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Micronutrient deficiencies are common in inflammatory bowel disease and have clinical impact, being both a sign of complicated
disease and a cause of morbidity. The involved systemic inflammatory response is responsible for altering the concentration of a
wide range of trace elements in the serum, including zinc and selenium. This review summarizes recent advances and evidence-
based knowledge regarding the impact of selenium and zinc on oxidative stress and microbiota changes in IBD patients. Getting
new insight into the impact of malnutrition, particularly on the micronutrients’ impact on the development, composition, and
metabolismofmicrobiota, as well as the influence of oxidative stress and themucosal immune response, could help in implementing
new management strategies for IBD patients, with focus on a more integrated approach.

1. Background

Inflammatory bowel disease (IBD) has been the focus of basic
science and translational-clinical research, resulting in the
exponential growth of knowledge regarding its predispos-
ing factors, possible cause(s), and underlying cellular and
molecular mechanisms. To a large extent, this indisputable
progress is due to a much improved understanding of IBD
pathogenesis and the identification of its major components.
Variations in the composition of gut microbiota and the
reactivity of the intestinal mucosal immune response, along
with dietary changes, have been extensively studied in the
previous years in the pathogenesis of IBD. However, the
majority of studies have eluded the integrative approach,
so the knowledge acquired in one area does not efficiently
translate and apply to the benefit of other components [1].

Among the consequences of dietary changes, restrictive
diets, and absorption deficiencies, malnutrition, whether it
only includes proteinmalnutrition ormicronutrient deficien-
cies as well, is a frequent diagnosis that can persist further on,
as a consequence of altered intake, use of various drugs, or
hypercatabolic state in this patient category [2].

The systemic inflammatory response related to either
acute or chronic inflammation is responsible for altering the
concentration of a wide range of trace elements and vitamins
in the serum. The presence of micronutrient deficiency is
associated with a higher risk of poor outcomes, due to
prolonged hospitalization [3], perioperative evolution, and
growth deficit [4].

Among micronutrients, selenium (Se), particularly as a
component of selenoproteins (mainly selenoproteins S and
K), has been shown to impact the inflammatory signaling
pathways involved in IBDpathogenesis, including the inflam-
matory cytokine production [5–7].

Zinc deficiency is common in patients with inflamma-
tory bowel disease (IBD), during both active and remis-
sion phases, with a prevalence ranging from 15% to 40%
[8, 9]. Studies on animal models and translational stud-
ies proved that decreased serum zinc concentrations may
enhance inflammation through various pathophysiologi-
cal mechanism, including disruption of epithelial barrier,
altered mucosal immunity, and increased proinflammatory
cytokines [10–12].
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Most micronutrient status evaluations were performed
by assessing serum levels [13, 14], although the presence of
chronic inflammation determines a high variability among
these, independently of tissue stores [15, 16]. Consequently,
serum levels do not offer an accuratemeasure of trace element
stores and trace element levels in hair have been proposed
as a more reliable measurement of the chronic microelement
nutritional status, considering that the systemic inflamma-
tory response has been shown to independently decrease
serum levels of micronutrients, including zinc, selenium,
copper, and various vitamins, without any correlation to the
actual nutritional status [2].

There is pathophysiological background for micronu-
trient deficit during inflammation, especially in the sup-
pression of carrier proteins synthesis in the liver, due to
proinflammatory cytokines; this leads to the sequestration
of some trace elements in the liver as a consequence of the
inflammatory response.This type of deficiency is common at
diagnosis, obviously due to impaired absorption, butmay also
persist throughout the course of the disease due to various
factors, such as poor intake in the context of restrictive
diet, direct intestinal loss, or a hypercatabolic state in IBD
patients. Given the significant role of zinc and selenium
deficiency in determining poor outcome for IBD patients,
which suggests that these micronutrients could be potential
therapeutic candidates for IBD, this review will focus on
various pathophysiological manners in which micronutrient
deficiency could result in impaired evolution of IBD patients
and how research into these mechanisms could impact IBD
therapy.

2. Trace Elements Deficiency
and Oxidative Stress in IBD

2.1. Inflammation and Oxidative and Nitrosative Stress
(IO&NS) Pathways in IBD. Since the gut is a large interface
with the environment, it is natural for it to be under high
immune surveillance, including macrophages and important
networks of dendritic cells, with important roles in adaptive
immune responses [17]. Experimental studies on IBD have
shown an increase in these immune cell populations together
with an increased secretion of proinflammatory cytokines,
of which IL-6, IL-13, IL-17, IL-22, and IL-23 proved to
have an important share in the evolution of IBD. [18–23].
IBD is characterized not only by an increased immune-
inflammatory response, but also by a reduced activity of
suppressive cytokines TGF-𝛽 and IL-10 [24, 25]. There is also
substantial evidence that the chronic inflammatory process
in the intestine is closely related to oxidative and nitrosative
stress, with impact on oxidative injury biomarkers, including
lipid peroxidation products and protein changes in both UC
andCDpatients [26, 27].The cellular sources of oxidative and
nitrosative stress identified on animal models of IBD include
macrophages and neutrophils, which generate important
quantities of nitric oxide and superoxide [26]. The presence
of proinflammatory cytokines enhances the production of
NADPH-oxidase (NOX) and iNOS by the epithelial cells,
consequently amplifying oxidative stress [28]. Several other
reactive oxygen species (ROS) producing pathways are shown

to be involved in the pathogenesis of IBD, such as xanthine
oxidase, 5-lypoxigenase, and cytochrome P450 enzymes.
The impact of prooxidative status is further accentuated by
decreased antioxidant levels, which is also present during
remission, suggesting that oxidative stress plays an important
part in disease recurrence [26, 29]; this idea is further
reinforced by the clinical efficacy of antioxidant therapy, such
asmelatonin, which is also a powerful anti-inflammatory and
antioxidant [30].

Another hypothesis states that mitochondrial dysfunc-
tion could also be an important source of ROS, ergo the
factors influencingmitochondrial functioning could enhance
the inflammatory response bymeans of variations in terms of
production or response to melatonin [31, 32].

2.2. Zinc Deficiency and Oxidative Stress in IBD. Zinc defi-
ciency was recently shown to correlate with inflammatory
status in IBD. A possible explanation for zinc playing an
anti-inflammatory role in IBD could be related to its role
in reducing the trans-mucosal leak in Crohn’s disease, by
decreasing the number of proinflammatory cells and reduc-
ing proinflammatory cytokine production [33, 34].

Zinc is a trace element known for its role in cell turnover
and repair systems, with studies showing that correcting zinc
deficiency can lead to restoring intestinal permeability in
CD patients, probably due to its ability to modulate tight
junctions both in the small and the large bowel [35].

In terms of immunity, zinc is essential for cell prolifera-
tion and influences both the acquired and innate immunity
by also acting as a coenzyme in many key reactions of the
immune response, being essential for antioxidant response
and thymic hormone function [36]. Zinc deficiency leads
to impairing or even completely suppressing the phagocyte
and lymphocyte activity, determining an inefficient cytokine
response [37–39]. Moreover, it has been reported that, in
activated macrophages, zinc, as a component thereof, sup-
presses the activity of inducible nitric oxide synthase (iNOS)
by about 90%, preventing the production of reactive oxygen
and nitrogen species and cellular damage [36]. Together
with zinc, copper (Cu) plays a more important role among
micronutrients in terms of inflammation, with increased
Cu/Zn ratios being identified in cases of chronic inflamma-
tion and free radical overproduction [40], although serum
Cu concentrations were inconsistent across various studies
on IBD patients compared to healthy controls [36, 40, 41].
The differences registered between the studies may in part be
due to various degrees of disease activity. However, one study
showed significant serum Cu elevation in women with IBD
compared to healthy subjects [36].

The Cu/Zn-SOD is considered the main isoform active
in IBD and its expression had been previously reported
[42]. Various studies confirmed the reduction of Cu/Zn-SOD
activity in IBD patients, which means a reduced ability to
scavenge free radicals in IBD patients. The reduction of this
SOD isoform may be in part due to Zn deficiency and partly
due to chronic inflammation, but the underlyingmechanisms
are yet to be clarified [36, 43].

Moreover, a study on in vitro cell culture has shown
that zinc deficiency leads to increased interleukin1b and
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interleukin-6 responses following lipopolysaccharide stimu-
lation, underlining a potential pathway between microbiota
components with immune response and micronutrient defi-
ciency [44].

Considering the role of Zn in offsetting oxidative stress,
Zn supplementation has been considered in IBD patients.
However, one study highlighted that although zinc sup-
plementation, in the form of zinc gluconate, improves the
homeostatic condition of this trace element, it did not change
SOD activity, as a marker of oxidative stress in patients with
ulcerative colitis [45].

In the pursuit to use zinc as part of the therapeutic
approach to IBD, another strategy applied in experimental
studies was to incorporate Zn in cross-linked blend micro-
spheres; this used Zn for its dual effect, both as a cross-linker
to form drug delivery carriers in colon-specific drug delivery
systems and for its anti-inflammatory role, delivered together
with 5-aminosalycilate derivates (5-ASA), which proved to
alleviate colonic inflammation and promote mucosal healing
in amousemodel of TNBS-induced colitis. Consequently, Zn
ion cross-linked alginate/N-succinyl-chitosan blend micro-
spheres could emerge as suitable candidates for the codelivery
of zinc and 5-ASA into the colon, with potential therapeutic
effects in IBD [46].

In the attempt to counteract the oxidative stress by
excessively scavenging generated ROS, the efficacy of zinc
in the form of zinc oxide nanoparticles (ZnO np) has been
investigated on an animal model of ulcerative colitis. Using
a model of DSS-induced colitis, there is evidence to the
antioxidant and anti-inflammatory abilities of ZnOnps in
suppressing ROS and malondialdehyde (MDA) production,
increasing GSH levels, and suppressing proinflammatory
cytokines IL-1𝛽 and TNF-𝛼 and myeloperoxidase. The pro-
posed mechanism is the activation of the Nrf2 pathway in
the cellular antioxidant defense system. The novel finding of
this study using a DSS-induced colitis model is the synergic
potential of ZnOnpwithmesalazine, with greater therapeutic
efficacy than mesalazine alone, and also the ability of ZnOnp
to restore the colonic microbiota of the DSS-mice, while
mesalazine alone cannot [47].

2.3. Selenium and Oxidative Stress in IBD. Another micronu-
trient and trace element with involvement in antioxidant
response is selenium (Se), exerting its biological effects
through selenocysteine, an amino acid which is incorporated
into proteins [48]. Se deficiency has been recorded in both
UC and CD patients, and its deficit was correlated to an
increased risk for multiple chronic inflammatory conditions,
such as cardiovascular or endocrinological (thyroid) disease
[49].

Se deficiency was found to occur in IBD patients even
during remission, and consistently low Se serum levels were
associated with increased severity of the UC and CD activity
index, even suggesting that Se might become a noninvasive
biomarker for IBD activity and severity [50, 51].

In this context, this trace element is particularly impor-
tant due to its incorporation in selenoproteins with potential
to modulate local inflammatory response. Among seleno-
proteins, the most intensively studied for their role in ROS

reduction were the four isoforms of glutathione peroxidases
(GPx), which are expressed in the gut [5]. While GPx1 is
expressed by all intestinal cell types, GPx3 is secreted and
found in plasma. GPx2 is mainly expressed in the epithelial
cells, including the Paneth cells, and GPx4 is found both in
intestinal epithelial cells and in the lamina propria [52]. GPx
isoforms GPx1 and GPx2 are differentially regulated, with
GPx2 being upregulated as part of a compensatory response
for protection against oxidative damage during inflammation
[53]. However, there is evidence on animal models of GPx2
knock-out mice, which were fed with Se, that there is
increased GPx1 activity within the colon and ileum crypts,
supporting the hypothesis that these proteins may have a
partial compensatory role [54]. Furthermore, the absence of
bothGPx1 andGPx2 leads to a severe inflammatory response,
exhibited as spontaneous ileocolitis [55]. As for the other
isoforms with antioxidant role in the gut, the loss of GPx3
was linked to inducing severe colitis, while plasma GPx3
showed potent tumor suppressor role in colitis-associated
carcinoma through abrogation of ROS [56]. GPx4 has an
important role in reducing lipid peroxidation, consequently
preventing membrane disruption due to oxidative stress
and helping maintain cellular integrity. Although GPx4 is
uniformly expressed in the colon, its expression is variable
throughout the crypt-villus axis [57].

Except for GPx4, there is another quite similar selenopro-
tein, but with significantly lower activity, namely, selenopro-
tein P.This is one of the major plasmatic selenoproteins, with
a high sensitivity to changes in serum Se level, considering
its high content of Sec residues and its role in antioxi-
dant response, mainly responsible for delivering selenium
to different tissues [58]. However, its levels are inversely
associated with the development of IBD, which may be due
to the association of low Se absorption and IBD development;
another related aspectmight be the fact that low plasma levels
of selenoprotein P impact selenoprotein expression in target
cells such as macrophages [52, 59].

Another type of selenoprotein, selenoprotein S (seleno
S), highly expressed in Paneth cells and macrophages in the
gut, is a marker of endoplasmic reticulum stress at this level
but does not regulate the process. Seleno S is thought to
have two main roles: supplying tissues with Se and acting
in the antioxidant defense network. In the context of IBD,
increased production of inflammatory cytokines has been
reported concurrently with a decrease in the expression of
several selenoproteins, including seleno S [60]. Studies on
animal models have reported that Se in the form of seleno-
proteins can influence macrophage activity, by preventing
the arachidonic acid pathway to generate proinflammatory
mediators such as PGE2 and preventing interleukin- (IL-
) 1 to generate more anti-inflammatory mediators such
as prostaglandin D2 (PGD2) and some of its metabolites
[61]. The reduction of Se plasma level was also shown to
be correlated with increased plasma level of prostaglandin
E2 (PGE2) in ulcerative colitis patients, an increase in
prostaglandin E2 (PGE2) in the plasma of patients with
ulcerative colitis, therefore with a proinflammatory response
[62]. Interestingly, an indirect proinflammatory effect has
been reported for selenoprotein K, its absence determining
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a decrease in inflammatory cytokines [6]. These changes are
context-dependent and require further research.

Furthermore, a few experimental studies using models
with DSS-induced colitis and associated colon cancer suggest
that Se and selenoproteins play an essential role in regulating
inflammatorymicroenvironment and tumorigenesis [63, 64].
In addition, experimental studies have also demonstrated that
there is reduction of cytokines known for their proinflamma-
tory effect, such as IL-1, TNF𝛼, and IFN𝛾 and concomitant
increased level of anti-inflammatory markers expression,
including arginase 1 proinflammatory cytokines such as
IL-1, tumor necrosis factor alpha (TNFalpha) and inter-
feron gamma (IFNgamma), and increased anti-inflammatory
markers such as arginase 1, secondary to Se supplementation
in mice with DSS-induced colitis [65, 66].

Regarding the relevance of effector cells in oxidative
stress, the M2 type macrophages, the alternatively activated
macrophage subtype, are of particular interest [67]. In con-
trast to M1 macrophages, which are considered proinflam-
matory due to their involvement in ROS production and
activation by tumor necrosis factor- (TNF-) 𝛼, lipopolysac-
charide, and other Toll-like receptor (TLR) ligands [68], M2
macrophages are considered anti-inflammatory due to their
increased expression of arginase-1, which competes for l-
arginine; L-arginine is a substrate for inducible nitric oxide
synthase, diverting nitric oxide synthesis and leading to the
production of l-ornithine and urea instead [69]. The role of
Se supplementation in switching from M1 to M2 type, ergo
from pro- to anti-inflammatory status, could reside in the
epigenetic changes [52]. Kudva et al. demonstrated the ability
of Se, dependent on the selenoprotein-mediated shunting
of arachidonic acid pathway, to inhibit the acetylation of
nonhistone and histone proteins and therefore to affect
the expression of proinflammatory genes in macrophages,
including NF-𝜅B member p65 [52, 70, 71]. Therefore, Se
(through selenoproteins) seems to effectively shunt the
eicosanoid pathway, driving the production of PGD

2
and its

metabolites that potentially influence NF-𝜅B- and PPAR𝛾-
dependent pathways, thus constituting one of its many anti-
inflammatory functions [52, 72].

Although the influence of Se and PPAR𝛾 on the evolution
of IBD and the mechanism of Se impact on oxidative stress
in this context have not represented the focus of many
studies, to our knowledge, there has not been a research
core on the effect of Se and PPAR𝛾 on IBD and, based on
the available data, one could infer, using murine models
of IBD [73, 74], that given the reduction in PPAR𝛾 in
IBD, as well as the potential of Se to enhance PPAR𝛾
and its ligand 15d-PGJ2 [75], Se supplementation would
significantly decrease disease activity. This outcome could
be interceded: it is plausible that under supplemented Se
status the disease activity would be significantly decreased.
This effect could be mediated through several pathways,
including the upregulation of PPAR𝛾, which acts as inhibitor
of NF-𝜅B activation in various cell types, such as intestinal
epithelial cells, macrophages, and dendritic cells, influencing
the production of proinflammatory cytokines, involved in the
pathology of IBD [66]. Moreover, PPAR𝛾 has been shown to

regulate T cell activation [76] by inhibiting the differentiation
ofTh1 cells or the potential of these cells to produce cytokines.

In this context, it is important to note that Tregs expres-
sion during IBD is heterogenous and that PPAR𝛾 has been
shown to lead to an increased expression of Foxp3+ Tregs.
This suggests that in IBD this could lead to an increased
number of FoxP3+ Tregs in the colon, although Tregs are not
the only T cells expressing FoxP3. Through the proven effect
of selenium in activating PPAR𝛾, Se supplementation could
exert its effects by inhibiting certain pathways or immune
cell functions, which could lead to the active resolution of
inflammation in the gut.

Therefore, several potential beneficial effects of Se sup-
plementation become apparent. Various types of dietary and
supplemental Se have been studied. However, using animal
models leads to obtaining conflicting results in terms of
Se supplementation under various forms (sodium selenite,
selenomethionine) [77–79]. Se nanoparticles (SeNPs) seem
to be more effective than other forms of Se in scavenging free
radicals and therefore in preventing DNA oxidative damage,
having low toxicity levels and acceptable bioavailability [80,
81]. There have been attempts to use SeNP directed into the
gut mucosa for the treatment of IBD, mainly for local (rectal)
use, due to their low adverse effects [82, 83].

Continuing these studies, Zu et al. found that there are
several advantages to capping SeNP with agents such as ATP
and vitamin C, such as enhanced cellular uptake, prolonged
circulation of SeNP, as well as advantages related to the size
and stability of SeNPs [84]. It is difficult to state whether Se
supplementation is a feasible component of IBD therapeutic
strategy and this debate requires further research. [52].

3. Microbiota and Trace Elements

There have been extensive studies on microbiota changes in
IBD, suggesting that the relationship between dysbiosis and
IBD is complex and dynamic, certainly not limited to the
cause-effect relationship type. Consequently, assuming that
dysbiosis is the response of a complex microbial community
to the environmental inflammatory stress or medication
might overlap with the hypothesis that it plays a direct role
in IBD pathogenesis [85–87]. A microbiota imbalance might
not actually be among the events involved in triggering
inflammation, but it could develop later in the course of
IBD and contribute to disease progression and chronicity;
alternatively, dysbiosis could play a critical role in disease
onset, but the window for such an effect occurs early in life.
These aspects could be supported by studies of more targeted
probiotics and by larger controlled trials on the use of fecal
microbiota transplantation, supporting this hypothesis [85].

Since the composition of the gutmicrobiota can be altered
by various exogenous factors such as infections, antibiotics,
and diet, micronutrient deficiency could also play a part in
affecting the gut mucosal immune response. It has already
been stated thatmetal availability is among the critical factors
influencing the outcome of host-microbe interactions [88].
Diet is a factor that is very likely to play a major role
in metal availability, particularly during infections. Altered
dietary microelement levels are associated with increased
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susceptibility to various infections; nonetheless, there is
scarce data on how altered dietary metal levels affect the gut
microbiome [89].

A previous report demonstrated that the composition of
gut microbiota in mice affected host Se levels and therefore
the selenoprotein expression in the host [90]. There is
likely to be a competition between intestinal microbiota and
the host for available selenium, exacerbating host selenium
deficiency and increasing the vulnerability of the gut to
disease. On the other hand, Se levels were shown to also
alter the composition of gut microbiota in mice [73]. One
aspect of particular interest would be studying the underlying
mechanisms of Se influence on dysbiosis and whether this
trace element deficiency correlates with incidences of IBD,
modifying disease severity. Furthermore, in the attempt to
translate basic research into clinical application, it would
be useful to see whether there is a protective effect of Se
supplementation mediated via microbial metabolite(s), not
only by generating species selection, but also by assisting in
diminishing inflammation or enhancing mucosal healing by
modulating the host’s immune response [52].

Clostridiumdifficile (CDiff)was studied among particular
bacterial influence, also due to its high prevalence among IBD
patients.The preliminary steps of CDiff infection include loss
of colonization resistance and development of susceptibility,
usually mediated by use of antimicrobial therapy, altering the
gut microbiota and generating the respective susceptibility.
On top of CDiff ’s virulence factors, host characteristics also
play a role in this process. There are distinct risk factors
for CDiff infection in IBD patients, including younger age,
outpatient care, and lack of antibiotic exposure immediately
preceding CDiff infection onset [74]. One study on a mouse
model reported that excess dietary Zn exacerbates CDiff-
associated disease, by decreasing the threshold of antibiotics
needed to confer susceptibility thereto; this was shown using
CFU analysis for the CDiff strain R20291 following low-level
cefoperazone treatment [91].

Due to the anti-inflammatory effect [92] and the estab-
lished low richness of mucosa-associated Faecalibacterium
prausnitzii (FP) in IBD [93], its role in the evolution of this
disease has also been studied. On animal models and using
FP strains, its potent anti-inflammatory role was shown to
be exerted via interaction with various immune pathways, by
means of inhibiting IL-17 [94], inducing anti-inflammatory
cytokines like IL-10 in dendritic cells [95], influencing Th17
differentiation [92], as well as by butyrate production and
consequent inhibition of NF-𝜅B activation, leading to the
activation of different genes involved in enterocyte differen-
tiation, proliferation, and regeneration [96].

SeNP proved to increase SCFA production and FP abun-
dance, with current major efforts underway to produce FP
probiotics for the treatment of colitis. The increase rate
in FP achieved using animal models, supplemented with
nanoSe, exceeded expected levels of enrichment in the gut via
orally delivered probiotic.This warrants further investigation
in the use of nanoSe to enrich FP in order to improve
both animal and human intestinal conditions using higher
sample sizes and multiple trials. These results also encourage
further investigation into optimal nanoSe concentrations

for obtaining other benefits, which may have resulted from
increases in SCFAs, such as reduced intestinal permeability
and integrity [97]. Nevertheless, there may be difficulties in
adding FP and including it in nanoparticles on the Qualified
Presumption of Safety list due to no current information of
safe use; furthermore, toxicological assays are required for
regulatory approval [96, 98]. This might be difficult due to
its lack of a history of safe use; moreover, full toxicology
assays and characterization of the strain are still needed for
regulatory approval [96, 98].

Based on our current knowledge, it is difficult to state
whether there is a bilateral influence/link between the deficit
of trace elements, especially regarding Se deficit and dys-
biosis [73]. Some studies point to the use of some common
immunological pathways, including regulation of both NF-
𝜅B and PPAR𝛾, since commensal microbiota, which can be
involved in IBD pathogenesis in the presence of epithelial
barrier dysfunction and increased intestinal permeability and
may also influence the activation of and can also regulate the
activation of both pathways [99, 100]; consequently, further
studies are required to clarify this aspect.

4. Conclusions and Future Directions

Selenium and zinc are essential micronutrients with a variety
of roles inmediating immune response. Although IBDpatho-
physiology is multifactorial in origin, dietary zinc and sele-
nium deficiency exacerbates experimental colitis by affecting
various signaling pathways involved in inflammation and
oxidative stress, as well as by altering the gut microbiota.
For Se, this may be partially due to its ability to change
macrophage phenotype, from aM1- to M2-dominant expres-
sion, therefore alleviating inflammation and reducing intesti-
nal epithelial damage. Among the various cellular pathways,
the ability of selenoproteins to lead to eicosanoid pathway
shunting contributes to decreasing inflammation along with
enhancedwoundhealing [52, 65]. Some authors reported that
its form of administration and the duration of supplemental
therapymay be significant for imparting the beneficial effects;
however, since results are inconsistent, further research in
this direction is required [77]. Considering the potential
activation of NF-𝜅B and PPAR𝛾 through both the action of Se
at cellular level and some commensal bacteria with potential
involvement in IBD pathogenesis, this trace element has an
emerging role in activating several cellular types, including
macrophages,Th1,Th17, as well as in microbiota modulation,
with potential therapeutic approach [73, 100]. Zinc deficiency
is related at least to altering phagocyte activity, by suppressing
antioxidant response and lymphocyte activity, consequently
disrupting cytokine response [36]. A question that remains
highly debated is whether changes in Se and Zn concen-
trations are among the causes or effects of IBD. Therefore,
the cause and effect relationship between trace elements,
dysbiosis, and IBD requires further examination through the
development of appropriate animal models, considering a
broader variety of factors (including changes in microbiota
and environmental factors such as diet), in addition to
understanding the molecular basis of inflammatory response
modulation, in order to identify new therapeutic approaches.
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Such studies may ultimately provide a solid foundation and
better biomarkers to identify patient populations that could
benefit from micronutrient supplementation therapy, as well
as from the new generation of probiotics using nanoparticles.
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Brigelius-Flohé, “The gastrointestinal microbiota affects the
selenium status and selenoprotein expression in mice,” The
Journal of Nutritional Biochemistry, vol. 20, no. 8, pp. 638–648,
2009.

[91] J. P. Zackular, J. L. Moore, A. T. Jordan et al., “Dietary zinc alters
the microbiota and decreases resistance to Clostridium difficile
infection,” Nature Medicine, vol. 22, no. 11, pp. 1330–1334, 2016.



BioMed Research International 9

[92] X.-L. Huang, X. Zhang, X.-Y. Fei et al., “Faecalibacterium
prausnitzii supernatant ameliorates dextran sulfate sodium
induced colitis by regulating Th17 cell differentiation,” World
Journal of Gastroenterology, vol. 22, no. 22, pp. 5201–5210, 2016.

[93] M. Lopez-Siles, M.Martinez-Medina, C. Abellà et al., “Mucosa-
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