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Abstract
Gastrointestinal helminths are a global health issue, for humans as well as domestic animals. Most studies focus on the tis-
sues that are infected with the parasite, but here we studied the ileum, a tissue that is rarely infected by helminths. We tested 
whether inflammation in the ileum contributes to the development and severity of diarrhoea, by comparing sheep that are sus-
ceptible (n = 4) or resistant (n = 4) to the disease. We analyzed the ileum transcriptome using RNASeq sequencing approach 
and various bioinformatics tools including FastQC, STAR, featureCounts, DESeq2, DAVID, clusterProfiler, Cytoscape 
(ClusterONE) and EnrichR. We identified 243 differentially expressed genes (DEGs), of which 118 were up-regulated and 
125 were down-regulated DEGs in the diarrhoea-susceptible animals compared to the diarrhoea-resistant animals. The result-
ing DEGs were functionally enriched for biological processes, pathways and gene set enrichment analysis. The up-regulated 
DEGs suggested that an inflammatory immune response was coupled with genes involved in ‘Th2 immune response’ and 
‘anti-inflammatory response’. The down-regulated DEGs were related to ion transport, muscle contraction and pathways 
preventing inflammation. We conclude that i) susceptibility to helminth-induced diarrhoea involves an inflammatory response 
at a non-infectious site; ii) down-regulation of pathways preventing inflammation can contribute to the severity of diarrhoea; 
and iii) genes involved in anti-inflammatory responses can reduce the inflammation and diarrhoea.
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Introduction

Gastrointestinal helminths are a global health issue, for 
humans as well as domestic animals, including sheep, where 
helminth-induced diarrhoea is a major cause of production 
losses (Taylor 2012). We have been studying helminth–sheep 

interactions in a Mediterranean region where winter rainfalls 
are dominant and are conducive to infection of Merino sheep 
by Teladorsagia circumcincta and Trichostrongylus colubri-
formis, the major causes of diarrhoea, or ‘winter scouring’ 
(Jacobson et al. 2020). The climate favours the development 
of L3 stage larvae on pastures from where they are ingested 
by sheep as they graze. In the gastrointestinal tract (GIT), the 
larvae damage the mucosae, develop to adult stage and start 
laying eggs that are then passed in the faeces and deposited 
on the pasture where they hatch, thus completing the life 
cycle (Karlsson et al. 2004).

After ingestion, T. circumcincta primarily infects the 
abomasum (the equivalent of the stomach of non-ruminant 
animals), whereas T. colubriformis infects the duodenum 
(the first few metres of the small intestine; (Craig 2009) 
predilection sites (sites preferred by helminths) have gener-
ally been the focus for studies of the disease process using 
histopathology, immunohistochemistry and gene expression 
analysis. Consequently, very little is known about the roles 
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of other parts of the GIT, such as the ileum (the final seg-
ment of the small intestine), in the development, persistence 
and severity of helminth-induced diarrhoea.

The processes leading to diarrhoea are multifactorial and 
include the damage to the GIT epithelium by the invading 
helminths, disruption of ion transport and fluid absorption 
of due to changes in gut motility and permeability (Wil-
liams et al. 2010; Williams and Palmer 2012) and, in some 
cases, an ‘inflammatory immune response’ (Jacobson et al. 
2020; Karlsson et al. 2005; Larsen et al. 1994). The immune 
response to GIT helminths involves both the innate and the 
adaptive components of immune system, and they combine 
to expel and resist infection. Ingestion of L3 stage larvae 
first provokes the innate immune component, leading to 
the presentation of physical barriers (increases in smooth 
muscle contraction; thickening of the mucous layer and 
production of defensins; (Douch et al. 1984; Harrison et al. 
1999; Harrison et al. 2003), the recruitment of cytotoxic and 
pro-inflammatory cells (mast cells, eosinophils; (Henderson 
and Stear 2006; Balic et al. 2006; Buddle et al. 1992), acti-
vation of pattern-recognition receptors (e.g. toll-like recep-
tors, C-type lectin receptors expressed by antigen-presenting 
immune cells; (Ingham et al. 2008) and production of che-
moattractant molecules (the eotaxin family of chemokines, 
including CCL11, CCL24 and IL-5; (Rosenberg et  al. 
2013). The innate immune response leads to activation of 
the more precise adaptive immune response by presenting 
helminth antigens to specialized molecules, from the major 
histocompatibility complex (MHC-II), that are present on 
antigen-presenting cells. This outcome leads to infiltration 
of mast cells and eosinophils, activation of the Th2-mediated 
(T-helper cell type 2) antibody response (IgA/IgE), through 
the agency of Th2 cytokines (IL-4, IL-5, IL-13), ultimately 
resulting in reduced establishment of larvae, helminth expul-
sion or reduced helminth fecundity (McRae et al. 2015). If 
the helminth burden overcomes the immune response, diar-
rhoea can result. Alternatively, the host can become suscep-
tible to helminth infection if a Th1-mediated (T helper cell 
type 1) immune response is initiated with involvement of 
Th1 cytokines (INF-γ, IL-12) and  CD8+ cytotoxic T cells 
(Finkelman et al. 1994; Gill et al. 2000; Craig et al. 2014).

In our previous work, we investigated the haematology 
profiles of sheep that were genetically susceptible or resist-
ant to the development of diarrhoea (assessed by diarrhoea 
score and faecal consistency score) and of sheep that were 
genetically resistant or susceptible to helminth infection 
(assessed by faecal worm egg count). The haematology pro-
files included haemoglobin content, packed cell volume, red 
blood cell count and white blood cell count. The results led 
us to conclude that haematological profile does not explain 
susceptibility or resistance to infection or diarrhoea, and 
thus offer no promise as traits for genetic selection (Gre-
eff et al. 2020). We then investigated the transcriptomes of 

the duodenum (the site of infection) where we compared 
the expression profiles of genes involved in the immune 
responses, again comparing diarrhoea-susceptible diarrhoea-
resistant animals to test whether a hypersensitive inflamma-
tory or immune response explains diarrhoea in animals with 
a low worm burden (Hassan et al. 2022). Our observations 
made it clear that the mechanisms of immune suppression, 
tissue repair and maintenance of physical barriers were acti-
vated in diarrhoea-susceptible sheep, leading us to reject 
the hypersensitivity hypothesis. Conversely, a Th2 immune 
response was activated in diarrhoea-resistant sheep, explain-
ing their phenotype.

These studies led us to question whether another section 
of the intestine, where infection does not occur, would pre-
sent support for an inflammatory/hypersensitive immune 
response. The ileum came into focus because our histologi-
cal analysis showed that this intestinal segment had more 
eosinophils and masts cells than to the other sections of the 
GIT (Niu et al. 2021). Therefore, in the present study, we 
tested whether the expression of the genes that control the 
inflammatory immune response is related to the develop-
ment and severity of diarrhoea after helminth infection in 
sheep.

Materials and Methods

Animal source, experimental design and Ethics 
statement

The lambs used in this experiment were sourced from the 
flocks that had been maintained at the Katanning Research 
Facility in Western Australia since 2015 and, prior to that, 
at the Mount Barker Research Station, as part of a long-term 
breeding experiment addressing the helminth-diarrhoea-fly-
strike complex (Greeff et al. 2020). The Katanning Research 
facility is situated at an altitude of 300 m, latitude of 33.7°S 
and longitude 117.55°E, and experiences 480 mm yearly 
rainfall, with a winter distribution characteristic of a Medi-
terranean climate. This study was sanctioned by the Animal 
Ethics Committee of the Department of Primary Industries 
and Regional Development, Western Australia (AEC No.17-
1-02 v 2.1).

In November 2016, 986 lambs at weaning age (about 3 
months) were sampled for faecal worm egg count (FEC), 
administered a broad spectrum anthelmintic (Monopantel® 
@ 1 mL/10 Kg body weight), scored for diarrhoea (‘dag 
score’, an indicator of the amount of faecal material accumu-
lated on the hind quarters between hock joint and anus; scale 
of 1–5 with 5 being a high). These data and similar data 
from previous generations were submitted to Sheep Genet-
ics (www. sheep genet ics. org. au) to obtain estimates of the 
Australian Sheep Breeding Values (ASBV) for ‘dag score’ 
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and FEC. The ASBV values for ‘dag score’ were used to 
identify 100 males and 100 females that were most or least 
susceptible to diarrhoea.

Males and females managed similarly but were kept in 
separate paddocks at a stocking rate of 10 animals/1000m2; 
here, they were allowed to graze winter-spring pasture 
composed primarily of Trifolium subterraneum, Trifolium 
michelianum, Trifolium glomeratum and Trifolium repens. 
To minimize contamination with helminth eggs, the pad-
docks were not grazed for 4 months before the start of 
experiment. Green feed would normally not become avail-
able until May, but in 2017 the sheep had access to green 
pastures from February to September due to unusual rainfall 
at the start of experiment. In this environment, the cycle of 
helminth infection is typically related to the onset of winter 
rains in April-May.

For all 200 lambs, diarrhoea and FEC were scored in 
March, May, June (males only), July (females only), August, 
and September, when the experiment ended. At the end of 
September, 20 diarrhoea-susceptible and 18 diarrhoea-resist-
ant sheep were identified and slaughtered. Tissues from the 
GIT were sampled from four diarrhoea-susceptible and 4 
diarrhoea-resistant sheep for study of gene expression. Hel-
minth infection was verified by monitoring FEC monthly 
and at slaughter; moreover, at slaughter, helminths were 
counted and the dominant species were T. circumcincta in 
the abomasum and T. colubriformis in the small intestine, as 
reported in previously (Greeff et al. 2020). Helminths were 
generally absent from the ileum. These observations agree 
with previous studies showing that the predilection sites are 
the abomasum for T. circumcincta (McNeilly et al. 2009) 
and the first few meters of the duodenum for T. colubriformis 
(Wagland et al. 1996). We also monitored the health of the 
sheep, during the experiment and at slaughter, for symptoms 
related to causes of diarrhoea other than helminth infection. 
By monitoring FEC on monthly basis and counting helminth 
species in the GIT at slaughter, we excluded other causes of 
diarrhoea (protozoal, viral or bacterial). The tissue samples 
were stored in RNAlater (Sigma-Aldrich, St. Louis Mis-
souri, USA) at –80°C, as per manufacturer’s instructions, 
until RNA extraction.

RNA extraction, library preparation, quality control 
and sequencing

Total RNA was extracted from approximately 30 mg ileum 
tissue from each sheep using the RNeasy mini plus kit 
(Qiagen, Hilden, Germany), according to manufacturer’s 
instructions with minor modifications. Before extraction, 
RNaseZAP (Thermo Scientific™; Waltham, Massachu-
setts, USA) was used to decontaminate RNases on working 
surfaced and pipettors. The tissue samples were placed in 
700 μL lysis buffer and homogenized using tissue Lyser-II 

(Qiagen, Hilden, Germany). The homogenate was centri-
fuged at 14,000 g for 3 min and the resulting supernatant 
was loaded onto genomic DNA (gDNA) removal columns 
and centrifuged at 10,000 g for 1 min. An equal volume 
of 70% (v/v) molecular grade ethanol was added to the 
flow-through from each gDNA column, mixed thoroughly 
by repeated pipetting, and loaded onto RNA binding col-
umns, centrifuged at 10,000 g for 15 s. The flow-through 
was discarded and the columns were washed with 350 μL 
RW1 wash buffer. To ensure complete removal of gDNA, an 
additional step of on-column gDNA digestion was included, 
using DNase-I (0.34 Kunitz/μL; Qiagen, Hilden, Germany) 
for 15 min. The columns were washed again with 350 μL 
RW1 wash buffer before being washed twice with 500 μL 
of RPE buffer, followed by elution for the final time with 50 
μL RNAse-free water.

A Qubit fluorometer (Thermo Scientific™; Waltham, 
Massachusetts, USA) was used to quantify RNA with an 
RNA-BR kit. The quality was checked on a 2% agarose gel 
and purity was checked using a NanoDrop 2000 (Thermo 
Scientific™; Waltham, Massachusetts, USA). The sam-
ples with (28S/18S) rRNA ratio greater than 1.5, an OD 
(260/280) ratio greater than 2 and an OD (260/230) ratio of 
1.8 or greater were retained for further processing. The sam-
ples were sent to BGI-Hong Kong for library preparation and 
sequencing. To establish the RNA integrity number (RIN), 
samples were also analyzed on an Agilent Bioanalyzer-2100 
(Agilent, Santa Clara, California, USA). Samples with RIN 
values ≥7 were further processed for library preparation and 
sequencing. All the libraries were sequenced with a depth 
of ≥ 22 million reads/sample using the pair-end approach 
(read length 100 base pairs) on a  DNBseqTM platform (BGI, 
Hong Kong).

Bioinformatics analysis; identification 
of differentially expressed genes (DEGs)

The quality of the reads was checked by FastQC and reads 
with a score greater than 30 were aligned with the refer-
ence genome (Oar_rambouillet_v1.0) using STAR (v2.7.3a) 
(Dobin et al. 2013), a very robust and accurate alignment 
tool. Before alignment, indexes were created using the 
reference annotation gtf file (NCBI Ovis aries Annota-
tion Release 103) and a reference genome (Oar_rambouil-
let_v1.0) fasta file. The featureCounts function in Subread 
software v2.0.0 (Liao et al. 2014) was used to count raw 
genes after mapping with the following parameters: -t gene 
--primary -p. The DESeq2 R package was used to study 
differentially expressed genes, using the diarrhoea-resist-
ant group as the control (Love et al. 2014). A gene with 
a false discovery rate (FDR) cut-off < 0.05 and a log2fold 
change ≥ 1 was considered to be differentially expressed. A 
principal component analysis (PCA) was performed on the 
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DESeq2-normalised count data after regularised log trans-
formation to estimate and visualize the variations between 
samples.

Functional enrichment of DEGs

A web-based tool, DAVID (The Database for Annotation, 
Visualization and Integrated Discovery) (Huang et al. 2009), 
was used to provide further information about the gene 
ontology (GO) terms that were significantly enriched in the 
DEGs. Additionally, the clusterProfiler (v3.18.1) R package 
was used for Gene Set Enrichment Analysis (GSEA) with 
org.Bt.eg.db (Bos taurus) being the source of annotation as 
the genome-wide annotation list for sheep was not avail-
able. The focus in GO terms was biological processes and 
KEGG pathways with a standard false discovery rate of less 
than 5% (FDR < 0.05). The Search Tool for the Retrieval of 
Interacting Genes/Proteins (STRING, v11) (Szklarczyk et al. 
2019), a biological database and a web resource, was used 
to highlight functional interactions among the DEGs. This 
biological database collects and integrates all functional 
interactions between the proteins/genes by linking projected 
and known protein–protein interaction (PPI) data for many 
organisms. STRING was used to generate PPI with these 
options selected: interactions discarded with a confidence 
score < 0.4; ‘disconnected nodes hidden’ and ‘no more 
than 5 interactors to show in  1st and  2nd shell’. To cluster 
and visualize gene sub-networks in Cytoscape (v 3.7.2), the 
ClusterONE plugin was used that clusters genes by func-
tional relevance. Clusters were used that had a P-value < 
0.05 cut-off and a minimum > 5 genes per cluster. Another 
web-based tool, Enrichr, was used to study the pathways and 
biological functions related to genes in the sub-networks 
(Chen et al. 2013).

Results

RNA‑Seq Data description and Principal component 
analysis

The sequencing resulted in 198,340,385 pair-end reads with 
a range from 22,267,551 to 26,038,920 pair-end reads per 
sample and a minimum of 21,683,292 reads in each sam-
ple successfully mapped to the reference genome. Average 
unique mapping rates were 84% in the diarrhoea-susceptible 
group and 83% in the diarrhoea-resistant group (summarized 
in Fig. 1).

The PCA plot (Fig. 2a) showed a tight clustering of the 
diarrhoea-susceptible samples, and a variable distribution of 
diarrhoea-resistant samples, with PC1 and PC2 representing 
29.8% and 19.1% of the total variance, respectively, indicat-
ing inherent differences between diarrhoea-susceptible and 

diarrhoea-resistant sheep in gene expression in the ileum 
that can be explained through genetic variation.

Comparative analysis of DEGs

We identified 243 DEGs, of which 125 were down-regu-
lated and 118 were up-regulated in the diarrhoea-susceptible 
group in comparison with the diarrhoea-resistant (control) 
group (Fig. 2b). The details of all DEGs and associated 
biological processes and pathways are presented in Sup-
plementary File S1, and a heatmap plot showing the top 
100 DEGs is presented in Supplementary Fig. S1. The 10 
most significant up-regulated and down-regulated DEGs 
are shown in Fig. 3. Among the up-regulated DEGs were 
CD86, SIGLEC1, C3AR1, BST-2A and several genes with 
functions that are not determined; the down-regulated DEGs 
included PRKG, FOXP2, FBX032, FMOD, CAND2, as well 
as a few genes with functions not yet determined.

Functional enrichment, PPI network 
and sub‑network analysis of DEGs

Functional enrichment of DEGs was based on GO biological 
processes and KEGG pathways, with FDR < 0.05 consid-
ered as significant using DAVID and GSEA in clusterPro-
filer (importantly, the outcomes were similar for the two 
analyses). In the diarrhoea-susceptible group, the common 
significant GO terms in the biological processes in the ileum 
included: ‘defense response’, ‘immune response’, ‘response 
to biotic stimulus’ and ‘inflammatory response’ (Fig. 4). The 
common significant KEGG pathways included ‘phagosome’, 
‘tuberculosis’, ‘graft-versus-host disease’, ‘staphylococcus 
aureus infection’, ‘allograft rejection’, ‘type I diabetes melli-
tus’, ‘autoimmune thyroid disease’, ‘cell adhesion molecules 

Fig. 1  The mapping statistics from the RNASeq analysis of the ileum 
from sheep with high and low susceptibility to diarrhoea
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(CAMs)’ and ‘rheumatoid arthritis’ (Supplementary File 
S1).

Importantly, GSEA analysis revealed significant up-reg-
ulation of the pathways for ‘inflammatory bowel disease’ 
and ‘complement and coagulation cascades’ in diarrhoea-
susceptible sheep (Fig. 5b).

The network analysis of the biological processes in 
the ileum in diarrhoea-susceptible sheep revealed three 
significant sub-networks of genes. Some of the enriched 
terms included ‘cellular response to molecule of bacterial 
origin’, ‘cellular response to lipopolysaccharide’, ‘posi-
tive regulation of type 2 immune response ’, ‘regulation 

of interleukin-6 production’, ‘inflammatory response’ and 
‘positive regulation of inflammatory response’. It is clear 
from the functional enrichment of these sub-networks that 
they are associated with inflammation or bacterial infection 
(Supplementary File S2). The network and sub-networks for 
up-regulated genes are shown in Fig. 6a.

The significant GO biological processes associated with 
down-regulated DEGs in both analyses were ‘muscle system 
process’, ‘muscle contraction’, ‘striated muscle cell develop-
ment and differentiation’, ‘muscle cell and structure develop-
ment’, ‘regulation of metal ion transport’, ‘myofibril assem-
bly cardiocyte differentiation’, ‘potassium ion transport’, 
‘neurotransmitter transport’ and ‘regulation of ion transport’ 
(Fig. 4). The DAVID analysis revealed no significant KEGG 
pathways enriched in down-regulated DEGs (Supplemen-
tary File S1). The GSEA analysis revealed ‘cardiac muscle 
contraction, ‘cAMP signaling pathway’, ‘oxytocin signal-
ing pathway’, ‘insulin secretion’, ‘salivary secretion’ and 
‘endocrine and other factor-regulated calcium reabsorption’ 
as down-regulated pathways, among others (Fig. 5). The 
network analysis resulted in two significant sub-network of 
genes, and their functional enrichment was associated with 
‘smooth muscle contraction’, ‘muscle fiber development’, 
‘vascular smooth muscle contraction’ and ‘oxytocin sign-
aling pathway’ (Supplementary File S2). The network and 
sub-networks for down-regulated genes are shown in Fig. 6b.

Discussion

We were able to identify remarkable differences in the 
molecular mechanisms (pathways and biological processes) 
in the ileum of sheep that were associated with susceptibility 
to develop diarrhoea, in spite of the fact that the parasites of 
interest establish in the abomasum and duodenum, and not 
in the ileum. The diarrhoea-susceptible sheep show a domi-
nant ‘inflammatory’ immune response with a Th2 polarity, 
whereas the diarrhoea-resistant sheep appear to express 
physiological states that promote smooth muscle contrac-
tion, while maintaining intestinal transport and absorption 
at homeostatic level.

In the diarrhoea-susceptible sheep, the up-regulated 
genes were linked to the immune responses and inflam-
mation, with the most important processes and pathways 
including ‘defense response’, ‘inflammatory response’, 
‘inflammatory bowel disease’, ‘cytokine-cytokine recep-
tor interaction’, ‘response to other organism’, ‘complement 
and coagulation cascades’, ‘phagosome’, ‘graft versus host 
disease’, ‘allograft rejection’, ‘autoimmune thyroid disease’, 
‘rheumatoid arthritis’ and ‘cell adhesion molecules’. An 
interesting comparison can be made with human inflam-
matory bowel disease (IBD), such as Crohn’s disease, a 
complex disease with genetic disposition that involves an 

Fig. 2  (a) Principal component analysis scatter plot showing gene 
expression in the ileum of the diarrhoea-susceptible (HD) and diar-
rhoea-resistant (LD) groups. The percentages on each axis represent 
the proportion of variation explained by the principal components, 
with PC1 (29.8%) being variation across groups and PC2 (19.1%) 
being variation within group. (b) Venn diagram showing the numbers 
of up-regulated and down-regulated genes in the diarrhoea-suscepti-
ble group, in comparison with the diarrhoea-resistant group. The total 
differentially expressed genes (DEGs) are indicated by the over-lap-
ping area
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aberrant immune response towards intestinal pathogens and 
the microbiome (Graham and Xavier 2020), as shown in 
Fig. 7a, b. In the sheep ileum, diarrhoea susceptibility is 
linked to the ‘inflammatory response’ biological process 
and to the ‘inflammatory bowel disease’ KEGG pathway, 
similar to IBD in humans where diarrhoea is also linked to 
inflammation of the ileum (Larsen et al. 1999). Most studies 
of IBD are conducted on humans where risk factors have 
been identified, including nucleotide-binding oligomeriza-
tion domain2 (NOD2), a gene revealed by GSEA analysis as 
being enriched in diarrhoea-susceptible sheep (Al Nabhani 
et al. 2017). NOD2 is an intracellular pattern recognition 

receptor and has been associated with an autoinflammatory 
disease marked by abnormally increased inflammation, pre-
dominantly mediated by cellular components of the innate 
immune system (Kastner et  al. 2010; Yao et  al. 2015). 
Cytokine–cytokine receptor interaction, another pathway up-
regulated in diarrhoea-susceptible sheep, indicates interac-
tions among cytokines (Elias and Zitnik 2012), particularly 
those that have been up-regulated in our study (Fig. 8a, b).

Some of the DEGs in diarrhoea-susceptible sheep, 
enriched in GO terms and sub-network analysis, included 
IL-6, LOC101121216 (serum amyloid A), SIGLEC1, 
CHI3L1, S100A9, CD14, CD68, CD86, Ovar-DRB1, 

Fig. 3  Volcano plot showing 
the 10 most significant DEGs 
that were up-regulated or 
down-regulated in the ileum 
of diarrhoea-susceptible sheep 
(HD) compared to diarrhoea-
resistant (LD) sheep

Fig. 4  Functional enrichment analysis for GO biological process 
terms in the ileum of diarrhoea-susceptible sheep. (a) Functional 
enrichment analysis with DAVID using the up-regulated and down-
regulated DEGs as the input data. The values on the x-axis represent 

the number of genes associated with each significant GO biological 
process term. (b) Functional enrichment analysis using GSEA of the 
entire DESeq2-normalised dataset. The top 40 significantly enriched 
GO biological process terms are shown
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IL1RL1, LOC101103238 (CXCL5), CCL22 and IL1RN. As 
helminth infection occurs at the abomasum and duodenum 
in our model, the up-regulation of immune system genes in 
the ileum was striking. IL-6, an important cytokine generally 
associated with inflammation and autoimmunity (Tanaka 
et al. 2014; Gabay 2006), can be both pro- and anti-inflam-
matory: trans-signaling (via a soluble form of IL-6 recep-
tor with a broader spectrum of IL-6 target cells) leads to 
pro-inflammatory responses, whereas classic signaling (via 
membrane-bound IL-6 receptor) promotes anti-inflamma-
tory and regenerative responses (Scheller et al. 2011). In our 
study, IL-6 has been enriched in inflammation-related bio-
logical processes and pathways, so we need to consider its 
inflammatory role at the ileum. Anti-IL-6 receptor antibody 
can be used treat chronic inflammatory conditions, such 
as rheumatoid arthritis (Tanaka et al. 2014; Scheller et al. 
2011). IL-6 production can also be promoted by another 
gene that is up-regulated in diarrhoea-susceptible animals, 
serum amyloid A (SAA) another indicator of inflammation, 

a molecule with cytokine-like properties and immunomodu-
latory roles (Koga et al. 2008). It is clear that SAA has che-
moattractant properties for T-lymphocytes, monocytes and 
leukocytes, and induces the secretion of pro-inflammatory 
cytokines, including IL-6, IL-8, TNF-α and IL-1β (Thomp-
son et al. 2016; Badolato et al. 1994; Ebert et al. 2015). 
Other important genes with inflammatory outcomes, some 
of which were among top significantly up-regulated genes, 
were SIGLEC1 (Asano et al. 2015), C3AR1 (Banda et al. 
2012; Coulthard and Woodruff 2015), S100A9 (Frohberger 
et al. 2020; Wang et al. 2018), CHI3L1 (Lee et al. 2009; 
Zhao et al. 2020), CXCL5 (Wang et al. 2009; Z’Graggen 
et al, 1997), CD14 (Grimm et al. 1995), CD68 (Liu et al. 
2009) and IL1RL1 (Nemeth et al. 2017). The up-regulation 
of these genes during inflammation is evident from the lit-
erature and supports our hypothesis that an inflammatory 
immune response at the ileum in the diarrhoea-susceptible 
sheep can increase severity of the disease.

Fig. 5  Functional enrichment analysis for KEGG pathways in the 
ileum of diarrhoea-susceptible sheep. (a) DAVID analysis using up-
regulated and down-regulated DEGs as the input data. The values on 
the x-axis represent the number of genes associated with each signifi-

cant KEGG pathway. (b) GSEA analysis using the entire DESeq2-
normalised dataset. The top 36 significantly enriched KEGG path-
ways are shown

Fig. 6  Protein–protein interaction (PPI) networks derived from 
STRING with sub-networks (SN) derived using the Cytoscape Clus-
terONE plugin. (a) Up-regulated DEGs: SN1 (dark green nodes); 

SN2 (red bordered nodes); SN3 (orange nodes). (b) down-regulated 
DEGs: SN1 (dark green nodes); SN2 (orange nodes)
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On the other hand, it was surprising to observe up-reg-
ulation of several genes with anti-inflammatory roles: i) 
macrophage-derived chemokine (MDC/CCL22), a mole-
cule thought to help prevent intestinal inflammation (Wang 
et al. 2009); ii) CCL22 and its receptor CCR4 (expressed 
by Th2-cells and Treg cells), known to play important roles 
in preventing inflammatory bowel diseases such as colitis 
(Akhabir and Sandford 2010) by promoting Treg cell com-
munication with dendritic cells (Yuan et al. 2007; Rapp 
et al. 2019); iii) IL1RN binds to the IL-1 receptor but has a 
greater affinity than IL-1, so it blocks this major pro-inflam-
matory cytokine that is highly expressed in various acute and 
chronic inflammatory conditions (Dinarello 1998; Nicklin 
et al. 2000; Shiiba et al. 2015).

The polarity of the immune response is important with 
respect to the type of infection. As stated earlier, a Th2 
immune response is desirable in helminth infection, but 
as the ileum is not the site of infection, it was surprising 
to observe the up-regulation of genes, including CD86, 
Ovar-DRB1, IL1RL1 and IL-6, that polarize the immune 
response towards a Th2 response. CD86 (also called B7-2) 
is expressed by antigen-presenting cells, such as dendritic 
cells and macrophages, and preferentially acts as a co-
stimulator of the production of Th2 cells from Th precur-
sor cells (Kuchroo et al. 1995). The up-regulation of CD86 
in diarrhoea-susceptible sheep suggests that its role is to 
enhance IL-4 production, promoting a Th2 immune response 
(Zhou et al. 2015). Ovar-DRB1 codes for a major histocom-
patibility (MHC-II) molecule that is expressed by antigen-
presenting cells (e.g. dendritic cells) that present antigenic 
molecules from helminths to naïve  CD4+ T cells, so they can 
transform into Th2 cytokine-producing cells that lead the 
way to an antibody-producing, adaptive-immune response 
(McRae et al. 2015; Neefjes et al. 2011). Ovar-DRB1 paves 
the way towards this outcome, with up-regulation of IL-6 
strengthening the response by blocking the Th1 response 
(Diehl et al. 2000). Another cytokine receptor, IL1RL1, is 
an important member of IL-1 receptor family and recep-
tor for IL-33 (Zhou et al. 2015). The ‘IL-33 and its recep-
tor IL1RL1 axis’ has been associated with inflammation 
and stimulation of the Th2 immune response in ulcerative 
colitis where levels of IL-33 are significantly increased 
(Nemeth et al. 2017; Akhabir and Sandford 2010). IL-6 has 
been shown to promote a Th2 response (Diehl et al. 2000; 
Diehl and Rincón 2002), a desirable outcome in helminth 
infection, but its pro-inflammatory properties could lead to 
chronic inflammation.

The functional enrichment analysis did not reveal links 
between any of the down-regulated genes and the promotion 
of the immune response or inflammation. Rather, most of 
the functions highlighted were related to muscle physiol-
ogy and contraction, absorption and pathways preventing 
inflammation. The down-regulation of these biological pro-
cesses and pathways suggests a disruption in, for example, 
peristalsis and the transmembrane ion transport system that 
are important for maintaining fluid balance in the GIT and 
are affected by inflammatory immune responses (Eisenhut 
2006). Potassium ion  (K+) transport is critical in fluid bal-
ance in the gut (Eisenhut 2006) and, in our study, is affected 
by down-regulation of ATP1A2. Enteric oxytocin plays sig-
nificant roles in GIT physiology and the down-regulation 
of the oxytocin-signaling pathway in diarrhoea-susceptible 
sheep would contribute to increased inflammation, reduced 
transit time and increased faecal water content—in other 
words, the high diarrhoea outcome (Das et al. 2018; Welch 
et  al. 2014). Cyclic adenosine monophosphate (cAMP) 
reduces gut inflammation by decreasing infiltration of leu-
cocytes (Zimmerman et al. 2012), so the down-regulation 
of the cAMP-signaling pathway would also contribute to 
inflammation of the ileum, again promoting diarrhoea (Zim-
merman et al. 2012; Schafer et al. 2010).

Some of the down-regulated genes in diarrhoea-suscep-
tible sheep, including MYH11, CACNB2, ATP1A2, CAV3, 
PRKG1, FOXP2 and FBXO32, normally maintain a physi-
ological and homeostatic environment in the gut, so their 
down-regulation would increase the severity of diarrhoea 
through, for example, disruption of gut absorptive function. 
MYH11 encodes myosin 11, a major contractile protein, that 
plays important roles in intracellular transport, signal trans-
duction, cell migration and adhesion, and its down-regula-
tion has been linked to poor prognosis in colorectal cancer 
(Wang et al. 2014). As most of the nutrients and fluids are 
absorbed from the epithelium of the small intestine, the vari-
ous ion channels play critical roles (Das et al. 2018). For 
example, two genes, CACNB2 and CACNA1C, transcribe 
for voltage-dependent L-type calcium channels that are 
important for the influx of the calcium ions  (Ca+2) required 
for intestinal smooth muscle contraction; selective blockage 
of these channels can lead to paralytic ileus (lack of move-
ment in the intestine; (Das et al. 2018; Wegener et al. 2006). 
The genes ATP1A2 and ATP2B2 transcribe for ‘ATPase 
 Na+/K+ transporting membrane polypeptides’ that maintain 
a concentration gradient for sodium  (Na+) and potassium 
 (K+) ions across the plasma membrane. These gradients are 
integral to physiological processes in many organ systems, 
including the gut, where they maintain electrolyte and fluid 
homeostasis (Das et al. 2018; Pirahanchi et al. 2020). CAV3 
(caveolin-3) promotes vascular smooth muscle contraction 
and prevents atherosclerosis (Gutierrez-Pajares et al. 2015). 
PRKG1 transcribes for cGMP-dependent protein kinase 

Fig. 7  ‘Inflammatory bowel disease’ KEGG pathway (Kanehisa 
et  al. 2020) (a) with up-regulated genes in our study highlighted in 
red colour in the diarrhoea-susceptible group. (b) A category Netplot 
(CNET) showing the relationships among genes in the inflammatory 
bowel disease pathway

◂
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(PKG-1) which promotes vasodilation and vascular perme-
ability, but it is significantly down-regulated by inflamma-
tory cytokines leading to vasoconstriction and a decreased 
vascular permeability, ultimately affecting nutrient absorp-
tion into the bloodstream (Browner et al. 2004). Overall, the 
functional enrichment of down-regulated genes in diarrhoea-
susceptible sheep indicates a disruption of absorption and 
smooth muscle contraction and increased inflammation, all 
of which contribute to diarrhoea.

Conclusion

In the diarrhoea-susceptible sheep, there were indicators 
of an inflammatory response through up-regulated genes 
enriched in biological processes and pathways, and the 
immune response was polarized towards a Th2 response. 
We conclude that this inflammatory response increases the 
severity of diarrhoea in susceptible sheep because genes 
with pro-inflammatory features dominate the genes with 
anti-inflammatory properties. On the other hand, all of the 
down-regulated genes and associated biological processes 
and pathways that were enriched were related to physiologi-
cal processes like smooth muscle contraction, ion transport 
and the homeostasis of the gut environment. Nevertheless, 
it is clear that an enhanced inflammatory immune response, 
accompanied by down-regulation of ion transport, oxytocin 
and cAMP signaling, at sites other than where infection 
occurs, can contribute to the development of severe diar-
rhoea. Furthermore, there are clear similarities with inflam-
matory bowel disease in humans (e.g. Crohn’s disease) 
where an inflammatory immune response leads to Ileitis 
(inflammation in the ileum). While it is most evident that 
there is a hypersensitive immune response to helminth larvae 
in infected areas of GIT, more work is needed to determine 
whether an inflammatory response to intestinal microbiota, 

in the absence of helminths, also contributes to the expres-
sion of diarrhoea. With respect to managing the disease, 
we can target genes with anti-inflammatory roles can be to 
control the severity of diarrhoea.
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showing the relationships among the genes in cytokine–cytokine 
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