronal Encoding of Information
Deriving a network’s behavior requires some assumptions about

the behavior of the network’s components. Many models have

been proposed for neuron responses. Most models fall into one of

two categories. One is the pulse model, such as the model of

McCulloch and Pitts [8] and the integrate-and-fire model. The

second is the firing rate model, such as that proposed by Hopfield

[9]. A review of these and other models is provided by Koch [10].

A general problem with all models, as Hopfield [9] pointed out, is

that it is uncertain whether the assumptions hold for real neurons.

The more detailed the assumptions are, the greater the

uncertainty.

To take just one example, a standard model for neuron response

assumes that activation is a nonlinear function of a weighted sum

of the inputs. This function may appear to be fairly general, but it

cannot express quite simple functions of two or more variables or

even produce reasonable approximations of them. For example, a

possible neuron response to excitatory inputs X and Y is

R[S(X)+S(Y)], where S is a sigmoid function that amplifies large

inputs and reduces small ones, and R restricts outputs asymptot-

ically below some physical bound on a neuron’s maximum

response. Because of the nonlinearity of S, S(X)+S(Y) cannot be

expressed as a weighted sum of X and Y. This implies the response

function R[S(X)+S(Y)] cannot be expressed as a nonlinear function

of a weighted sum of X and Y.

Neuron responses to single excitatory inputs have been shown to

amplify the effect of large inputs and reduce the effect of small

inputs [11,12]. This response property acts as a natural noise filter

for low-level noise that is added to high or low intensity signals. If a

neuron’s input channel is carrying no signal, low-level noise in the

channel is reduced or eliminated by such a response function. If an

input signal that is near the maximum intensity is decreased by

additive noise, amplification reduces or eliminates the effect of the

noise. For more than one input, a noise filtering property for each

of the inputs would be a reasonable evolutionary design. In that

case, the standard response model that assumes a nonlinear

function of a weighted sum of the inputs would not be appropriate.

A linear weighting function for each input does not filter noise.

Nor can the nonlinear function of the weighted sum effectively

filter additive noise. This is because the weighted sum of low-level

noise in several input channels can be large enough to be

indistinguishable from a strong signal in one of the input channels.

Minimal, known characteristics of cellular behavior are

sufficient to show the networks presented here generate known

phenomena. Some types of neurons and sensory receptors have

graded responses rather than all-or-nothing action potentials. For

most types, however, the intensities of the input and output can be

measured, and the most basic relationship between input and

output is known: The intensity of an external stimulus is reflected

in the sensory receptor’s response, and this intensity is carried over

in the signal’s transmission from receptor to neuron and from

neuron to neuron. Cells whose responses consist of action

potentials are generally thought to convey the intensity in the

frequency of action potentials. Table 1 lists these most basic

properties of cellular signals in somewhat more detail. The

response intensity is assumed to be measured at some moderate

level of adaptation. Phenomena associated with adaptation are not

considered here, so a constant level of adaptation is assumed. For

convenience, response intensities are normalized by dividing them

Explicit Logic Circuits
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by the maximum possible intensity for the given level of

adaptation. This puts response intensities in the interval from 0

to 1, with 0 meaning no signal and 1 meaning the maximum

intensity. This number will be called the response intensity or simply

the response of the receptor or neuron. If a neuron’s response is not

0, the neuron is said to respond. Normalizing the responses does not

affect any of the results derived here. To avoid confusion, perhaps

it should be noted that for cells that transmit all-or-nothing action

potentials, the response, as defined here, is the normalized

frequency of action potentials, not a measure of the membrane

potential or how near the potential is to the threshold for an action

potential.

Most neurons in the cortex either excite or inhibit other cells,

but not both. Excitatory cells can inhibit by exciting an inhibitory

cell. If the responses of two sensory receptors or neurons are X and

Y, the notation X,Y will represent the response of a neuron with

excitatory input X and inhibitory input Y. The properties in

Table 1 that say the response X,Y is an increasing or decreasing

function refer to the fact that input and output intensities are

variables; the response is not increasing or decreasing with time.

Although Table 1 is used to derive the various networks’

properties, it is not part of the models. The models are defined

by the figures.

For the conclusions of this article to hold for networks

constructed with real cells, the minimal properties of Table 1

only need to be approximations of actual complex neuron

responses. Little information is available for the actual behavior

of the neuron response function X,Y, for example. Property 2

may actually be X,Y = 0 if g(X)#Y for some function g(X) that

only loosely approximates the identity function I(X) = X. Such

minor adjustments in the properties of Table 1 would modify the

conclusions about the networks only by degrees; they would not

negate the conclusions.

Neural AND NOT Gates
A few elementary concepts of classical logic are needed here to

show that neurons can function as logic gates. The customary logic

notation will be used. Variables X and Y represent truth values of

propositions. The value 0 stands for false, and 1 stands for true.

The notation XY stands for the value of the conjunction X AND

Y (X and Y are both true), X stands for NOT X (X is not true),

and PN
i~1Xi stands for X1X2…XN (all Xi are true). These logic

functions have the customary truth values: XY = 1 if and only if

X = Y = 1, X~1 if and only if X = 0, and PN
i~1Xi~1 if and only if

X1 = … = XN = 1. For the recursive logic identities given in the

next section to be true, P0
i~1Xi is defined to be 1. For now, neuron

responses are assumed to be either 0 or 1 to coincide with the

values of classical logic. Intermediate neuron responses between 0

and 1 will be considered later. A neuron’s response can represent

the truth value of a proposition. For example, the response of an

olfactory receptor cell can be interpreted as the truth value of ‘‘the

receptor cell is activated.’’

Property 1 of Table 1 says the cellular response X,Y is 1 if

X = 1 and Y = 0. By property 2, X,Y is 0 for the other three

possible combinations of X and Y values. The logical conjunction

XY (X AND NOT Y) has the same truth values. This means the

neuron performs the logical AND NOT function: X*Y~XY. A

neuron with one excitatory input and one inhibitory input will be

called a neural AND NOT gate. Its response property X*Y~XY is

the neural AND NOT property. This logic gate is illustrated in the

circuit diagram in Fig. 1A. To illustrate example inputs and

outputs, active neurons are colored in the figures. Inactive

inhibitory cells are shaded. The cells shown providing input to

the networks in the figures are not considered part of the networks

and need not even be near the networks. They could be sensory

cells or the output cells of other networks.

For networks consisting of neural AND NOT gates, their

outputs can be determined either by the properties of Table 1 or,

usually more conveniently, by the neural AND NOT property and

the algebra of classical logic. For example, X,(X,Y) denotes the

response of a cell that has excitatory input X and inhibitory input

X,Y, as illustrated in Fig. 1B. This response is the logical AND

function XY because X* X*Yð Þ~X* XY
� �

~X XY
� �

by the

Table 1. Cellular response properties.

1. 1,0 = 1. Maximum excitation elicits maximum response.

2. X,Y = 0 if X#Y. Inhibition cancels equal or smaller excitation.

3. X,Y is increasing in X. Greater excitatory input increases output.

4. X,Y is decreasing in Y. Greater inhibitory input decreases output.

5. Olfactory receptor response is an increasing function of odorant
concentration.

6. Photoreceptor activity is a decreasing function of photostimulus intensity.

The properties of the neural logic circuits follow from the networks’
architectures and the minimal, well-known cellular characteristics listed here. If
X and Y are two cells’ response intensities, X,Y represents the response
intensity of a neuron with excitatory input X and inhibitory input Y. Responses
are normalized to be in the interval from 0 to 1.
doi:10.1371/journal.pone.0004154.t001

Figure 1. Neurons as functionally complete logic gates. The circuit diagrams show that neurons with excitatory and inhibitory inputs and
neurons that have continuously high outputs form a functionally complete set, meaning any logic circuit can be constructed with them. The label on
each neuron represents its response. The maximum and minimum possible responses 1 and 0 can stand for the logical values true and false, making
the network outputs logical functions of the inputs. The diagrams show logic gates for (A) X AND NOT Y, (B) X AND Y, and (C, D) NOT X. Arrows
indicate excitatory input; blocks indicate inhibitory input. Spontaneously active neurons are square. To illustrate example inputs and outputs, active
neurons are colored. Inactive inhibitory cells are shaded.
doi:10.1371/journal.pone.0004154.g001
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neural AND NOT property, and X XY
� �

~XY by the algebra of

classical logic. It might appear that the function X AND Y could

be achieved simply by a cell with two excitatory inputs, X and Y,

but this cell’s output would be the logical function X OR Y since a

high value of either X or Y would activate the cell.

Fig. 1C shows another simple but important logic circuit known

as an inverter. If a neural AND NOT gate has inhibitory input X

and excitatory input from a neuron whose response is constantly 1,

then the output 1,X is the logical NOT function X because

1*X~1X~X. A response that is constantly 1 could be provided

by a special purpose neuron that fires spontaneously and

continuously. Such neurons are known to exist in the brain [13].

They keep people awake, for example, and sleep apparently

requires inhibition of these neurons [14]. Alternatively, the NOT

cell itself could be a spontaneously active neuron with only

inhibitory input, as illustrated in Fig. 1D. In the figures,

spontaneously active cells are square to distinguish them from

other cells. Any spontaneously active cell could be replaced by an

ordinary cell with continuous excitatory input. A single spontane-

ously active neuron could provide continuous excitatory input to

several ordinary cells, making them function the same as

spontaneously active cells.

An AND gate and a NOT gate are logical primitives that

together make up a ‘‘functionally complete’’ set, meaning for every

possible logical proposition there is a way to define it in terms of

the members of the set. For a complex logical proposition,

however, such a definition may not be obvious, and a definition

that provides an efficient architecture for implementing a logic

circuit for the proposition is likely to be even more obscure. Fig. 1

shows that both AND gates and NOT gates can be constructed

from AND NOT gates and gates that have continuously high

output. This means that a neuron with excitatory and inhibitory

inputs and a neuron that has a continuously high output are logical

primitives that make up a functionally complete set. With one

minor exception, this article’s networks consist of neural AND

NOT gates and spontaneously active neurons.

Functionally complete components are especially significant

when they are available in large numbers, and the abundance of

neurons is the main distinguishing feature of the human brain.

Given any function that can be executed by a computer, for

example, and given enough functionally complete components,

there is a way to construct a logic circuit that performs the

function. This also applies to any set of functions that any number

of computers could conceivably perform, with parallel or

sequential processing, including everything computer software

could possibly do because any software can be implemented in

hardware.

The logic circuits presented here differ from electronic logic

circuits in several ways besides the obvious differences in the

physical natures of their components. Logical AND NOT gates

are not common in electronic systems. Electronic logic circuits are

often implemented with NOR (not or) or NAND (not and) gates

because these gates are relatively economical to produce with

transistors and semiconductor diodes and because they are sole

sufficient operators, meaning each is functionally complete by

itself. Because of this difference, the architecture of the logic

circuits presented here is likely to be new. Each of the logical

primitives NOR and NAND requires several electronic compo-

nents, whereas one neuron with a second neuron providing

inhibitory input can function as a neural AND NOT gate.

Although it would be possible to construct NOR and NAND gates

from neural AND NOT gates and spontaneously active neurons,

and then use these components to assemble logic circuits with the

standard architecture found in logic design textbooks, the resulting

networks would be needlessly complex and require far more

neurons than necessary. A property discussed later is that neurons

can have responses of varying intensity, while most electronic logic

gates encode information in discrete zeros and ones. It will be seen

that this neuronal capability is a powerful tool in processing

information. Finally, it will be shown in a future paper that logic

circuits formed with AND NOT gates require no more component

gates than standard electronic logic circuits using NOR or NAND

gates.

Recursive AND NOT Conjunctions
The networks presented here are general logic circuits that can

perform logical negations and conjunctions of any number of

propositions. Logical conjunctions determine whether or not

several conditions are satisfied. Much of the brain’s information

processing involves such decision making, from controlling

breathing, heart rate, and balance, to discerning form, movement,

and faces, to producing the creative and analytic thought processes

involved in reasoning, planning, and decision-making. For

example, a photostimulus is perceived as green when the M cone

(that is sensitive to medium wavelengths of light) has a high

absorption of photons and the S and L cones have low

absorptions. The compound proposition ‘‘M has a high absorp-

tion, and S has a low absorption, and L has a low absorption’’ is a

conjunction of three propositions. A neural correlate of the

perception of green is the response of a neuron that is activated

when the conjunction is true.

The logic identities in the first column of Table 2 show that

every conjunction is logically equivalent to a single AND NOT

conjunction AB. To make them clear, A and B are enclosed in

braces. These logic identities are easily verified by the algebra of

classical logic. The identities are recursive and reductive.

Equations 1 and 2 say that a conjunction of n = M+N propositions

is logically equivalent to AB, where A and B are each conjunctions

of n – 1 propositions. By the same equations, each of the

conjunctions A and B is equivalent to the conjunction of two

propositions that are each conjunctions of n – 2 propositions, and

so on, until A and B are two of the propositions Xi and Yj.

Equations 3 and 4 say a conjunction of N propositions is

equivalent to a conjunction AB, where A is a conjunction of N – 1

propositions and B is a conjunction of N propositions. Proposition

A can be further reduced by equation 3 or 4, and B can be

reduced by equation 1 or 2.

Here the significance of recursively equating every conjunction

to AB, where A and B are reduced conjunctions, is that it shows

how conjunctions can be implemented entirely with neural AND

NOT gates by repeated use of the neural AND NOT property

AB~A*B. For example, if M = 2 and N = 1, equation 1 says

X1X2Y1~ X1Y1

� �
X1X2

� �
. Applying the neural AND NOT

property three times, this can be implemented as

X1Y1

� �
* X1X2

� �
~ X1*Y1ð Þ* X1*X2ð Þ. Substituting X3 for

Y1 gives X1X2X3~ X1X3

� �
* X1X2

� �
~ X1*X3ð Þ* X1*X2ð Þ.

This network will be seen shortly in the next figure.

If M = N = 1, equations 1 and 2 in Table 2 both reduce to

XY~XY, and this conjunction is implemented as X,Y. For

more inputs, equations 1 and 2 show two different ways of

implementing the same conjunction. If N = 1, equation 1 requires

fewer neurons and retains a negated component in both A and B,

Y1 and XM respectively. Similarly if M = 1, equation 2 requires

fewer neurons and retains a non-negated component in both A

and B, X1 and YN respectively. The implementation that has

fewer neurons also has the important property of measuring

differences between inputs. This property is discussed later with
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intermediate input values. If M and N are both greater than 1,

either implementation can be used. The two resulting networks are

different but have the same architecture and the same number of

neurons. Although equations 1 and 2 work equally well for

implementing a single conjunction, they are used in an alternating

pattern here to obtain the most efficient architecture for several

conjunctions.

A conjunction logic circuit that is constructed from AND NOT

gates according to the recursive logic identities of Table 2 is a

Recursive AND NOT Conjunction (RANC). For n propositions that

have one of two possible truth values, true or false, there are 2n

possible combinations of truth values. Each combination corre-

sponds to a conjunction of n propositions. For two propositions X

and Y, for example, there are four conjunctions: XY, XY,
XY, and XY. An n-RANC produces one or more conjunctions of

n propositions. A single n-RANC produces one of the conjunctions,

and a complete n-RANC produces all of the 2n possible

conjunctions.

Examples of complete n-RANCs are shown in Fig. 2 for n = 1-4.

The illustrations are three-dimensional because the networks’

geometric properties of simplicity and symmetry that can be

achieved in three-dimensional space are not apparent in

conventional two-dimensional circuit diagrams. The views are

exploded to show the cells and their connections clearly. Optimal

geometrical configurations will be considered in a future paper. All

of the RANCs are in columnar structures. The columns could be

oriented in any direction (as are cortical columns), but in the

figures they are oriented with a vertical axis and the outer layer at

the top to agree with customary depictions of the cortex. As in

Fig. 1, active cells are colored in Fig. 2 to illustrate example

responses.

For subscripted conjunctions, only the subscripts are shown. For

example, the response X3X2X1 is abbreviated as 321. In this

abbreviated notation, the earlier example X1X2X3~
X1X3

� �
* X1X2

� �
is written 321~31*21. The cells with these

abbreviated labels are illustrated with thick lines in Fig. 2C. The

subscripts are written in descending order to match the standard

digit ordering of the numeric labels for the networks’ outputs. For

example, the binary number 011 equals the decimal number 3

(0(22)+1(21)+1(20) = 3). The response 321 in Fig. 2C is labeled ‘‘3’’

below the network because it has the value 1 if and only if the

inputs X3, X2, X1 are 0, 1, 1, respectively. This particular state of

RANC cell responses is illustrated by the colors in Fig. 2C. The

whole number labels for the RANC outputs are meant to provide

a short and mnemonic way of referring to the different outputs,

but the labels should not be confused with the variable output

values.

Fuzzy Logic
It was shown above that RANCs are logic circuits that produce

the conjunctions of classical logic when the inputs have the binary

values of 0 and 1. However, neurons normally respond with a

variety of intensities that reflect the intensities of their inputs. This

raises the question of what function the RANCs produce for

intermediate inputs. It turns out that RANC outputs are a

generalization of standard fuzzy logic truth values, and this RANC

fuzzy logic has biologically adaptive properties and generates

correlates of brain phenomena.

The field of fuzzy logic was developed expressly to mimic the

human brain in making decisions based on information that is

ambiguous, imprecise, or incomplete [15]. Since this is the kind of

data the brain receives from its sensory systems, some kind of fuzzy

logic is virtually a necessity for the brain to cope successfully with

the external world. In fuzzy logic, propositions such as ‘‘It’s cold’’

and ‘‘The car is moving fast’’ can have intermediate degrees of

truth between absolutely false and absolutely true. That is, the

truth value can be any number in the interval [0, 1]. Fuzzy logic

has been successful in a variety of practical applications, especially

in Japan and Europe. Ironically, how neurons perform logical

functions using intermediate information states remains virtually

unknown.

Applications of fuzzy logic are normally implemented on

electronic processors, and nearly all electronic logic gates encode

information in high and low values, i.e., 0 and 1, simply because

that is the most efficient and reliable way of processing information

with electronic components. This means all numbers, including

decimal fractions, are encoded in sequences of zeros and ones.

That method of encoding numbers makes implementation of fuzzy

logic computationally intensive. Neurons, of course, are different.

Since a neuron’s response can be any number in the interval [0,

1], it can represent the fuzzy truth degree of a proposition.

Implementation of fuzzy logic with neurons is therefore much

more efficient.

A truth function defines the truth value of a proposition

composed by connectives (conjunction, disjunction, negation) in

terms of the truth values of its components. One of the central

questions in fuzzy logic is how the truth functions of classical logic

should be extended to include intermediate truth values. Any such

truth function should agree with classical logic when the

components have the binary values of 0 and 1, but many functions

Table 2. Recursive AND NOT Conjunction definitions and responses.

Recursive logic identity for constructing a RANC
Interval measured by the RANC
response

Approximate value of the RANC
response

1. PM
i~1XiP

N
j~1Yj~ PM{1

i~1 XiP
N
j~1Yj

n o
PM{1

i~1 XiP
N{1
j~1 YjXM

n o
maxN

j~1 Yj

� �
, minM

i~1 Xif g
h i

minM
i~1 Xif g{maxN

j~1 Yj

� ����
���

2. PM
i~1XiP

N
j~1Yj~ PM

i~1XiP
N{1
j~1 Yj

n o
YNP

M{1
i~1 XiP

N{1
j~1 Yj

n o

3. PN
i~1Xi~ PN{1

i~1 Xi

� �
PN{1

i~1 XiXN

� �
0,minN

i~1 Xif g
� �

minN
i~1 Xif g

4. PN
j~1Yj~ PN{1

j~1 Yj

n o
YNP

N{1
j~1 Yj

n o
maxN

j~1 Yj

� �
, 1

h i
1{maxN

j~1 Yj

� �

The logic identities in the first column equate every conjunction to a conjunction AB. The recursive and reductive identities show how logic circuits can be
implemented with neural AND NOT gates using the neural AND NOT property AB~A*B. The second column shows the interval measured by the corresponding

RANC response. The third column shows the approximate value of the response is the length of the interval. The notation Ib2aI stands for the length of the interval

[a, b] if a,b, and 0 otherwise.
doi:10.1371/journal.pone.0004154.t002
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do this. The simplest and most commonly used fuzzy truth

function for conjunction is XY = min{X, Y}, the smaller of X and

Y. The intuitive rationale for this function is that the proposition

XY should have a high truth value if and only if both X and Y

have high truth values. For negation, the most common function is

X~1{X. The intuitive rationale is that the proposition X should

have a high truth value if and only X has a low truth value. The

next paragraph shows that the functions in the third column of

Table 2 extend these standard fuzzy truth functions for

conjunction and negation to conjunctions of any number of

components with any of the components negated. The next

section shows that RANCs produce a generalization of this fuzzy

logic.

The second column in Table 2 contains intervals [a, b]. The

third column contains the lengths of the corresponding intervals in

the second column. The notation Ib2aI in the third column

stands for the length of the interval [a, b]; that is, Ib2aI = b2a if

a,b, and Ib2aI = 0 if a$b. The interval lengths of the third

column define a fuzzy truth function for the corresponding

propositions on the left side of the logic identities 1-4 in the first

column. These truth values are clearly consistent with classical

logic when the components have the binary values of 0 and 1. The

Figure 2. Recursive AND NOT Conjunctions. An n-RANC is a general logic circuit that produces conjunctions of n propositions. A complete n-
RANC produces all conjunctions corresponding to the 2n possible combinations of truth values of n propositions. Examples of complete n-RANCs are
shown here for n = 1-4. A single n-RANC produces one of the possible conjunctions. In C, the single 3-RANC that produces output number 3, X3X2X1,
is indicated by thick lines. In D, the output number 14, X4X3X2X1~1, represents the truth value of the conjunction ‘‘X2, X3, and X4 are high, and X1 is
not high.’’ The other 15 conjunctions are false, and the corresponding RANC outputs are 0.
doi:10.1371/journal.pone.0004154.g002
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truth values also generalize the standard fuzzy truth functions of

the preceding paragraph: If N = 2, the truth value of proposition 3

in the first column is X1X2 = min{X1, X2}; and if N = 1, the truth

value of proposition 4 is X1~1{X1. The truth values for

propositions 3 and 4 are implied by the truth value for proposition

1 since PN
i~1Xi~ PN

i~Xi

� �
0
� �

and minN
i~1 Xif g{max 0f g

�� ��~
minN

i~1 Xif g; and PN
j~1Yj~ 1ð Þ PN

j~1Yj

� 	
and min 1f g{k

maxN
j~1 Yj

� �
k~1{maxN

j~1 Yj

� �
. The intuitive rationale for the

truth value for conjunction 1 is that PM
i~1XiP

N
j~1Yj should have

a high truth value if and only if all Xi have high truth values and

all Yj have low truth values. The truth value minM
i~1 Xif g{

��
maxN

j~1 Yj

� �
k is consistent with this view.

RANC Fuzzy Logic
Nonlinear neuron responses cannot produce the linear functions

of the third column in Table 2. RANC responses do, however,

come close to these values, and they convey just as much

information. An important RANC property used frequently in the

following discussions is that the neuron response for the

conjunction in the first column of Table 2 is a measure (defined

immediately below) of the corresponding interval in the second

column. This will be referred to as the RANC interval measure property.

The property can be proven by induction on the number of inputs,

using the cellular properties of Table 1 and the RANC definitions

of Table 2.

A mathematical measure, usually designated by m, is a broad

generalization of length. For the purposes of this article, a function

m[a, b] is defined to be a measure of any interval [a, b] if (1) m[0,

1] = 1; (2) m[a, b] = 0 if a$b; and (3) m[a, b],m[c, d] if [a, b],[c,

d]. By this definition, the length Ib2aI is itself a measure of the

interval [a, b]. Properties 1 and 2 in the definition imply that any

measure of the intervals in the second column of Table 2 agrees

with classical logic values for the conjunctions in the first column

when the components have the binary values of 0 and 1. This

means that any measure of the intervals in the second column of

Table 2 is a fuzzy truth function for the conjunctions in the first

column. Any such measure also generalizes the standard fuzzy

truth functions for conjunction and negation.

By the definition of a measure, the RANC interval measure

property says that a RANC response for a conjunction in column 1

of Table 2 increases from 0 to 1 as the endpoints of the

corresponding interval in column 2 increase the interval length

from 0 to 1. As before, this does not mean the response increases

with time. If neuron responses were perfectly linear functions of

their inputs, it can easily be shown from properties 1 and 2 of

Table 1 that the RANC response would be equal to the length of

the interval it measures. This implies the RANC response

approximates the length of the interval, with the accuracy of the

approximation depending on how close neuron response functions

are to being linear. To the extent that neuron responses are

approximately linear, the interval lengths in the third column of

Table 2 can be taken as approximations of the corresponding

RANC responses for the conjunctions in the first column.

The RANC interval measure property has two important

consequences. First, for each of the possible orderings of the input

intensities, such as 0 = X2,X1,X3,1, exactly one set of a

complete n-RANC’s output cells responds. That is, the combina-

tion of output cells that respond uniquely identifies the ordering of

the input intensities. For the example above, the input ordering is

0 = X2,X1,X3,1 if and only if a complete 3-RANC has positive

responses X3X2X1, X3X2X1, and X3X2X1. For another example,

the input ordering is 0 = X2,X1 = X3 = 1 if and only if a complete

3-RANC has a single positive response X3X2X1. This identifica-

tion of the input ordering is unambiguous in the sense that it is

independent of the magnitude of the positive RANC output

responses.

In general, the RANC interval measure property implies that a

positive response X1 . . . Xn means all inputs are less than 1, and a

positive response X1 . . . Xn means all inputs are greater than 0.

The positive output with the fewest negations in its response name

indicates which inputs are smallest. If this output has more than

one negated input, those inputs are equal. The positive output

with the second fewest negations must contain the same negated

inputs as the output with the fewest negations. The additional

negated inputs are the second smallest inputs, and they are equal if

there is more than one. Each additional positive output with the

next fewest negations indicates the next smallest inputs.

Secondly, the input intensities partition the interval [0, 1] into

subintervals, and the RANC response intensities are measures of

the subintervals. The response intensity X1 . . . Xn is a measure of

the interval from 0 to the smallest input or inputs, the intensity of

the positive output with the fewest negations is a measure of the

interval between the smallest input or inputs and the next smallest

inputs, and so on. The response X1 . . . Xn is a measure of the

interval from the largest input or inputs to 1.

The RANC interval measure property also implies three more

properties. Since n inputs partition the interval [0, 1] into at most

n+1 subintervals and the RANC response intensities are measures

of these subintervals, a complete n-RANC can have at most n+1

positive responses out of its 2n responses. Since the RANC

responses are approximately the lengths of the subintervals, the

sum of a complete n-RANC’s outputs is approximately 1. This

bound on the outputs implies that not many of them can be large.

Functions of several variables, such as statistical functions,

typically lose much of the information contained in the data. The

two properties of RANC responses, identifying the input ordering

and measuring the intervals formed by them, mean RANC

responses retain all of the information in the inputs, but in a

different form. The inputs could even be reconstructed from the

outputs. The reconfigured information produced by RANCs is

biologically adaptive and predicts known phenomena.

Discussion

RANC Fuzzy Logic Predictions of Olfactory Phenomena
Discriminating Odors. The fuzzy logic produced by

RANCs effectively solves the problem of discriminating odors.

Consider the earlier example of an odor that is perceived

whenever the olfactory receptor responses X1 and X2 are

relatively high and X3 and X4 are low. By the RANC interval

measure property, the 4-RANC output X4X3X2X1 is a neural

correlate of this perception. A moderate concentration of an

odorant might elicit moderate receptor responses, say (X1, X2, X3,

X4) = (0.4, 0.5, 0.0, 0.0). The response X4X3X2X1 is a measure of

the interval [max{X3, X4}, min{X1, X2}] = [0.0, 0.4], and the

response is approximately its length, 0.4.

The fuzzy logic of RANCs also discriminates individual odors in

a mixture of odorants, even odorants that activate nearly identical

sets of receptor types. Suppose a second odor is perceived

whenever the receptor responses X1, X2, and X4 are relatively

high and X3 is low. The output X4X3X2X1 is a neural correlate of

this perception. A certain concentration of an odorant could elicit

the responses (X1, X2, X3, X4) = (0.8, 0.6, 0.0, 0.7). The response

X4X3X2X1 is a measure of [X3, min{X1, X2, X4}] = [0.0, 0.6],

and the response is approximately 0.6. Since the third and fourth

receptor types are relatively insensitive to the first odorant, a
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mixture of the two odorants could elicit responses (X1, X2, X3,

X4) = (1.0, 1.0, 0.0, 0.7). In this case the same two RANC cells

are activated, correctly identifying the component odorants, and

their response intensities are X4X3X2X1&min X1, X2f g{
max X3, X4f g~1:0{0:7~0:3 and X4X3X2X1&min X1, X2,f
X4g{X3~0:7{0:0~0:7. This state of RANC responses is

illustrated in Fig. 3. Note that neither of these 4-RANCs responds

to the wrong odorant. The response X4X3X2X1 is 0 when the

receptor states are (X1, X2, X3, X4) = (0.4, 0.5, 0.0, 0.0) because

X3 = X4. Similarly X4X3X2X1 does not respond to (0.8, 0.6, 0.0,

0.7) because X2,X4.

If only one single n-RANC responds, that is the RANC

correlate of a unique odor, i.e., one in which no more than one

odor can be discriminated. A complete n-RANC has exactly one

positive response if and only if all inputs have the binary values 0

or 1. Correlates of unique odors can also be produced by RANCs

in several additional ways. Some single n-RANCs may not be

present because they are not needed. For example, the output

labeled 0, X1X2 . . . Xn, responds when there is no stimulus.

Eliminating this single n-RANC would also eliminate the need for

a spontaneously active neuron. Other single n-RANCs may not be

needed because some combinations of receptor responses may not

occur for any stimulus or because some combinations may be

produced by substances that never had selective pressure for

detection. If some single n-RANCs are not present, an odorant

that would produce several responses in a complete n-RANC

could elicit a single response from an incomplete n-RANC.

Alternatively, suppose an odorant produces m outputs from a

complete n-RANC, and suppose the order of the inputs from the

receptors uniquely identifies the odorant. The m outputs identify

the input ordering, which in turn identifies the odorant. The m

outputs could be fed as inputs to a single m-RANC that produces

X1 . . . Xm. This cell responds if and only if all m inputs are

positive. A response from this single cell indicates the input

ordering that uniquely identifies the odorant. Finally, selective

pressure to produce a unique response to a biologically important

odorant could result in just the right sensitivity in several receptors

so that the odorant produces just one response value in the

receptors. For example, six receptor types responding to four

different molecules in an odorant and two that are not in the

odorant might have responses 0 = X1 = X2,X3 = X4 = X5 = X6. If

the single 6-RANC for X1X2 . . . X6 is not present, the only

positive 6-RANC response is X1X2X3X4X5X6.

Number of Odors that Can Be Discriminated. The

RANCs show how the brain can discriminate a large number of

odors in the different patterns of signals from a few hundred types

of olfactory receptors. In some reports, humans can distinguish as

many as 400,000 odors. This can be accomplished either by

several RANCs that have input from a few sensor types or by a few

RANCs with many inputs. For example, 388 receptor types can

provide inputs to 27 distinct complete 14-RANCs. The total

number of cells required is just over two million. Redundancies

and other error-correcting mechanisms would of course require

somewhat more cells. Each complete 14-RANC can have up to

Figure 3. Fuzzy logic of a complete 4-RANC. The figure in A shows the approximate computations of a complete 4-RANC when one of the
inputs has an intermediate value between 0 and 1. The graph in B illustrates the RANC interval measure property: The output intensities
(approximately 0.7 and 0.3) are measures of the subintervals ([0, 0.7], and [0.7, 1]) of [0, 1] formed by the input intensities. The combination of output
cells that respond X4X3X2X1 and X4X3X2X1

� �
uniquely identifies the ordering of the input intensities (0 = X3,X4,X1 = X2 = 1). The response

X4X3X2X1&0:3 represents the fuzzy truth value of the conjunction ‘‘X1 and X2 are high and X3 and X4 are not high.’’
doi:10.1371/journal.pone.0004154.g003
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21421 = 16,383 outputs, not counting the output labeled 0, for a

total of 442,341 outputs. Each of these responses could be the

neural correlate of a distinct odor.

The networks could be more complex than this model of distinct

networks. Some single n-RANCs may not be needed, as was

pointed out at the end of the preceding section. Some networks

may overlap. For example, some single 10-RANCs might have

inputs from receptor types labeled 1–10 for odors whose

discrimination depends on various combinations of those receptor

responses, and some single 14-RANCs could have inputs from

receptor types 6–19. These networks could have some overlap in

the first few layers. Overlapping RANCs with 388 inputs could

produce an immense number of distinct outputs, each one

correlated with a distinct odor. In addition, several RANC output

cells can respond simultaneously in various combinations and at

various intensities, making possible an even larger number of

distinguishable odors in mixtures. Clearly, RANCs show the

number of distinguishable odors is determined by such factors as

selective pressure or physical limitations of sensory cells rather

than any limitation in the brain’s computational ability to

discriminate different patterns of sensory signals.

Perceptual Independence of Stimulus Intensity. A

biologically adaptive property of olfaction is produced by

RANCs. Within certain limits, the brain separates stimulus

intensity from more useful information about the source of the

stimulus. Under most ordinary circumstances, the brain can

identify an odor independently of its strength. A skunk’s odor

smells like a skunk regardless of its concentration. This perceived

constancy under changes of stimulus intensity cannot result

directly from the sensory receptor responses. This is because, as

was pointed out earlier, receptor responses depend on the type of

stimulus as well as the intensity of the stimulus: A few odorant

molecules to which an olfactory receptor cell is highly sensitive can

elicit the same response as many molecules to which it is only

slightly sensitive. The ordering of receptor response intensities,

however, does not change with stimulus intensity. By the RANC

interval measure property, exactly one set of a complete n-

RANC’s output cells respond for each of the possible orderings of

the inputs. At different concentrations, an odor is consistently

identified by the set of RANC output cells that respond to it.

Perceptual Dependence on Stimulus Intensity. In

contrast to the perceptual constancy of the preceding paragraph,

the perceptions of some odors vary with the odorant concentration

[13]. This is also predicted by RANCs under certain

circumstances. Consider the earlier examples of the RANC

correlates of the perceptions of two odors, X4X3X2X1 and

X4X3X2X1, and a substance that produces the receptor response

state (X1, X2, X3, X4) = (1.0, 1.0, 0.0, 0.7). As before, this state

elicits responses of approximately 0.3 and 0.7 from the two RANC

outputs. Since receptor type X3 is insensitive to this substance and

X1 and X2 are saturated, X4 will be most affected by a change in

concentration. An increased concentration that produces (X1, X2,

X3, X4) = (1.0, 1.0, 0.0, 0.8) would decrease X4X3X2X1 to

approximately 0.2 and increase X4X3X2X1 to approximately 0.8.

This is the correlate of a change in the perceived strengths of the

two odors.

Perceptual Complexity. Perceptions of mixtures provide

good tests of any model because mixtures can elicit complex

patterns of sensory receptor responses that result in numerous and

varied perceptions that can differ markedly from the perceptions

of the mixture’s components. In many odorants, more than one

odor can be discriminated. The perceived complexity of an odorant

is the number of odors that can be discriminated in it. A unique

odor has complexity 1.

Several studies have explored perceptions of odors in mixtures,

e.g., [16–21]. The experiments support the conclusions that are

summarized by Laing et al. [22] as four general properties, shown

below. These phenomena are especially good tests of any model

that attempts to explain them because they provide several

detailed examples of complex perceptions. The RANC predictions

of the phenomena follow from the RANC interval measure

property.

1. Perceived complexity in a single odorant can be greater than in

a mixture of several odorants.

A complete n-RANC produces this phenomenon when a

mixture produces fewer different receptor response intensities

than the components. In the following example, substances A

and B both have complexity 2, and the mixture of A and B has

complexity 1. Suppose substance A elicits the olfactory receptor

responses of the earlier example illustrated in Fig. 3: (X1, X2,

X3, X4) = (1.0, 1.0, 0.0, 0.7). As before, the complete 4-RANC

with these inputs produces correlates of two odors:

X1X2X3X4&1:0{0:7~0:3 a n d X1X2X3X4&0:7{0:0~
0:7. Now suppose substance B produces receptor responses

(X1, X2, X3, X4) = (1.0, 0.4, 0.0, 1.0). This also produces

correlates of 2 odors: X1X2X3X4&1:0{0:6~0:4 and

X1X2X3X4&0:4{0:0~0:4. By property 5 of Table 1, a

receptor’s response to a mixture is at least as great as the

response to any of the mixture’s components. The mixture of A

and B therefore produces receptor responses (X1, X2, X3,

X4) = (1.0, 1.0, 0.0, 1.0). This results in only one 4-RANC

response, X1X2X3X4~1:0{0:0~1:0, so the mixture’s com-

plexity is 1.

2. No more than three or four odors can be discriminated in

mixtures.

By the RANC interval measure property, the sum of a complete

n-RANC’s outputs is approximately 1. This bound on the

outputs implies that not many of the outputs can be large.

3. The chemical complexity of an odorant is not correlated with

the perceived complexity.

The RANC’s explanation follows from the fact that the

chemical complexity of an odorant is not correlated with the

number of different intensities of receptor responses. For

example, several receptor types could have different sensitivities

to a chemically simple substance. By the RANC interval

measure property, the number of RANC outputs depends on

the number of different inputs. The several different receptor

response intensities produce several RANC outputs. If each

output is a correlate of a perceived odor, this chemically simple

substance has a large perceived complexity. Similarly, a

chemically simple substance could have a small perceived

complexity if it produces a small number of different receptor

responses. Alternately, a chemically complex substance could

have either a small or large perceived complexity, depending

on whether it produces a small or large number of different

receptor responses.

4. Perceived complexity is not additive when odorants are mixed.

It is not clear why the authors listed this as a separate property,

but in fact it is implied by property 1 above. The sum of the

perceived complexities of two or more odorants is greater than

the perceived complexity of each odorant. That is, the sum of

two or more positive numbers is greater than each of the

numbers. Property 1 says the perceived complexity in one of

these odorants can be greater than the perceived complexity of

the mixture of all of them. In that case, the sum of the

perceived complexities of the components is greater than the

perceived complexity of the mixture. The example in the above
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explanation of property 1 shows that the RANC correlate of

complexity is not additive: The sum of the component

complexities is 2+2 = 4, and the complexity of the mixture is 1.

RANC Fuzzy Logic Predictions of Color Phenomena
The Relative Absorption Model of Color Vision. The

RANCs presented in this article are a refinement and

generalization of a color vision model that was recently

proposed by the author [23]. That ‘‘Relative Absorption Model’’

(RAM) is an explicit retinal network that receives input from three

classes of retinal cones and generates neural correlates of the

perceptions of red, green, blue, yellow, black, and white. The

RAM was shown to account for several phenomena central to

color vision, such as the continuous yet categorical nature of color,

mutually exclusive colors and colors that can be perceived

together, color mixing, the Bezold-Brücke hue shift, the

additivity failure of brightness, opponent-color cells, geometrical

color space, and hue, saturation, and brightness.

The network in Fig. 4A is a modified 3-RANC that has inputs

from the three classes of retinal photoreceptors and produces

neural correlates of color vision. In the figure, S, M, and L stand

for the responses of cones that are sensitive to short, medium, and

long wavelengths of light. The networks for the four color cell

outputs were introduced as part of the Relative Absorption Model

[23]. The single 3-RANCs that produce the outputs for the black

and white cells in Fig. 4A are new.

The outputs numbered 1 and 5 in Fig. 2C that are missing from

Fig. 4A are SML and SML, which would convey purple and

violet information, respectively. A more detailed treatment of

violet and purple information is given in [23]. Psychophysical

evidence shows that this information is transmitted through the

red and blue channels rather than through two separate channels,

possibly because there was never selective pressure for the ability

to obtain the complete violet and purple information. Some

information is unavoidably lost in transmitting it through the red

and blue channels. The combined violet and purple information is

measured by MS, and Fig. 4A shows this response is transmitted

through the red and blue channels. Except for the additional input

MS to the red and blue cells, the networks for all of the outputs in

Fig. 4A are single 3-RANCs.

The RANCs were designed to form conjunctions with architec-

tures that minimize the number of neurons required; they were not

designed to fit available data about the brain. Transmitting the violet

and purple information through the red and blue channels is the only

exception to this design methodology, and it is only a partial

exception. When it is determined that violet and purple will not have

their own dedicated channels, for whatever reason, RANCs predict

that the information must be transmitted through the red and blue

channels. They are the only RANC channels that can convey the

information without a substantial loss of information. The reasons

for this are given in [23].

The new RAM in Fig. 4A is a refinement of the original in three

ways. The networks for the black and white cells in Fig. 4A are

RANCs. Second, these networks require fewer cells to produce the

black and white outputs than the original RAM. Third, the RANC

interval measure property shows that the white cell’s response is a

measure of how far the largest of the three cone responses is

suppressed below the maximum possible response. In the original

RAM, this white cell response property depended on a linear

approximation of the white cell’s response to its inputs.

The color names for the responses in Fig. 4A may appear to

contradict the responses’ logical names written on the cells. Unlike

other sensory receptors, photoreceptors in vertebrates depolarize

and emit transmitters spontaneously and continuously in the absence

of a stimulus, and this tonic activity is suppressed by light absorption.

The more light that is absorbed, the more the receptor activity is

suppressed. This is the reason for property 6 of Table 1. The

photoreceptors’ decreasing activity function makes color perceptions

somewhat counterintuitive when stated in terms of photoreceptor

activity rather than photon absorption. For example, green is

Figure 4. Relative Absorption Model responses to a greenish-
yellow photostimulus. A greenish-yellow photostimulus moderately
represses the L cone response and strongly represses the M cone so
that M,L,S. The RAM’s responses to a somewhat desaturated
greenish-yellow photostimulus, shown in A, are correlates of the
perception of the photostimulus. The graph in B shows that the
approximate RAM responses illustrate the RANC interval measure
property. The response SML&0:25 represents the fuzzy truth value of
the conjunction ‘‘S and L are high and M is not high.’’ Since this state of
cone responses is the condition for the perception of green,
SML&0:25 also represents the fuzzy truth value of the proposition
‘‘The photostimulus is green.’’ That is, SML&0:25 is the correlate of the
perceived strength of the green component of the photostimulus.
doi:10.1371/journal.pone.0004154.g004
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perceived when the M cone absorbs more photons than the S and L

cones, and this high absorption suppresses the M cone activity to a

lower level than the S and L responses.

The preceding section showed that RANCs can account for

complex olfactory phenomena. Since RANCs also generate

correlates of color vision, they predict identical color phenomena.

Here it is shown that the RAM does produce neural correlates of

these well-known phenomena. Because the phenomena are

experienced in different sensory systems, they may not have been

previously recognized as the same. How the RAM generates color

phenomena may be more transparent than the RANC’s

explanations of olfactory phenomena because color phenomena

are more familiar and because more is known about the specific

photoreceptor states that produce specific phenomena. This

specificity also makes more stringent demands on any model that

proposes to account for the phenomena. The RAM explanations

of the phenomena are the same as the RANC explanations for

olfaction, except that photostimuli suppress photoreceptor activity.

Except for the Bezold-Brücke hue shift, discussed immediately

below, these color properties were not included in [23].

Effects of Stimulus Intensity on Color Perception. Color

perception is largely independent of photostimulus intensity. A

yellow banana appears to be yellow independently of the illuminant’s

intensity. The RAM’s explanation of perceived color constancy is the

same as the RANC’s explanation for olfaction: The RAM cells that

respond to a photostimulus depend on the ordering of the cones’

responses, and that ordering does not change with photostimulus

intensity. The cases where color perception does vary with

photostimulus intensity is significant because the RAM not only

predicts this can happen, but it also predicts which colors will change

and in what ways. The change in color perception is known as the

Bezold-Brücke hue shift [24–26]. Specifically, orange and greenish

yellow both appear yellower at higher photostimulus intensities;

violet and greenish blue appear bluer.

The RAM correlate of this effect will be explained here for

greenish yellow. The RAM explanations of the other color changes

are similar. A photostimulus that is perceived as greenish yellow has

little effect on the S cones, suppresses the L cones somewhat, and

suppresses the M cones the most of the three types. The cone

response ordering is M,L,S. Unless the photostimulus is perceived

to be desaturated with black or white components, there must be

significant separation between the cone responses. That means the

M cone is highly suppressed by the photostimulus, the S cone is only

slightly suppressed or not at all, and the L cone is moderately

suppressed. The L cone’s mid-level response is therefore the most

sensitive to changes in the photostimulus intensity. An increase in

photostimulus intensity suppresses the L response closer to M and

further from S. By the RANC interval measure property, this

increases the RAM’s yellow cell response and decrease the green cell

response. That is, the RAM produces a correlate of the perception of

a yellower hue at higher photostimulus intensities. Note that the

photostimulus is perceived as yellower but still greenish yellow, as the

RAM predicts: The RAM’s green and yellow cells’ response

intensities change with the photostimulus intensity, but only the

green and yellow color cells respond. The RAM also correctly

predicts that hue shifts do not occur for unique colors. The

photoreceptor response ordering for a unique yellow cell response,

M = L,S, remains the same under changes in illuminant intensity.

The RAM predicts a yellow banana will appear to be yellow over a

wide range of illuminant intensities.

Perceptual Complexity. Just as more than one odor can be

discriminated in an odorant, more than one hue can be perceived

in a photostimulus. Red, green, blue, and yellow can each be

perceived as a unique hue, meaning no other hue is perceived with

it. A unique hue has complexity 1. Hues perceived as color pairs,

such as greenish yellow, have complexity 2. If perceptions of black

and white are counted, a photostimulus perceived as a desaturated

greenish yellow could have complexity as great as 4. The RAM

predicts perceptual phenomena in photostimulus mixtures that are

analogous to perceptions of odors in mixtures. Perceptions of color

mixtures have been explored in some detail [27,28]. The results of

these studies verify the RAM predictions.

1. Perceived complexity in a single photostimulus can be greater

than in a mixture of several photostimuli.

Color mixing experiments have shown that a greenish-yellow

photostimulus superimposed on a reddish-yellow, or orange,

photostimulus can be perceived as a unique yellow [27,28]. The

complexity of each of the non-unique components is greater than

the unique yellow of the mixture. The RAM explanation is that a

photostimulus perceived as greenish yellow elicits cone responses

M,L,S. By the RANC interval measure property, the

photostimulus produces a RAM correlate of greenish yellow

with green and yellow cell responses. Similarly a photostimulus

perceived as reddish yellow elicits cone responses L,M,S and

red and yellow RAM cell responses. The mixture can produce

cone responses M<L,S and a unique yellow RAM cell response

by the RANC interval measure property.

2. No more than three or four colors (including black and white)

can be discriminated in mixtures.

Color perception tests show no more than two unique colors

can be perceived together – red and yellow, yellow and green,

green and blue, blue and red. These color pairs can be

perceived as desaturated with black and white. This bound on

the number of hues that can be perceived together is predicted

by the RANC interval measure property – a complete 3-

RANC can have at most 4 positive outputs. Because the

RANC interval measure property also implies the sum of the

RAM’s outputs is approximately 1, the RAM further predicts

that not all four components of the color perception can be

strong. When a greenish-yellow photostimulus is desaturated

with both black and white components, for example, the

perceived strength of at least one of these components is often

so minute that identifying all four is difficult for most observers.

3. The spectral complexity of a photostimulus is not correlated

with the perceived complexity.

A monochromatic photostimulus (of a single wavelength or a

narrow band of wavelengths) has the least spectral complexity.

A monochromatic photostimulus with wavelength around

550 nm is perceived as greenish yellow, while a photostimulus

with a complex spectral distribution can be perceived as unique

yellow. This means that neither green nor red is perceived with

it. The RAM accounts for this. Both the M and L cones are

sensitive to wavelengths near 550 nm, but the M cone is more

sensitive. The monochromatic photostimulus at 550 nm

suppresses both the M and L cones, but suppresses the M cone

more than the L cone, producing green and yellow RAM cell

responses by the RANC interval measure property. The

complex photostimulus has a balance of wavelengths that

suppress the M and L cones approximately equally, producing

only a yellow RAM cell response. Alternately, a monochromatic

photostimulus with wavelength around 570 nm is perceived as

unique yellow, while a photostimulus with a complex spectral

distribution can be perceived as greenish yellow. The RAM

explanation is that the M and L cones are approximately

equally sensitive to the monochromatic photostimulus at

570 nm. The M and L cones are suppressed approximately

equally, producing only a yellow RAM cell response. The
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complex photostimulus suppresses the M and L cones

unequally, producing green and yellow RAM cell responses.

4. Perceived complexity is not additive when photostimuli are

mixed.

As with olfaction, property 1 implies property 4. The color

example in the above explanation of property 1 shows that

perceived complexity is not additive: The sum of the complexities

of greenish-yellow and reddish-yellow is 2+2 = 4, and the

complexity of unique yellow perceived in the mixture is 1.

RANC Differences
The RANCs are different from most models of brain functions

in several ways. They were designed to form specific logic circuits

– conjunctions – with architectures that minimize a specific cost

function – the number of neurons. With the partial exception for

transmitting violet and purple information in the color vision model,

RANCs were not designed to fit available data about the brain. In

this sense, the phenomena the networks generate are genuine

predictions about the brain. The RANC architectures are explicit,

showing all cells and their synaptic connections; network properties

do not depend on assumed ‘‘black box’’ capabilities of unspecified

component networks or unspecified networks later in the informa-

tion processing pathway. The cellular properties of excitation and

inhibition are also explicitly stated; results do not depend on

assumptions of sophisticated or unknown cellular capabilities.

The RANC properties given here can be proved rigorously

based on the networks’ architectures and the minimal cellular

capabilities of excitation and inhibition; claims about network

behavior do not depend on simulations that only show the

demonstrated properties hold for the particular function or

functions that are assumed to simulate the operation of network

components. Explicit networks that generate neural correlates of

known brain phenomena may explain how neurons are connected

to produce those phenomena; mathematical models and networks

that are not explicit cannot explain how neurons create

phenomena, no matter how accurately the models might describe

them. Finally, RANCs function dynamically, so their operation is

consistent with the speed of most brain functions; RANC

properties do not rely on any structural change, such as

neurogenesis or altered synaptic connections, nor do they require

any change in the way cells function, such as a change in synaptic

strength or the strength of action potentials.

Most of the neurons in this article’s networks show fewer

synaptic connections than are typical of actual neurons. This does

not necessarily mean all networks in the brain operate fundamen-

tally differently from these networks. The networks show the

simplest or nearly simplest ways neurons can be connected to

perform conjunctions. For a variety of reasons, neurons in the

brain may have more connections while performing the same

functions in essentially the same ways. For example, the RANCs as

presented here do not have redundancies or other error-correcting

mechanisms. These mechanisms alone could account for much of

the massive connectivity of the brain. Other reasons for multiple

connections are implied by the most efficient forms of RANC

architecture and will be discussed in a future paper. The purpose

of this article’s networks is to show that logic circuits composed of

neurons can perform known brain functions. Actual networks in

the brain could be organized like these minimal networks in

principle while being more elaborate in the details.

Summary and Conclusion
The Relative Absorption Model of color vision (RAM) was

refined and extended here to Recursive AND NOT Conjunctions

(RANCs), which are general logic circuits that perform conjunc-

tions for the 2n possible combinations of truth values of n

propositions. The RANCs function dynamically, and the only

neural capabilities required are excitation and inhibition. They are

capable of subserving a variety of brain functions, including

creative and analytical thought processes. With input from retinal

cones, RANCs generate neural correlates of color vision. With

olfactory receptor input, RANCs recognize patterns of signals to

discriminate odors. The RANCs perform a type of fuzzy logic that

has intuitive and advantageous properties, including preserving all

of the information in the input signals and separating the stimulus

intensity from more useful information conveyed by the stimulus,

such as the identity of an odorant or spectral information about a

photostimulus. The property that RANC outputs measure the

intervals determined by the inputs can explain several apparently

different characteristics of both color vision and olfaction.

The RANCs could have applications in other fields. Any logic

circuit can be implemented with diodes and transistors, and

engineers have begun to implement three-dimensional micropro-

cessors. The architectural efficiency of three-dimensional RANCs

could lead to more efficient designs of electronic processors. In a

future paper, it will be shown that the most efficient forms of

complete n-RANCs predict major aspects of the anatomical

structure and physiological organization of the cerebral cortex.
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