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Background: The intratumoral heterogeneity of oxygen metabolism and angiogenesis
are core hallmarks of glioma, unveiling that genetic aberrations associated with magnetic
resonance imaging (MRI) phenotypes may aid in the diagnosis and treatment of glioma.

Objective: To explore the predictability of MRI-based oxygen extraction fraction
(OEF) mapping using cluster analysis of time evolution (CAT) for genetic profiling
and glioma grading.

Methods: Ninety-one patients with histopathologically confirmed glioma were examined
with CAT for quantitative susceptibility mapping and quantitative blood oxygen level–
dependent magnitude-based OEF mapping and dynamic contrast-enhanced (DCE)
MRI. Imaging biomarkers, including oxygen metabolism (OEF) and angiogenesis
[volume transfer constant, cerebral blood volume (CBV), and cerebral blood flow],
were investigated to predict IDH mutation, O6-methylguanine-DNA-methyltransferase
(MGMT) promoter methylation status, receptor tyrosine kinase (RTK) subgroup, and
differentiation of glioblastoma (GBM) vs. lower-grade glioma (LGG). The corresponding
DNA sequencing was also obtained. Results were compared with DCE-MRI using
receiver operating characteristic (ROC) analysis.

Results: IDH1-mutated LGGs exhibited significantly lower OEF and hypoperfusion than
IDH wild-type tumors (all p < 0.01). OEF and perfusion metrics showed a tendency
toward higher values in MGMT unmethylated GBM, but only OEF retained significance
(p = 0.01). Relative prevalence of RTK alterations was associated with increased OEF
(p = 0.003) and perfusion values (p < 0.05). ROC analysis suggested OEF achieved
best performance for IDH mutation detection [area under the curve (AUC) = 0.828].
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None of the investigated parameters enabled prediction of MGMT status except OEF
with a moderate AUC of 0.784. Predictive value for RTK subgroup was acceptable
by using OEF (AUC = 0.764) and CBV (AUC = 0.754). OEF and perfusion metrics
demonstrated excellent performance in glioma grading. Moreover, mutational landscape
revealed hypoxia or angiogenesis-relevant gene signatures were associated with specific
imaging phenotypes.

Conclusion: CAT for MRI-based OEF mapping is a promising technology for oxygen
measurement and along with perfusion MRI can predict genetic profiles and tumor grade
in a non-invasive and clinically relevant manner.

Clinical Impact: Physiological imaging provides an in vivo portrait of genetic alterations
in glioma and offers a potential strategy for non-invasively selecting patients for
individualized therapies.

Keywords: oxygen extraction fraction (OEF), cluster analysis of time evolution, dynamic contrast-enhanced
MRI (DCE-MRI), multi-parameter MRI, isocitrate dehydrogenase (IDH), O6-methylguanine-DNA methyltransferase
(MGMT)

INTRODUCTION

Reprogramming oxygen metabolism and inducing angiogenesis
are counted among the hallmarks of cancer (Hanahan and
Weinberg, 2011). High-grade gliomas, such as anaplastic
gliomas and glioblastomas (GBMs), account for the majority of
malignant brain tumors in adults and have the characteristics
of extensive hypoxia, high vascularization, and heterogeneity
(Kaur et al., 2005; Hardee and Zagzag, 2012). Importantly,
early identification of distinct genetic profiles such as IDH
and O6-methylguanine-DNA-methyltransferase (MGMT) in
combination with relevant receptor tyrosine kinases (RTKs)
highlights the mutational profile of oxygen metabolism or
angiogenesis, thus enabling early therapeutic intervention in
patients (Chahal et al., 2010; Gluck et al., 2015; Kickingereder
et al., 2015). Gliomas with IDH1 mutation were found to
have significantly reduced hypoxia-inducible factor 1α (HIF-1α)
and decreased neovascularization (Semenza, 2003). Methylation
status of the MGMT promoter is also involved in carcinogenesis,
as is highlighted by the association with angiogenic profile
in GBM (Chahal et al., 2010). Additionally, accumulating
evidence suggests that dynamic changes in coactivated RTK
pathway involved in GBM may account for the oncogenic
processes where tumor hypoxia and angiogenesis frequently
coexist (Gluck et al., 2015).

Although molecular imaging probes under development for
positron emission tomography and other imaging modalities
aim to more directly evaluate tumor oxygenation, these methods
are limited by the need of (i) specialized imaging agents
with high costs and (ii) complex physiologic assumptions
in data interpretation (la Fougere et al., 2011; Bulte et al.,

Abbreviations: OEF, oxygen extraction fraction; CAT, cluster analysis of
time evolution; Ktrans, volume transfer constant; CBV, cerebral blood volume;
CBF, cerebral blood flow; NGS, next-generation sequencing; IDH, isocitrate
dehydrogenase; MGMT, O6-methylguanine-DNA-methyltransferase; RTK,
receptor tyrosine kinase; GBM, glioblastoma; LGG, lower-grade glioma; HIF-1α,
hypoxia-inducible factor 1α.

2012; Paech et al., 2020). Moreover, this information currently
confronts tissue sampling errors, as a single specimen/sample
might not reflect the presence of the mutation in such a
heterogeneous tumor. Consequently, alternative non-invasive
magnetic resonance imaging (MRI) sequences to predict
genetic profiles via its reliable oxygen information are
urgently needed.

Nowadays, a novel developed approach, cluster analysis of
time evolution (CAT), for quantitative susceptibility mapping
and quantitative blood oxygen level–dependent magnitude
(QSM + qBOLD or QQ)–based oxygen extraction fraction
(OEF) mapping, might have the potential to cope with this
problem (Cho et al., 2018, 2020b). The robustness of QQ-based
OEF mapping has been substantially improved by introduction
of an unsupervised machine learning method, CAT, which may
enable clinically practical evaluation of oxygen information
without vascular challenges. Because of the relative simplicity
of the susceptibility measurement and an acceptable time
requirement, CAT for QQ represents a non-invasive measure
of quantitative OEF that meets the immediate applicability in
clinical practice (Cho et al., 2020a,b). Furthermore, dynamic
contrast-enhanced (DCE) MRI has long been clinically used
to investigate tumor angiogenesis and plays a pivotal role
for characterization of tumor microvessel proliferation and
permeability, cerebral blood flow (CBF), or cerebral blood
volume (CBV) (Jensen et al., 2014; Arevalo-Perez et al.,
2015).

The purpose of this study was to investigate the diagnostic
performance of CAT for QQ-based OEF mapping and apply
DCE-MRI to predict not only the molecular parameters
such as IDH1 mutation and MGMT promoter methylation
status in glioma but also differentiation of World Health
Organization (WHO) grade II/III lower-grade glioma (LGG)
vs. WHO grade IV GBM. Impressively, we also tried to
highlight the association of physiological MRI and molecular
stratification via the combination of RTK genetic aberrations
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rather than assessing the status of individual mutations,
potentially providing new therapeutic opportunities against
these deadly brain tumors. Altogether, we hypothesized
that CAT for QQ-based OEF mapping might be a potential
method to specifically quantify oxygen metabolism in
glioma, this method in combination with characterization
of tumor angiogenesis assessed by DCE-MRI can potentially
be used as an imaging biomarker to non-invasively identify
genetic profiles in the preoperative workup of glioma
patients. The established imaging signatures are derived
from routine clinically acquired MRI, and therefore, it is easily
translatable to the clinic.

MATERIALS AND METHODS

Patient Selection
This retrospective study was performed with approval of the local
institutional review board, and written informed consent was
waived. Between July 2016 and December 2019, 138 consecutive
patients with suspected primary gliomas were enrolled in this
study. Forty-seven patients (34%) were excluded because of the
following criteria: (a) diagnosis other than glioma (21 patients),
(b) recurrent glioma undergoing therapy (12 patients), and
(c) insufficient data quality, in the form of patient motion
during MRI (three patients with severe neurological deficits)
or poor contrast material injection (11 patients). A total of 91
pathologically confirmed gliomas were identified in our analysis.
Detailed patient characteristics are further profiled in Table 1.

Magnetic Resonance Imaging
Acquisition and Data Analysis
Images including conventional MRI scans, OEF images, and DCE
perfusion images were acquired during clinical workup on a 3.0-
T MR scanner (Discovery 750, GE Healthcare, United States).
All images were coregistered to the three-dimensional (3D) T1-
BRAVO images, using FMRIB’s Linear Image Registration Tool
algorithm (FSL).1 Details on MRI acquisition parameters and the
complete analysis workflow (performed by Drs. Shen and Xie,
with 8 and 5 years of experience in brain tumor image processing
and interpretation of glioma imaging data, respectively) are
outlined in Supplementary Methods 1.

Magnetic Resonance Imaging-Based
Oxygen Extraction Fraction Mapping
Post-processing
To achieve OEF = 1 − Y/Ya, the following steps were used
for MRI-based OEF postprocessing. (a) QSM images were
reconstructed from multi-echo gradient echo (mGRE) data using
a fully automated zero-referenced morphology-enabled dipole
inversion method as described previously (Liu et al., 2018). QSM
model was then generated from the decomposed susceptibility

1http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSL

sources by using the following equation:

χQSM (Y,ν, χnb) =

[
χba

α
+9Hb · 4χHb ·

(
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·ν+

(
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ν
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)
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where α is the vein volume fraction assumed to be constant
(0.77), 9Hb is the hemoglobin volume fraction (0.0909 for tissue
and 0.1197 for vein), and 4χHb is the susceptibility difference
between deoxyhemoglobin and oxyhemoglobin (12,522 ppb). (b)
The qBOLD model of

∣∣sj∣∣ based on a voxel spread function
method (Cho et al., 2018) was fitted into the following equation:∣∣sj∣∣ = FqBOLD

(
Y, ν, χnb, s0,R2, j4TE

)
= s0e−R2·j4TE
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(
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)
(2)

δω (Y, χnb) =
1
3
· γ · B0 ·

[
Hct · 4χ0 · (1−Y)+χba−χnb

]
(3)

where γ is the gyromagnetic ratio (267.513 MHz/T), B0 is
the main magnetic field (3.0T), Hct is the hematocrit (0.357),
4χ0is susceptibility difference between fully oxygenated and fully
deoxygenated blood [4π × 0.27 ppm (Yablonskiy and Haacke,
1994)], Y is the oxygenation, χba is the purely oxygenated blood
susceptibility (−108.3 ppb), χnb is the non-blood susceptibility,
ν is the vein blood volume fraction, and g accounts for the
macroscopic contributions due to voxel sensitivity function. (c)
The QSM model of the phase analysis and the qBOLD model
of the magnitude analysis were combined by using a denoising
regularization R (Cho et al., 2018):

argminY,ν,χnb,s0,R2

∑
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)
||

2
2

+w||χ−χQSM (Y, ν, χnb) ||
2
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(
Y, ν, χnb, s0,R2

)
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(d) A CAT method, where voxels with similar mGRE
magnitude time evolutions were grouped into a cluster, was
applied to improve the effective signal-to-noise ratio (SNR) for
QSM + qBOLD model (Cho et al., 2020b).

Histological Examination
All diagnoses were histopathologically proven after surgical
resection or tumor biopsy, according to the 2016 WHO
classification of CNS tumors, by neuropathologists who
were blinded to the MRI data. Genomic sequencing
analysis was performed based on tissue availability. IDH1
mutation status was determined by using next-generation
sequencing and/or immunohistochemistry (IHC). MGMT
promoter methylation status (methylated vs. unmethylated)
was detected by using MGMT pyrosequencing from the
PyroMark Q24 sequencer. In order to further characterize
genetic heterogeneity potentially driving oxygen metabolism
or angiogenesis in glioma, we examined the association of
established preoperative MRI parameters with coactivated
RTKs based on somatic genomic alterations and hallmark
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TABLE 1 | Patient demographics and genetic information.

Parameter All patients Patients with LGG Patients with GBM

WHO tumor grade 91 48 (52.7%) 43 (47.2%)

Mean age (y)* 47.1 ± 12.6 44.3 ± 11.7 50.3 ± 12.9

No. of women 45 (49.4%) 28 (58.3%) 17 (39.5%)

IDH gene status

Mutated 38 (41.7%) 31 (64.5%) 7 (16.2%)

Wild type 48 (52.7%) 15 (31.2%) 33 (76.7%)

NA 5 (5.4%) 2 (4.1%) 3 (6.9%)

MGMT promoter methylation

Methylated 34 (37.3%) 22 (45.8%) 12 (27.9%)

Unmethylated 55 (60.4%) 26 (54.1%) 29 (67.4%)

NA 2 (2.1%) 0 (0) 2 (4.6%)

RTKs alterations (amplification, mutation)

No. of patients 53 (58.2%) 26 (49.0%) 27 (50.9%)

EGFR 28 (52.8%) 7 (26.9%) 21 (77.8%)

PDGFRA 8 (15.1%) 2 (7.7%) 6 (22.2%)

MET 9 (17.0%) 4 (15.4%) 5 (18.5%)

VEGFR2 7 (13.2%) 3 (11.5%) 4 (14.8%)

Unless otherwise indicated, data are number of patients, with percentages in parentheses. ∗Data are means ± standard deviations.
NA, not applicable; LGG, lower-grade glioma; WHO, World Health Organization; IDH, isocitrate dehydrogenase; MGMT, O6-methylguanine-DNA-methyltransferase; RTKs,
receptor tyrosine kinases; CNV, copy number variation.

copy number variation of glioma as described previously
(Supplementary Methods 2; Stommel et al., 2007; Nakada
et al., 2020). We also performed IHC analysis of Ki67
proteins routinely analyzed in current clinical practice,
using a standard immunohistochemical staining procedure
(n = 81).

Statistical Analysis
Normal distribution of the parameters was tested by Shapiro–
Wilk test (Razali and Wah, 2011; Das and Rahmatullah Imon,
2016). Data normality was also checked and reported by using
Kolmogorov–Smirnov test. Detailed results for testing normality
are shown in Supplementary Table 1 and Supplementary
Figure 1. In general, the majority of the results of the
two methods were consistent for testing the normality. The
Shapiro–Wilk test provides greater power than the Kolmogorov–
Smirnov test (even with its Lilliefors correction). Additionally,
the Shapiro–Wilk test is more appropriate for small sample
sizes (N ≤ 50), but it can also be validly applied with large
sample sizes. For these reasons, the Shapiro–Wilk test was
used for assessing data normality in our study. Then, the
subgroups of participants with LGG and GBM, molecular
parameters [IDH1 (mutation vs. wild-type), MGMT (methylated
vs. unmethylated), activation of RTKs subgroup (RTK vs. non-
RTK)] were compared by using Student t-test (for normally
distributed data) or Wilcoxon rank-sum test (for non-normally
distributed data). There is evidence that the most investigated
parameters are non-normally distributed based on the Shapiro–
Wilk test (Supplementary Table 1 and Supplementary Figure 1).
The DeLong et al. (1988) procedure is commonly used to
non-parametrically test the hypothesis of the equality of the
areas under the curve (AUCs) and performs well regardless
of the variable distribution. Thus, non-parametric receiver

operating characteristic (ROC) AUC testing based on the Delong
approach was performed to assess the predictive performance
for grading and molecular detection. The cutoff values were
selected by using the maximized values of the Youden indexes.
Then, the sensitivity and specificity at the threshold values
for each parameter were determined to evaluate the diagnostic
performance. The statistical significance of the single AUC was
also calculated to test the null hypothesis that the AUC really
equals 0.50. The correlations between MRI biomarkers and
the Ki67 expression were evaluated with Pearson correlation.
For each outcome, we calculated the false discovery rate
using the Benjamini–Hochberg method to account for multiple
hypothesis tests (Benjamini and Hochberg, 1995). p < 0.05
was considered statistically significant. Analyses were performed
using R software v3.6.1.

RESULTS

Predictability of IDH1 Mutation Status
The representative MRI-based OEF and DCE perfusion
images are shown in Figures 1, 2. For oxygen metabolism
of all patients with LGG, OEF was found to be remarkably
decreased (p = 0.001; Figure 3A) in IDH1 mutation
than in IDH1 wild-type lesions. OEF did not enable
IDH1 status detection in patients with GBM (p = 0.645;
Table 2).

For angiogenesis of all patients with LGG, markedly decreased
volume transfer constant (Ktrans), CBV, and CBF in IDH1
mutation were found compared with IDH1 wild-type tumors (all
p < 0.01; Figures 3B–D). None of the investigated perfusion
metrics allowed for differentiation of IDH1 gene mutation status
in patients with GBM (p > 0.05).
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FIGURE 1 | MRI-based OEF and DCE perfusion images in representative glioma patients with and without IDH mutation. Two exemplary patients with IDH1-wt
(astrocytoma II; A1–F1) and IDH1-mut (astrocytoma II; A2–F2) lower-grade glioma shown: (A1) gadolinium contrast-enhanced (GdCE) 3DT1BRAVO, (B1) T2-FLAIR,
(C1) QQ-based OEF maps by CAT, DCE-MRI with separated Ktrans (D1), CBV (E1), and CBF (F1) maps. OEF map (C1) allows to delineate significantly
inhomogeneous hyperintensity in the contrast-enhanced region of the IDH1 wild-type astrocytoma; DCE-derived maps (D1–F1) clearly show the area of
hyperperfusion and high permeability in the IDH1 wild-type astrocytoma.

FIGURE 2 | Representative MRI-based OEF and DCE perfusion images of glioma patients with and without methylated MGMT promoter. Two GBM patients with
unmethylated (51-year-old woman with MGMT-: A1–F1) and methylated (58-year-old man MGMT+: A2–F2) promoter shown: (A1) GDCE 3D T1BRAVO, (B1)
T2-FLAIR, (C1) QQ-based OEF maps with CAT, DCE-MRI with separated Ktrans (D1), CBV (E1), and CBF (F1) maps. OEF map (C1) allows to identify a focal area of
higher values within the lesion for patients with unmethylated MGMT promoter; DCE-derived maps (D1–F1) show a tendency toward higher signal intensities.

Predictability of O6-Methylguanine-DNA
Methyltransferase Promoter Methylation
Status
GBM with MGMT promoter methylation showed predominantly
decreased OEF compared with unmethylated tumors (p = 0.01;
Figure 3A). LGG demonstrated no significant differences in OEF
regarding MGMT status (p = 0.408; Table 3).

Perfusion analysis showed a tendency toward higher values in
patients with unmethylated MGMT promoter but did not allow
for significant differentiation of methylated vs. unmethylated
gliomas (p > 0.05; Figures 3B–D).

Predictability of Receptor Tyrosine
Kinase Aberrations in a Subset of
Patients With Next-Generation
Sequencing
The association of each imaging parameter and the
corresponding RTK aberrations demonstrated a significant
positive relationship between RTK subgroup and increased OEF

(p = 0.003, Figure 3E and Table 4). Perfusion metrics (CBV
and CBF) showed a tendency toward higher values in the RTK
subgroup (p = 0.004 and p = 0.011, respectively, Figure 3F).

Predictability of World Health
Organization Tumor Grade
When comparing imaging biomarkers in tumor cores
between WHO grades, OEF demonstrated significant
difference between LGG and GBM (p < 0.0001; Table 5).
Perfusion analysis in patients with GBM showed areas with
increased Ktrans, CBV, and CBF when compared with LGG
(p < 0.0001 for each).

Diagnostic Performance of Imaging
Biomarkers
Regarding classification of molecular profiling for IDH1
mutation status, best test performance was achieved
using OEF values with sensitivity and specificity of 74.20
and 86.67%, respectively, at a threshold of 0.196 of all
imaging biomarkers in LGG (AUC = 0.828; p < 0.001;
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FIGURE 3 | Quantitative comparison of oxygen metabolism and vascular metrics of genetic profiles. (A–D) Comparison of OEF, Ktrans, CBV, and CBF measurements
between IDH1 mutant and wild type in lower-grade glioma (left panel), as well as between MGMT methylated and unmethylated glioblastoma (right panel).
Comparison of OEF (E) and CBV (F) values between RTK and non-RTK subgroup. The violin plot marked with asterisk (*) indicates that the values were significantly
different between the groups (*P < 0.05; **P < 0.01).

TABLE 2 | Comparison of biomarkers for subgroups of IDH mutation status.

Patients with LGG (WHO II and III)

Parameter IDH mut (mean ± SD) IDH wt (mean ± SD) FDR-adjusted p-value

OEF (%) 17.67 ± 4.98 23.71 ± 5.50 0.001†

Ktrans (mL/min) 0.04 ± 0.03 0.08 ± 0.05 0.004‡

CBV (mL/100 g) 1.97 ± 1.40 4.35 ± 2.33 0.002‡

CBF (mL/100 g per min) 159.90 ± 83.66 276.34 ± 116.83 0.006‡

Patients with GBM (WHO IV)

Parameter IDH mut (mean ± SD) IDH wt (mean ± SD) FDR-adjusted p-value

OEF (%) 23.39 ± 6.77 23.69 ± 5.52 0.645‡

Ktrans (mL/min) 0.08 ± 0.05 0.10 ± 0.06 0.494‡

CBV (mL/100 g) 3.79 ± 2.14 5.12 ± 2.97 0.420‡

CBF (mL/100 g per min) 285.85 ± 63.34 321.46 ± 173.86 0.707‡

OEF, oxygen extraction fraction; Ktrans, volume transfer constant; CBV, cerebral blood volume; CBF, cerebral blood flow.
p-values were calculated using Student t-test† or Wilcoxon rank-sum test‡ with false discovery rate (FDR) correction (<0.05). Statistically significant p-values are
highlighted in bold font.

Figure 4A). Results of perfusion ROC analysis were good
to excellent, albeit with slightly inferior performance (the
AUCs of these parameters ranged from 0.781 to 0.815;
p < 0.01).

Regarding MGMT promoter methylation status classification
in patients with GBM, only OEF allowed for significant
prediction of MGMT promoter methylation yielding an AUC of
0.784 (p = 0.005; Figure 4B).

Frontiers in Neuroscience | www.frontiersin.org 6 October 2021 | Volume 15 | Article 736891

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-15-736891 September 28, 2021 Time: 21:29 # 7

Shen et al. OEF and DCE-MRI Predict Glioma

TABLE 3 | Comparison of biomarkers for subgroups of MGMT status.

Patients with LGG (WHO II and III)

Parameter MGMT+(mean ± SD) MGMT−(mean ± SD) FDR-adjusted p-value

OEF (%) 18.99 ± 5.65 20.70 ± 5.68 0.408†

Ktrans (mL/min) 0.03 ± 0.01 0.06 ± 0.05 0.080‡

CBV (mL/100 g) 1.96 ± 1.05 3.27 ± 2.50 0.200‡

CBF (mL/100 g per min) 161.37 ± 75.27 217.20 ± 130.81 0.225‡

Patients with GBM (WHO IV)

Parameter MGMT+(mean ± SD) MGMT−(mean ± SD) FDR-adjusted p-value

OEF (%) 20.19 ± 4.74 25.17 ± 5.35 0.01‡

Ktrans (mL/min) 0.09 ± 0.07 0.10 ± 0.05 0.397‡

CBV (mL/100 g) 4.17 ± 2.37 5.09 ± 3.04 0.420‡

CBF (mL/100 g per min) 308.45 ± 213.63 312.88 ± 136.05 0.585‡

OEF, oxygen extraction fraction; Ktrans, volume transfer constant, CBV, cerebral blood volume, CBF, cerebral blood flow.
p-values were calculated using Student t-test† or Wilcoxon rank-sum test‡ with false discovery rate (FDR) correction (<0.05). Statistically significant p-values are
highlighted in bold.

TABLE 4 | Comparison of biomarkers for RTK subgroup.

Parameter RTK (mean ± SD) Non-RTK (mean ± SD) FDR-adjusted p-value

OEF (%) 22.021 ± 4.191 18.191 ± 3.635 0.003†

Ktrans (mL/min) 0.058 ± 0.037 0.047 ± 0.031 0.137‡

CBV (mL/100 g) 3.003 ± 2.562 1.563 ± 0.816 0.004‡

CBF (mL/100 g per min) 201.754 ± 104.509 140.769 ± 56.485 0.011‡

OEF, oxygen extraction fraction; Ktrans, volume transfer constant; CBV, cerebral blood volume; CBF, cerebral blood flow; RTK, receptor tyrosine kinase.
p-values were calculated using Student t-test† or Wilcoxon rank-sum test‡ with false FDR correction (<0.05). Statistically significant p-values are highlighted in bold.

TABLE 5 | Comparison of biomarkers for WHO tumor grades.

Parameter LGG (mean ± SD) GBM (mean ± SD) FDR-adjusted p-value

OEF (%) 18.48 ± 4.85 24.17 ± 4.86 <0.0001‡

Ktrans (mL/min) 0.04 ± 0.02 0.09 ± 0.05 <0.0001‡

CBV (mL/100 g) 2.11 ± 1.55 5.07 ± 4.17 <0.0001‡

CBF (mL/100 g per min) 164.80 ± 101.10 314.10 ± 172.00 <0.0001‡

OEF, oxygen extraction fraction; Ktrans, volume transfer constant; CBV, cerebral blood volume; CBF, cerebral blood flow; LGG, lower-grade glioma; GBM, glioblastoma.
p-values were calculated using Wilcoxon rank-sum test‡ with false discovery rate (FDR) correction (<0.05). Statistically significant p-values are highlighted in bold.

In comparison of diagnostic abilities of imaging biomarkers,
OEF, and perfusion metrics, best classification of the RTK
subgroup was achieved using the OEF values with sensitivity and
specificity of 83.33 and 72.41%, respectively, at a cutoff value of
19.28 (AUC = 0.764; p = 0.001). CBV also exhibited moderate
performance in identification of RTKs, yielding an AUC of 0.754
(p = 0.002; Figure 4C).

The differentiation ability of LGG and GBM had a range
of AUCs from 0.794 to 0.819 (p < 0.0001); reliable prediction
of WHO tumor grade was possible using the OEF metric,
yielding areas under the ROC curve of 0.810 (p < 0.0001;
Figure 4D), with a sensitivity and specificity of 76.74 and 79.17%,
respectively. The results of all ROC curve analyses are provided
in Supplementary Table 2.

The Mutational Landscape in the Subset
of Patients With Next-Generation
Sequencing
A more detailed view of molecular biology revealed that the
most significantly prominent genes of epidermal growth factor
receptor (EGFR) (p = 0.001), PTEN (p = 0.002), and TP53
(p = 0.009) between two groups (RTK vs. non-RTK) separated by
the optimized thresholds of imaging parameters were identified
(Figures 5A–C). These genes are closely linked to angiogenesis
or tumor hypoxia (Amelio and Melino, 2015; Gluck et al., 2015;
An et al., 2018). Of note is that the Kyoto Encyclopedia of Genes
and Genomes pathway analysis revealed biologically interesting
insights mainly enriched in cancer- and angiogenesis-related
pathways including glioma, vascular endothelial growth factor
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FIGURE 4 | Predictability of genetic profiles and WHO tumor grade in glioma patients. ROC analyses performed for OEF and vascular metrics in order to assess the
contrast ability to predict (A) IDH mutation status in LGG (IDH1–R132H mutation vs. wild type), (B) MGMT promoter methylation status in GBM (methylated vs.
unmethylated), (C) RTK subgroup in a subset of patients with NGS, and (D) WHO tumor grade (GBM vs. LGG).

(VEGF) signaling, and EGFR tyrosine kinase inhibitor resistance
in the RTK subgroup (p < 0.05; Figure 5D).

Correlation Between Magnetic
Resonance Imaging Measurements With
Immunohistochemistry Results
Specifically, histological results in our study also indicated that
OEF values (r = 0.42, p = 0.002) or less relevant Ktrans values
(r = 0.39, p = 0.005) were positively correlated with the cell

cycle marker Ki67, but only in MGMT unmethylated gliomas
(Figure 6). Apart from that, Ki67 in IDH mutant and/or wild-
type gliomas did not correlate with OEF or any perfusion metrics
(p > 0.05).

DISCUSSION

In this study, we investigated CAT for QQ-based oxygenation
extraction fraction mapping; meanwhile, DCE-MRI was explored
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FIGURE 5 | The mutational landscape and biological signatures for 50 tumor samples with NGS, 49 of which harbored genetic alterations. (A–C) Samples from
patients have been stratified according to the cutoff value of imaging parameters (CBV, CBF, and OEF) for RTK aberrations. The heat map below displays the
somatic mutated genes ordered by their respective mutation frequencies. The significant genes with a p-value < 0.05 were labeled on the left. (D) Kyoto
Encyclopedia of Genes and Genomes pathway analysis enriched in the RTK subgroup.

to demonstrate the non-invasive predictability of genetic profiles
and WHO tumor grade in glioma patients. CAT for QQ-
based OEF mapping that is respiratory challenge-free is a
clinically compatible and potentially valuable imaging technique
for oxygenation mapping. The current study revealed the
feasibility of CAT for QQ-based OEF mapping, along with
characterization of tumor angiogenesis assessed by using DCE-
MRI, can potentially be used as non-invasive imaging biomarkers
for genetic profile prediction and glioma grading in the
clinical routine.

Regional OEF is an essential biomarker for investigating
tissue metabolism and function in various diseases such

as stroke (Derdeyn et al., 1998, 2002), cerebral tumors
(Ito et al., 1982), and Alzheimer’s disease (Ishii et al.,
1996). The OEF mapping is achieved via application of
CAT to denoise QSM + qBOLD (QQ) estimation of OEF
based on 3D multiecho gradient echo acquisition. The CAT
algorithm based on unsupervised machine learning substantially
improves the robustness against noise of QQ-based mapping
of OEF within a few minutes. This CAT for QQ-based
OEF mapping eliminates assumptions and is theoretically
more accurate than other OEF mapping methods (Kudo
et al., 2016; Zhang et al., 2018). Therefore, rapid OEF
mapping can be included in routine clinical MRI protocols to
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FIGURE 6 | Correlation between MRI measures and Ki67 expression in glioma patients. Scatterplot with linear regression line shows a weak to moderate association
between MRI measures of OEF (A) and Ktrans (B) with Ki67 expression in MGMT promoter methylated and unmethylated gliomas followed by Ki-67
immunohistochemistry on the lower panel (C,D).

accurately evaluate oxygen metabolism in glioma patients and,
upon further validation, would help patient stratification for
targeted therapy.

QQ-based OEF mapping with CAT performed markedly
better in prediction of IDH1 mutation status than WHO
tumor grade in this study cohort. Compared with perfusion
ROC analyses, the OEF mapping yielded good prediction
of IDH mutation status. Therefore, we infer that genetic
status, by means of IDH1 mutation status, is more reflective
than the histologic class, regarding oxygen metabolism or
tumor vascularization. The latest WHO classification of
CNS tumors termed gliomas of WHO grades I–III together
as “lower-grade gliomas” with a great majority of IDH1

mutations and a wide range of overall survival within this
group (Cancer Genome Atlas Research Network et al.,
2015; Louis et al., 2016). Mutations in IDH1 gene–encoded
enzymes are expected to cause widespread disturbances of
cellular metabolism, including DNA hypermethylation with
subsequently increased tumor metabolism and degradation
of HIF, leading to downstream inhibition of vasculogenesis-
and angiogenesis-related signaling (Ye et al., 2013). Hence, the
investigated OEF values and vascular metrics are expected to
be significantly lower in IDH1-mutated tumors, in agreement
with our study findings. It is conceivable that lower OEF
and perfusion values in IDH1-mutated gliomas could be due
to lower proliferation rates (Bralten et al., 2011) and less
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angiogenesis (Kickingereder et al., 2015) compared with their
wild-type counterparts.

OEF mapping allowed for prediction of MGMT promoter
methylation status that is difficult to detect in perfusion
MRI. Tumors with unmethylated MGMT promoter showed a
trend toward hyperperfusion in our data, in agreement with
previous results obtained from perfusion imaging (Choi et al.,
2017; Han et al., 2018). MGMT, the gene encoding the DNA
repair enzyme O6-methylguanine-DNA methyltransferase, is
methylated in 30–40% of GBM and 80% of IDH1-mutated
LGGs (Hegi et al., 2005). Unmethylated MGMT is associated
with high levels of MGMT expression and consequently
induces upregulation of HIF-1α, elevated hypoxia, and increased
angiogenic potential (Cao et al., 2009; Pistollato et al., 2010;
Jue et al., 2017). Transferred to our findings, this may explain
higher OEF and perfusion in the GBMs with unmethylated
MGMT promoter compared with methylated phenotype. This
observation appears consistent with results from Chahal et al.
(2010) showing that a direct link between MGMT expression and
decreased angiogenicity and tumorigenicity of GBM cells. Most
importantly, these distinguishable molecular signatures such as
IDH and MGMT can be translated into distinct phenotypes
and are non-invasively predictable with physiologic MRI in a
clinical setting.

Interestingly, we found moderate associations of increased
OEF and perfusion metrics in the designated RTK subgroup,
showing a performance of imaging biomarkers to predict
relevant RTKs implicated in glioma. Our finding of
elevated imaging parameters in tumors may correspond
to the promotion of angiogenesis and hypoxia in a subset
of patients via amplification and mutational activation
of RTK-encoding genes (Stommel et al., 2007). Aberrant
activation of RTKs promotes increased angiogenesis through
multiple downstream effectors, which mediate a variety of
vascular activities, including endothelial cell proliferation,
migration, and new vessel formation (Gluck et al., 2015).
As to signaling interplays between RTK activity and
tumor hypoxia, the activation of VEGF receptor (VEGFR)
via HIF-mediated VEGF transcriptional activation and
consequent accelerated tumor angiogenesis represents
one of the commonly described mechanisms that confer
aggressive manifestation of hypoxic tumors (Forsythe
et al., 1996). Moreover, activation of the RTK EGFR is
a critical pathogenetic event involved in GBMs, with
amplification and mutation, which promotes angiogenesis
via distinct signaling pathways. In line with the finding of
elevated relative CBV in patients with EGFR amplification
by Kickingereder et al. (2016), such research efforts are
essential to develop targeted therapies for more personalized
cancer management.

In the current study, quantitative analysis regarding WHO
grade showed increased OEF, vascular permeability, and
perfusion metrics in GBM compared to LGG. OEF mapping
has a fair prediction ability of WHO tumor grade. The
preliminary correlation between HIF-1α expression (as per
IHC) and increased OEF areas (Tóth et al., 2013) might
well reflect hypoxic areas, highly characterized GBM, and

thus aid in the differentiation between LGG and GBM.
Our findings are in accordance with generally accepted
knowledge about the mechanisms of glioma-associated
neovascularization and the role of oxygen metabolism
in the following processes (Hardee and Zagzag, 2012).
Initially, tumor cells infiltrate through the central nervous
system as well as increase oxygen extraction and nutrient
supplies through vascular co-option of intact native blood
vessels. Involution of co-opted vessels resulted in tumor
hypoxia, upregulation of proangiogenic factors, and shift
toward an angiogenic phenotype (Holash et al., 1999).
Interestingly, higher OEF values were most prevalent in
the peripheral area, which also fits with recent observations
of Pistollato et al. (2010), who demonstrated expression
of hypoxia markers (HIF-1α and VEGF) in this region.
Therefore, multiparametric MRI-based physiological
imaging may provide a better characterization of tumor
microenvironment and yield grading of gliomas in
clinical routine.

There are several limitations in the current study. The
numbers of patients for the GBM with mutant IDH1 gene
were relatively small. Up to now, this study recruited the
largest patient cohort with glioma to obtain QQ-based OEF
mapping with CAT. IDH1, however, is mutated in only
∼10% of GBMs (Yan et al., 2009). A further limitation of
our study is that we did not include a validation of our
approach. Biological validation of the MRI-based imaging for
OEF and vascular parameters is required by correlation with
findings from invasive methods or other imaging modalities in
independent study cohorts.

CONCLUSION

CAT for QQ-based OEF mapping, along with DCE perfusion
MRI, enables superior predictability of the molecular
characteristics including IDH mutation, MGMT promoter
methylation status and RTK subgroup, and fair performance
in differentiation of GBM vs. LGG. Impressively, the
imaging biomarkers provided macroscopic insights into
the heterogeneity of the biological changes in oxygen
metabolism or angiogenesis that is potentially driven by
genetic aberrations and shed a new light onto potential
patient subsets for targeted therapy. Therefore, QQ−based
OEF mapping by CAT and tumor-associated angiogenesis
assessed by DCE-MRI enables prediction of genetic features
and glioma grading, significantly extending the existing
repertoire of non-invasive imaging biomarkers used in
the preoperative workup and treatment guidance for
patients with glioma.
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