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ABSTRACT
Hepatocellular carcinoma (HCC) is the second leading cause of cancer-related 

deaths around the world. Recent advances in genomic technologies have allowed the 
identification of various molecular signatures in HCC tissues. For instance, differential 
gene expression levels of various cytochrome P450 genes (CYP450) have been 
reported in studies performed on limited numbers of HCC tissue samples, or focused 
on a small subset on CYP450s. In the present study, we monitored the expression 
landscape of all the members of the CYP450 family (57 genes) in more than 200 HCC 
tissues using RNA-Seq data from The Cancer Genome Atlas. Using stringent statistical 
filters and data from paired tissues, we identified significantly dysregulated CYP450 
genes in HCC. Moreover, the expression level of selected CYP450s was validated by 
qPCR on cDNA samples from an independent cohort. Threshold values (sensitivity and 
specificity) based on dysregulated gene expression were also determined to allow 
for confident identification of HCC tissues. Finally, a global look at expression levels 
of the 57 members of the CYP450 family across ten different cancer types revealed 
specific expression signatures. Overall, this study provides useful information on 
the transcriptomic landscape of CYP450 genes in HCC and on new potential HCC 
biomarkers.

INTRODUCTION

Hepatocellular carcinoma (HCC) is the cancer 
with the second highest mortality rate worldwide [1]. 
It is generally associated with risk factors such alcohol 
consumption and aflatoxin B1 exposition [2]. HCC 
occurrence is still rising even in developed countries 
where it is linked with obesity, diabetes, and hepatitis 
B and C virus (HBV and HCV) infection [3]. The poor 
survival rate of HCC patients (1 and 5-year survival rate 
of 44% and 17%, respectively [4]) is partly due to limited 
treatments options and their unsatisfactory efficacy. Liver 
transplantation or chirurgical resection of the tumor are 
the only curative treatments [5]. However, since HCC 
diagnosis is generally tardive, more than 80% of patients 
are not eligible and chemoembolization or drugs have to be 

used. Nonetheless, these treatments have limited efficacy 
at advanced tumor stages [6]. Hence, early diagnosis of 
patients for hepatocellular carcinoma is crucial. 

HCC screening is generally made by imagery 
techniques, such as ultrasound or computed tomography 
(limited to tumor bigger than 1 cm), or by assessing the 
alpha-fetoprotein (AFP) serum levels [7, 8]. AFP is a 
glycoprotein produced by fetal yolk sac and liver, and 
its concentration decreases rapidly after birth. Some 
conditions, like pregnancy or cancer, can generate high 
AFP levels in serum [9]. AFP level can give information 
about HCC since it is positively correlated with HBV 
infection, tumor size, low cellular differentiation, and 
reaches the highest level in the case of metastatic tumor 
[10-12]. However, its low expression in early stage cancers 
makes it a poor biomarker for large-scale HCC screening, 
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especially since 30% of patients with HCC continuously 
have normal AFP levels [13]. Other pathologies such as 
cirrhosis and stomach cancer also have elevated AFP 
levels which contribute to the relative non-specificity for 
HCC detection [14]. This leads to sensitivity levels which 
vary from 55% to 61%, and specificity levels of 78% 
to 91% when a 20 ng/mL level cut-off is used for HCC 
screening [15]. 

The low sensibility and high false-positive rates of 
AFP as marker therefore justify the identification of better 
biomarkers for HCC screening. The development of new 
technologies, notably in genomics, allows characterization 
of molecular events involved in carcinogenesis, including 
mRNA expression levels in tissue samples. The Cancer 
Genome Atlas (TCGA) research network recently 
overviewed HCC and normal liver tissues data obtained 
from multiple genomic platforms. They identified 
important characteristics of HCC such as significantly 
mutated genes (e.g. CTNNB1A, TP53, TERT promoter), 
different promoter methylation profiles (hypermethylation 
of CDKN2A which causes gene silencing), and key 
pathways affected in HCC (WNT, SHH, RTK/KRAS, 
chromatin remodeling and metabolic programming) [3]. In 
the current large-scale study, RNA sequencing data from 

the TCGA were used to identify differentially expressed 
genes in more than 200 HCC tissues. Our study primarily 
focuses on members of the cytochrome P450 family in 
order to find potential biomarkers.

RESULTS

Modification of the gene expression landscape in 
hepatocellular carcinoma

During carcinogenesis, cancer cells acquire multiple 
types of alterations, such as mutations, that modify 
the transcription of target genes. The resulting gene 
expression differences can then be used to discriminate 
between normal and cancer cells. In this study, the gene 
expression profile of HCC tissues was compared to the 
transcriptome of normal liver tissues based on RNA 
sequencing data from The Cancer Genome Atlas (TCGA) 
in order to identify new potential biomarkers. The 
overview of the steps used towards the identification of 
such differences in gene expression is presented in Figure 
1A. To focus on transcriptomic changes resulting from 

Figure 1: Transcriptomic study of hepatocellular carcinoma. A. Overview of the strategy used to identify the changes in cellular 
transcriptome of hepatocellular carcinoma (HCC) tumors and the potential biomarkers genes, based on the RNA-Seq data of 220 HCC and 
38 normal liver tissues, both without viral infection, from The Cancer Genome Atlas (TCGA). N: Normal, T: Tumor, NoHV: no hepatitis 
virus infection, HBV: hepatitis B virus-infected tissue, HCV: hepatitis C virus-infected tissue, HBCV: hepatitis B and C virus-infected 
tissue. B. Distribution of HCC gene expression levels as compared to normal liver tissues. The variations in gene expression are presented 
in a logarithmic scale (log2). C. Statistical analysis of gene expression fold change to identified significantly dysregulated genes in HCC. 
4,130 overexpressed (magenta) and 75 repressed (purple) genes were selected for further analysis. D. Gene node with monooxygenase 
activity (protein-protein interaction enrichment p-value: 1.93e-14; false discovery rate: 0.0254) found in the protein-protein interaction 
network of 75 genes for which the expression was repressed in HCC. The complete network is presented in figure S1B. The network was 
determined by uploading the gene list into STRING [43]. 
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carcinogenesis and not from viral infection, analyses were 
made on non-infected normal tissues (normal, no hepatitis 
virus; NNoHV) and non-infected tumor tissues (tumor, 
no hepatitis virus; TNoHV). Average gene expression, 
in transcript-per-millions (TPM), of 220 TNoHV tissues 
was then compared to the average expression of 38 
NNoHV tissues to establish differential gene expression 
levels (fold-change presented in base 2 logarithm). The 
distribution of gene expression levels (Figure 1B) revealed 
that the majority of genes have similar expression levels 
in both conditions, although some have a variation of 
expression that reaches over 3,000-fold in tumors. The 
gene list, containing 23,393 genes detected either in HCC 
or normal tissues, was then filtered to select differentially 
expressed genes. Genes detected in at least two samples 
in both conditions were kept and, to correct for multiple 
statistical hypothesis testing, q-value were calculated, and 
values inferior to 0.05 were considered significant. Finally, 
a fold-change of at least four was chosen as a cut-off to 
be suitable to distinguish HCC from normal tissues. This 
allowed the identification of 4,130 overexpressed and 
75 repressed genes in HCC (Figure 1C). Gene ontology 
analysis of the overexpressed genes, using DAVID, 
indicates enrichment in biological processes generally 
associated with carcinogenesis such as cell-cell signaling, 
cell adhesion, cell proliferation and cell cycle processes. 
Among repressed genes, gene ontology analysis showed 
immune and defense response as the most enriched 
biological processes (Supplementary Figure 1A), as 
observed in a previous study based on the Gene Expression 
Omnibus database using a smaller number of samples (38 
HCC samples and 19 normal samples) [16]. In the case 
of repressed genes, a protein-protein interaction network 
was generated using STRING. This analysis revealed 
the presence of a network of six proteins encompassing 
four members of the cytochrome P450 (CYP450) family 
(Figure 1D). Interestingly, vitamin A, diterpenoid, and 
retinoid metabolic processes, which are all associated with 
CYP450, were also observed in the gene ontology analysis 
performed on repressed genes (Supplementary Figure 1A). 

Cytochromes P450 expression profile in 
hepatocellular carcinoma

Differential gene expression levels of various 
CYP450s have previously been reported [23-26]. 
However, these previous studies were generally performed 
on a limited number of HCC tissue samples or focused on a 
small subset on CYP450s [23-26]. In humans, 57 CYP450 
genes are expressed in multiple tissues such as liver, 
placenta, brain, kidney, and intestines where they catalyze 
monooxygenase activity on specific substrates [17, 18]. 
Some CYP450 proteins participate in the metabolism of 
xenobiotics in the liver such as environmental chemicals 

or therapeutic drugs. Other CYP450s have a role in 
the biotransformation of endogenous compounds like 
cholesterol, steroid hormones, bile acids, or eicosanoids 
[17, 19]. Since some members of the CYP450 family 
showed enrichment among dysregulated genes in HCC, 
we monitored the expression landscape of all the members 
of the CYP450 family (57 CYP450 genes). Following 
statistical analysis, 17 out of 57 CYP450s were found to 
have fold-changes of at least four in HCC (Figure 2A). 
It should be noted that expression level variation of 
CYP450s is relatively constant between HBV-, HCV-, or 
HBCV-infected tumors compared to non-infected tumors 
(r = 0.76-0.88) (Supplementary Figure 2). A global look 
at the CYP450 expression levels across normal and HCC 
tissues shows that sample types (i.e. normal or cancer) 
have a tendency to cluster together, suggesting that HCC 
tissues could be identified according to their CYP450 
expression levels (Figure 2B). 

Statistical filtering was then applied to select 
significantly dysregulated CYP450s. Again, genes 
detected in at least two samples in both conditions were 
kept and, to correct for multiple statistical hypothesis 
testing, q-value were calculated (values inferior to 0.05 
were considered significant). Because some of the RNA 
transcripts were detected at a low level in every sample, a 
criterion of a mean expression of at least 2 TPM in one or 
the other condition (normal or cancer) was added to make 
sure the transcript would be detectable in screening assays. 
Our analysis revealed that CYP1B1, CYP7A1, CYP17A1, 
and CYP19A1 were significantly overexpressed in HCC, 
while CYP1A2, CYP2B6, CYP2C19, and CYP26A1 
were significantly repressed in HCC, compared to their 
expression in normal liver tissues (Figure 2C). 

Since fold-changes were calculated from average 
expression levels in normal and tumor tissues, the 
expression of the eight selected CYP450s in individual 
samples was investigated. This revealed that the global 
gene expression distribution was still significantly different 
between normal and tumor tissues (Figure 3A). Moreover, 
to confirm that differences in gene expression are not due 
to interindividual variability, the expression level of each 
gene was evaluated in paired tissues (normal and tumor) 
(Figure 3B). Up- and down-regulation of candidate in 
cancer tissues was still statistically significant different 
in cancer tissues for the selected CYP450s, except for 
CYP19A1. This is attributed to the fact that CYP19A1 was 
not detected in the majority of the paired tissue samples, 
although two paired samples exhibit a high overexpression 
in tumors. HCC samples were then separated according to 
their pathologic stage to evaluate the expression variation 
of the eight selected CYP450s during carcinogenesis 
(stages I to IV). The analysis shows that the observed 
change of expression is relatively constant from stage I to 
stage IV (Supplementary Figure 3A). 
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Candidate cytochromes P450 expression 
validation

To validate the differential expression of CYP450 
previously identified by RNA-Seq from the TCGA dataset, 
qPCR assays were performed on an independent cohort. 
Commercially available cDNA plates were generated 
from 8 normal and 22 HCC tissues from which total 
mRNAs were extracted and converted into cDNA. 
Among those samples, there are 6 paired samples which 
allowed validation of intraindividual expression variation 
(Supplementary Figure 4). These qPCR results confirmed 
a similar distribution of gene expression; overexpression 
of CYP1B1, CYP7A1, CYP17A1, and CYP19A1, 
and repression of CYP1A2, CYP2B6, CYP2C19, and 

CYP26A1 was observed in cancer tissues (Figure 4). 
However, since some tumors have relatively normal gene 
expression level and there is interindividual variability 
in samples, the differences in CYP1B1 and CYP7A1 
expression levels between normal and cancer tissues were 
not considered statistically significative. 

Potential diagnosis of candidate CYP450s

The use of qPCR assays validated significant 
changes in gene expression level of CYP1A2, CYP2B6, 
CYP2C19, CYP26A1, CYP17A1, and CYP19A1 in HCC 
tissues initially identified by RNA-Seq. These genes were 
then selected to evaluate their potential to discriminate 
between HCC and normal samples. For this, receiver 

Figure 2: Global profiling of the cytochromes P450 expression landscape in hepatocellular carcinoma. A. Gene expression 
variation of the 57 cytochromes P450 in tumor tissues compared to normal tissues (non-infected by hepatitis viruses). Dots indicate fold-
change (in log2) of at least -2 and 2. Overexpression values are shown in blue and repression values in red, and the scale is from -12 to 
12. B. Heatmap representation of cytochromes P450 gene expression for each normal (green) and tumor (red) samples (non-infected). 
Red indicates high levels and blue indicates low levels of gene expression. C. The cytochromes P450 list was filtered to keep genes with 
significant expression variation in HCC. Using this approach, we selected eight CYP450s; four of them were up-regulated (blue; CYP1B1, 
CYP7A1, CYP17A1, and CYP19A1), while four were down-regulated (orange; CYP1A2, CYP2B6, CYP2C19, and CYP26A1) in tumor 
cells compared to normal cells. 
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operating characteristics (ROC) curves presenting the 
sensitivity (true positive rate) and specificity (true negative 
rate) at each expression level threshold were drawn, and 
the area under the curve (AUC) was determined for each 
gene. A value of AUC close to 1 indicates that the test 
classifies the samples as normal or cancer correctly, while 

an AUC of 0.5 indicates no predictive power. Then, an 
expression threshold that maximizes both sensitivity and 
specificity was identified for each gene (Figure 5A). These 
parameters are both important in this type of test since 
a high sensitivity allows the detection of all pathologic 
samples while a high specificity assures a negative 

Figure 3: Specific gene expression analysis of the eight cytochromes P450 between hepatocarcinoma and normal 
tissues. A. Gene expression, in transcripts per million (TPM), in each tumor and normal tissues samples, of the eight selected CYP450s 
that were significantly up- or down-regulated. Grey lines indicate mean ± standard deviation in each groups. Mann-Whitney U test. B. Gene 
expression, in TPM, of the eight selected CYP450s in paired tumor and normal tissues samples. Wilcoxon rank sum test. * = p < 0.05; ** 
= p < 0.01; *** = p < 0.001; **** = p < 0.0001.
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result in normal samples. A gene with a AUC of at least 
0.95, and sensitivity and specificity of 90% or more at 
the established threshold was considered adequate for 
confident identification of HCC tissues. Using these 
criteria, 3 repressed CYP450 were selected: CYP2B6 
(AUC: 0.9821, sensitivity: 90.5%, specificity: 100%), 
CYP1A2, and CYP2C19, with the last 2 genes classifying 
with AUC: 1, sensitivity: 100%, specificity: 100% (Figure 
5B).

Protein level of potential biomarkers in HCC and 
their fold change across cancers

The expression of CYP1A2, CYP2B6, and 
CYP2C19 at mRNA level was shown to discriminate 
HCC from normal samples, but, ultimately, a screening 
test based on the protein expression level of these genes 
would be preferred for clinical application. To evaluate 
this possibility, the protein expression levels of the 
selected candidates were investigated in healthy and 
HCC liver tissues using immunohistochemistry data of 
The Human Protein Atlas. Each gene was detected by 
a specific antibody coupled to a horseradish peroxidase 
detection system. These data showed that expression of 
these 3 genes is repressed at the protein level in cancer 
tissues since the quantity and intensity of the coloration 
can be positively correlated with the expression level of 
the protein (Figure 6A).

Finally, to evaluate if the dysregulation of these 
three selected genes is unique to HCC or could be 
found in other cancers, fold-changes were calculated in 

different types of tumors compared to their normal tissues 
(number of samples are shown in Supplementary Figure 
3B). RNA-Seq data, obtained from the National Cancer 
Institute Genomic Data Commons (GDC) Data Portal, 
from liver, bladder, breast, head and neck, kidney, lung, 
prostate, stomach, uterine, and brain tissues were then 
compared. It should be noted that this database quantifies 
mRNA expression levels in FPKM-UQ rather than 
TPM, which can cause minor variations in fold-changes 
calculated previously with CYP450 genes in liver cancer. 
This analysis showed that each of these cancer types has 
a distinct pattern of expression for CYP1A2, CYP2B6, 
and CYP2C19 (Figure 6B). Moreover, a global look 
at expression variation of the 57 CYP450 genes across 
these 10 cancers showed a similar trend, indicating that 
every cancer type has a specific signature in regards to 
the expression of CYP450 genes (Supplementary Figure 
3C). Nevertheless, it is possible to see that CYP2W1 
is overexpressed in all cancers, except in prostate 
adenocarcinoma (PRAD). As mentioned previously in 
others studies, this particular CYP450 could be used as 
a biomarker to screen for tumor presence and potentially 
in treatments since it can activate pro-drugs only when 
it is expressed in cancer cells [20-22]. Note that this 
gene was excluded of potential biomarkers for HCC 
in this study since the up-regulation in paired samples 
was not statistically significant (p = 0.500) and that the 
expression level in the samples was inferior to 2 TPM. A 
similar pattern can be observed for CYP4F8, which is up-
regulated in all cancers, except PRAD and head and neck 
squamous cell carcinoma (HNSC).

Figure 4: Validation of cytochromes P450 expression variation in HCC. Expression of up-regulated and down-regulated 
CYP450s in HCC and normal tissue cDNA array by qPCR. Mean expression and standard deviation for each sample were obtained from 
three technical replicates and are plotted in arbitrary units. Significant variation between both groups (8 normal samples (C1 to C8, green) 
and 22 HCC samples (C9 to E8, blue)) are shown. Analysis of the six paired samples is available in supplementary data (Supplementary 
Figure 4). Mann-Whitney U test. * = p < 0.05; ** = p < 0.01; *** = p < 0.001; **** = p < 0.0001.
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DISCUSSION

Advances in genomic technologies have allowed 
the characterization of molecular events occurring during 
carcinogenesis, such as mRNA expression dysregulation, 
which could potentially lead to the identification of 
new biomarkers. In the case of HCC, differential gene 

expression levels of various CYP450s have previously 
been reported [23-26]. However, these previous studies 
were generally performed on a limited number of HCC 
tissue samples or focused on a small subset on CYP450s. 
In contrast, in the present study focusing on the entire 
CYP450 family (57 CYP450 genes), we monitored the 
expression landscape of CYP450s in more than 200 HCC 

Figure 5: Receiver Operating Characteristic (ROC) curve of candidates cytochromes P450 for HCC identification. A. 
ROC curve for relative expression of HCC (n = 22) and normal (n = 8) cDNA samples for each validated dysregulated genes (CYP17A1, 
CYP19A1, CYP1A2, CYP2B6, CYP2C19, and CYP26A1). The corresponding area under the curve (AUC) value is indicated. Diagonal 
lines represent the performance of a random classifier. * = p < 0.05; ** = p < 0.01; *** = p < 0.001; **** = p < 0.0001. B. Relative 
expression thresholds that maximize both sensitivity and specificity for each genes. 
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tissues using RNA-Seq data from The Cancer Genome 
Atlas. Following rigorous statistical and validation assays, 
3 potential biomarkers for HCC were identified: CYP1A2, 
CYP2B6, and CYP2C19. Our analysis also demonstrated 
that the observed change of expression for these three 
genes is relatively constant from stage I to stage IV, 
suggesting that the identified CYP450s could be suitable 
biomarkers for early identification of HCC.

Various members of the CYP450s family were 
previously identified as interesting for cancer screening or 
treatments. For instance, CYP2J2 and CYP2W1 were both 
found to have a higher level of expression in carcinoma 
cells and transformed tissues where they could have a 
role in the progression or treatment of cancers [20, 27]. 
CYP1B1 is one of the best-known CYP450s up-regulated 
in multiple cancers, like breast, colon and brain cancer 
[28], and studies are in progress to use it as a therapeutic 
target in the treatment of cancers [29]. Moreover, 
CYP17A1 has also been extensively characterized, both 
at the mRNA and protein levels, in tissues and sera of 
HCC patients. A previous study showed that a threshold 

of 60.2ng/mL allows identification of HCC patients 
with a sensitivity and specificity of 86.9% and 76.8% 
respectively, while a combination with AFP achieved 
90.1% and 80.3% of sensitivity and specificity [30].

In addition to the identification of CYP450s as 
markers for HCC, the roles of CYP450s in carcinogenesis 
merits further investigation. Indeed, CYP1A2, CYP2B6, 
and CYP2C19, which are repressed in HCC, are involved 
in the metabolism of eicosanoids, drugs, and foreign 
chemicals [17]. This could potentially promote HCC 
development by an accumulation of toxic compounds for 
cells. Interestingly, CYP1A2 is the major CYP450 found 
in the liver and is involved in the metabolism of 8.9% of 
drugs used in the clinic, while CYP2B6 and CYP2C19 are 
involved in the metabolism of 7.2% and 6.8%, respectively 
of these drugs [31]. The lower levels of these enzymes 
in HCC patients could then have an impact on their 
susceptibility to drugs doses or the activation of pro-drugs. 
Similarly, CYP1B1 is generally absent from normal adult 
liver and its expression is associated with carcinogenesis, 
partly because it can activate pro-carcinogens [32]. On 

Figure 6: Investigation of potential biomarkers at protein levels in HCC and expression fold-change across cancers. A. 
Protein expression of potential biomarkers genes CYP1A2, CYP2B6 and CYP2C19, detected by immunohistochemistry, in normal liver 
and HCC tissues. These images were extracted from the Human Protein Atlas database, according to its academic usage permission (www.
proteinatlas.org) [47]. B. Fold-change of CYP1A2, CYP2B6, and CYP2C19 expression (log2 gene expression, in FPKM-UQ, fold change) 
in different cancers (liver hepatocellular carcinoma, urothelial bladder carcinoma, breast invasive carcinoma, head and neck squamous 
cell carcinoma, kidney renal clear cell carcinoma and kidney renal papillary cell carcinoma, brain lower grade glioma and glioblastoma 
multiforme, lung adenocarcinoma and lung squamous cell carcinoma, prostate adenocarcinoma, stomach adenocarcinoma, uterine corpus 
endometrial carcinoma and uterine carcinosarcoma). Number of normal and cancer samples are presented in figure S3B. Overexpression 
levels are shown in blue and repression levels in red. Grey positions are missing data, and NA indicates the impossibility to determine a 
fold change because the gene was not detected in normal samples.

http://www.proteinatlas.org
http://www.proteinatlas.org
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the other hand, CYP26A1, which is repressed in HCC, is 
involved in retinoic acid inactivation [17]. It is therefore 
possible that products, such as retinoic acid, would have 
a role in the progression of HCC since a previous study 
revealed that vitamin A deficiency, which could result 
from a CYP26A1 depletion, is associated with increased 
susceptibility to carcinogenesis [33]. Finally, in hormone-
dependent prostate and breast cancers, CYP17A1 and 
CYP19A1 are targeted by inhibitors for cancer treatments 
[34, 35]. In the case of HCC, different studies showed that 
a high level of estrogens would be protective for patients, 
which can correlate with the fact that HCC is much more 
present in men than women [36, 37].

Several studies are seeking the identification 
of new HCC biomarkers. Some of these potential 
markers such as AFP lectin-bound (AFP-L3) [38], Des-
γ-carboxy prothrombin [39], or glypican-3 (GPC3) 
[40], have interesting diagnosis performances. Despite 
a large number of promising molecules, individual 
markers generally lack sensitivity and/or specificity to 
be sufficiently effective. The future of HCC screening 
will most likely involve the use of a combination of 
biomarkers based on various macromolecules such as 
mRNAs, proteins, mi-RNAs, or even powerful imagery 
techniques such as ultrasonography. 

MATERIALS AND METHODS

RNA-Seq data

RNA-Seq expression data files were obtained 
from the National Cancer Institute Genomic Data 
Commons (GDC) Data Portal (https://portal.gdc.cancer.
gov). Expression data was imported from two analysis 
format: transcripts per million (TPM) and upper quartile 
fragments per kilobase of transcript per million mapped 
reads (FPKM-UQ). TPM data was derived by read 
alignement using Burrows-Wheeler Aligner (http://bio-
bwa.sourceforge.net) on GRCh37/hg19 reference genome, 
and quantification using RSEM (https://deweylab.github.
io/RSEM). TPM data at the GDC is available as legacy 
archive (https://portal.gdc.cancer.gov/legacy-archive) 
as it was originally obtained from The Cancer Genome 
Atlas (TCGA) data portal, now superceded by GDC. 
FPKM-UQ data workflow involves read alignement on 
GRCh38 reference genome using STAR (https://github.
com/alexdobin/STAR) and quantification following the 
Genomic Data Commons workflow (https://docs.gdc.
cancer.gov/Data/Bioinformatics_Pipelines/Expressi on_
mRNA_Pipeline). 

Gene expression analysis

Analyses were performed on the transcriptomic 
data of 220 hepatocellular carcinoma (HCC) and 38 
normal liver tissues, uninfected by hepatitis B virus and/or 
hepatitis C virus, generated by The Cancer Genome Atlas 
(http://cancergenome.nih.gov/). The list, containing the 
23,393 detected genes, was filtered to keep only data with 
at least two replicates for both normal and tumor samples. 
Fold changes between average transcripts per million 
(TPM) of tumor tissues compared to normal tissues and 
q-value were calculated. A positive fold change value 
indicates that the gene is overexpressed in HCC while 
a negative value indicates its repression. Data for which 
the q-value were under 0.05 and fold change in base 2 
logarithm equal or higher than 2 in absolute value were 
considered significant and were kept (4,205 genes). For 
cytochromes P450, similar criteria were used, and a cut-
off of a mean expression of at least 2 TPM in one or the 
other condition was added to allow efficient detection of 
the transcript in samples.

Gene ontology analysis

Enriched biological processes in filtered gene list 
were determined by using the database for annotation, 
visualization and integrated discovery [41, 42] (DAVID, 
V6.7, https://david.ncifcrf.gov/). All 23,393 detected 
genes were used as background and 75 repressed genes 
were analyzed.

String networks

The list of 75 repressed genes was submitted to the 
STRING database [43] (Search Tool for the Retrieval of 
Interacting Genes, version 10.0, www.string-db.org) to 
produce a protein-protein interactions network, from the 
Homo sapiens interactome.

Determination of target genes expression by 
qPCR on cDNA samples

TissueScan Liver Cancer cDNA Arrays from 
OriGene Technologies (cat. LVRT301; Rockville, MD, 
USA) were assessed for the expression of dysregulated 
cytochromes P450 using the manufacturer’s protocol. 
The plates contained cDNAs from 8 normal and 22 
hepatocellular carcinomas tissues, from which 6 normal 
and HCC samples are paired, and were analyzed by 
quantitative PCR (qPCR). All forward and reverse 
primers were individually resuspended to 20-100 μM in 
Tris-EDTA buffer (IDT) and diluted as a primer pair to 
1 μM in RNase DNase-free water (IDT). Primer design 

https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
http://bio-bwa.sourceforge.net/
http://bio-bwa.sourceforge.net/
https://deweylab.github.io/RSEM
https://deweylab.github.io/RSEM
https://portal.gdc.cancer.gov/legacy-archive
https://github.com/alexdobin/STAR
https://github.com/alexdobin/STAR
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and validation were evaluated as described previously [44] 
and the amplified products were analyzed by automated 
chip-based microcapillary electrophoresis on Labchip GX 
Touch HT instruments (Perkin Elmer). qPCR reactions 
were performed in 10 µl in 384 well plates on a CFX-384 
thermocycler (BioRad) with 5 μL of 2X iTaq Universal 
SYBR Green Supermix (BioRad), 10 ng (3 µl) cDNA, and 
200 nM final (2 µl) primer pair solutions. The following 
cycling conditions were used: 3 min at 95°C; 50 cycles: 
15 sec at 95°C, 30 sec at 60°C, 30 sec at 72°C. Relative 
expression levels were calculated using the qBASE 
framework [45] and the housekeeping genes YWHAZ, 
MRPL19 and SDHA for human cDNA. For every 
PCR run, control reactions performed in the absence of 
template were performed for each primer pair and these 
were consistently negative. Amplicon sizing and relative 
quantitation were performed by the manufacturer’s 
software. cDNA samples and patients information are 
available at www.origene.com.

ROC curve analysis

Receiver operating characteristics (ROC) curves, 
and associated area under the curve (AUC), were generated 
from qPCR relative expression data of significantly 
dysregulated CYP450, which are CYP17A1, CYP19A1, 
CYP1A2, CYP2B6, CYP2C19 and CYP26A1, to evaluate 
their capacity to distinguish normal from HCC samples. 
Expression thresholds that maximize both sensitivity 
and specificity and the associated characteristics were 
determined for each gene.

Immunohistochemistry

The proteins of interest were detected by 
immunohistochemistry using specific antibodies and 
horseradish peroxidase detection, in healthy liver and 
HCC tissues. These images were extracted from The 
Human Protein Atlas [46], according to its academic usage 
permission (Data and complete protocol can be found at 
www.proteinatlas.org).

Statistical analysis

GraphPad Prism (version 7.03) was used for 
statistical analysis and ROC curves. Data are presented 
as mean ± standard deviation. The distribution shape of 
the data was analyzed by Shapiro-Wilk test of normality. 
Mann-Whitney U test was used to compare two 
distribution groups and Wilcoxon rank sum test for paired 
samples. Student’s t-test was used for qPCR analysis of 
paired samples. P value and q values less than 0.05 (two-
tailed) were considered significant. * = p < 0.05; ** = p < 

0.01; *** = p < 0.001; **** = p < 0.0001.
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