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the classification of older female fallers
and prediction of ‘first-time’ fallers
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Falls remain a challenge for ageing societies. Strong evidence indicates that a

previous fall is the strongest single screening indicator for a subsequent fall

and the need for assessing fall risk without accounting for fall history is

therefore imperative. Testing in three functional domains (using a total

92 measures) were completed in 84 older women (60–85 years of age),

including muscular control, standing balance, and mean and variability

of gait. Participants were retrospectively classified as fallers (n ¼ 38) or

non-fallers (n ¼ 42) and additionally in a prospective manner to identify

first-time fallers (FTFs) (n ¼ 6) within a 12-month follow-up period. Princi-

pal component analysis revealed that seven components derived from the

92 functional measures are sufficient to depict the spectrum of functional

performance. Inclusion of only three components, related to mean and tem-

poral variability of walking, allowed classification of fallers and non-fallers

with a sensitivity and specificity of 74% and 76%, respectively. Furthermore,

the results indicate that FTFs show a tendency towards the performance of

fallers, even before their first fall occurs. This study suggests that temporal

variability and mean spatial parameters of gait are the only functional

components among the 92 measures tested that differentiate fallers from

non-fallers, and could therefore show efficacy in clinical screening

programmes for assessing risk of first-time falling.
1. Introduction
The relevance of falls for healthy ageing has been emphasized in numerous

studies over the past decades. It is well established that falls are a considerable

health threat for ageing populations as well as a serious socio-economic burden

for Western societies, with a yearly cost of approximately 1% of the total

national healthcare expenditure [1]. Falls commonly lead to fractures of the

femoral neck, resulting in hospitalization and a general loss of mobility, but

importantly death in some 20% of cases [2]. This makes falls not only the lead-

ing cause of mortality after injury in older people [3], but also a serious threat to

independent living among the elderly population. Furthermore, with increasing

number of older individuals across the world, healthy ageing is a primary focus

for researchers and clinicians alike.

Extensive research has been conducted in order to develop screening tools

for the identification of individuals with a high risk of falling [4–7], and thus

those who will gain the greatest benefit from preventive therapies [8]. However,

the large and varied number of risk factors poses a considerable impediment to

their success, which has led to wide variety of approaches [9]. Current methods

typically range from self-reported questionnaires and clinical assessment of

function, through to intensive laboratory evaluation of motion tasks [10–16].

Most commonly used screening tools incorporate a combination of history of

falling and clinical mobility assessment (e.g. the Performance Oriented Mobility

Assessment (POMA) [6] or the Stratify Screening Test [7]), and have been
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relatively successful (sensitivity and specificity of 0.75 and

0.80) in assessing fall risk among the elderly [6,7]. However,

a large proportion of subjects still cannot be classified accu-

rately. For example, the 23% and 30% levels of positive

predictive values of the Stratify and POMA tests, respectively,

demonstrate the high false positive rate and therefore the

inappropriateness of subject classification [17,18]. Systematic

reviews summarizing these screening tools confirm their

limited efficacy for faller identification [6,7,17,19].

Irrespective of the tools used for identification of fallers, the

best single predictor, as well as the most commonly used factor

for fall prediction, is history of falling [14,20]. The relative risk

for an older adult to experience a fall is reported to be three

times higher for individuals that have fallen previously com-

pared with those that have not [8,21–23]. Although the

addition of fall history can improve the accuracy and reliability

of identifying individuals with a high fall risk, this parameter

is clearly lacking in approaches that attempt to identify subjects

with an imminent risk of a first-time fall event. As a result,

despite its high predictive power, the parameter ‘history of

falls’ cannot be a part of any genuine prospective FTF identifi-

cation tool. The incorporation of history of falling might also

(i) confound the prediction of a faller due to the clear influence

of a fall on task performance, (ii) outweigh the benefits of any

intervention programme as the best intervention strategies only

reduce the risk of falling by a factor of 1, while the risk

increases by a factor of 3 after experiencing the first fall [4,5],

and (iii) skew the analysis due to the widespread prescription

of pharmaceutical therapies. Thus, it would be difficult to inter-

pret whether a particular study outcome is helpful in

predicting fall risk or is, in fact, a result of having already

experienced a fall event. Although the multi-factorial nature

of falls and the lack of a strong fall-related ‘biomarker’ make

identification of FTFs a burgeoning challenge, targeted preven-

tion programmes can only be effectively implemented after the

successful prospective identification of FTFs.

Although falls are considered a multi-factorial problem

where environmental, intrinsic and external factors are all poss-

ible triggers for the occurrence of a fall [8,20], functional indices

of muscle strength, gait and balance are all known to play critical

roles [8,20,21]. However, rehabilitation programmes focused on

improving their functional ability have not led to the expected

reduction in falls, possibly due to how these physiological

aspects have been reported or interpreted. For example, while

muscle strength is an important physiological parameter, most

activities of daily living are performed at submaximal levels

[24]. Similarly, it has been reported that inter-stride variations

during continuous or repetitive task performance (e.g. gait

variability) might be better suited to capturing the dynamics

of human walking rather than the summary measures of walk-

ing speed, cadence or even step length [25,26]. In fact, fallers

exhibit larger levels of intra-task variability than their healthy

counterparts during balance and gait [27,28], and prospective

studies have also confirmed that extreme levels of variabi-

lity might be the cause and not the consequence of falls

[26,29–31], and careful assessment of these factors might there-

fore allow improved identification of subjects at risk of first-time

falling [26,29–31]. However, until now, the relative contribution

of measures of variability towards identifying fallers from

non-fallers remains unknown, but particularly whether these

intrinsic factors aid in the identification of FTFs.

Through extracting the principal components from mul-

tiple functional measures based on gait, gait variability,
balance, lower extremity strength and force control ability,

in cohorts of fallers and non-fallers, this study aimed to estab-

lish which components are able to best distinguish between

fallers and non-fallers in a retrospective study design. Fur-

thermore, the efficacy of these components to identify FTFs

before the onset of an actual first-time fall event was targeted

in a prospective study design.
2. Material and methods
2.1. Participants
Within a larger study investigating multiple aspects of osteoporo-

sis in older women (EU VPHOP FP7–223864), we recruited 90

older female participants (60–85 years of age) from the local com-

munity (by public announcement in local hospitals, physiotherapy

practice and gyms), that were identified as ‘faller’ (F) or ‘non-

faller’ (NF) based on the question ‘Have you experienced a fall

within the previous 12 months?’ Recruitment was conducted in

order to ensure that two homogeneous groups were produced.

This study focused on assessing the intrinsic factors associated

with falling. Exclusion criteria were

— BMI , 18 or BMI . 33,

— alcoholism (more than 3 units/day),

— type 1 diabetes, cardiac infarct, chronic hepatitis, celiac and mal-

absorption diseases, rheumatoid arthritis, hyperparathyroidism,

hyperthyroidism, cancer,

— treated for more than three months or under treatment with

oral corticosteroids,

— subjects with neurological diseases affecting the neuromuscu-

lar system such as: Parkinson’s disease, muscular dystrophy,

ankylosing spondylitis, myopathies, myasthenia, cerebral

trauma, stroke, peripheral neurosystem diseases,

— fractures/osteosyntheses/degenerative changes that might

cause invalid results in DXA measurements,

— femur fracture or total hip replacement (less than six months),

— subjects who are unable to follow the examinations of the

study protocol or unable to walk 10 m without a walking

aid and

— participation in another study at the same time.

Prior to testing, subjects were classified retrospectively as ‘fallers’

(nF ¼ 42) or ‘non-fallers’ (nNF ¼ 48), based on the question ‘if

they had experienced a fall within the previous 12 months’. Of

these 90 older women, only 84 subjects, including 42 fallers

and 42 non-fallers completed all laboratory-based functional

assessments (table 1). All participants provided written informed

consent and the experiments were approved by the local ethics

committee. Furthermore, of the 42 fallers, four were removed

from the analysis, since their fall event occurred during sports

or strenuous activities such as skiing or cycling and was therefore

considered not to be consistent with a typical uncoordinated fall

event. All 80 remaining participants, consisting of 38 fallers and

42 non-fallers, completed a series of functional tests as described

below.

In addition, fall monitoring was conducted via a postal

questionnaire 12 months after the laboratory measurements in

order to identify previous NFs who underwent a first-time fall

within the 12 month follow-up period (‘FTFs’). Here, question-

naires were sent together with prepaid envelopes for their

return. In the questionnaires, subjects were asked if they had

experienced a fall within the previous 12 months, if they experi-

enced a loss of consciousness or vertigo before the fall and to

provide a detailed description about the fall circumstances.

The NF group without the FTFs was then re-classified

NF’ (figure 1).



Table 1. Anthropometrics and self-reported daily physical activity, alcohol
consumption and medical intake for subjects of NF and F group.

NF F

age (+s.d.), years

weight (+s.d.), kg

height (+s.d.), cm

68.9 (+4.5)

68.7 (+10.3)

161.8 (+6.1)

69.2 (+4.8)

69.9 (+9.9)

162.9 (+6.9)

visual impairment

pain in last 7 days

32

30

37

27

diabetes 3 2

average daily activity

light 10 9

moderate 20 22

heavy 12 11

alcohol frequency

not at all 6 7

less than 1/week 17 14

1 – 2 days/week 10 10

3 – 4 days/week 3 9

5 – 6 days/week 4 1

every day 2 1

medication

no 6 4

1 drug 18 19

2 or more drugs 18 19

NF

retrospective prospective statistical analysis

m
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Figure 1. Schematic of the statistical approach, showing the combined
retrospective and prospective classifications. NF: non-faller; F: faller; FTF: first-
time-faller; NF’: non-faller without FTFs. Asterisk (*) denotes four subjects
were removed from the faller cohort because of extraordinary fall circumstances.
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2.2. Experimental design and procedures
Subjects underwent three separate measurement sessions aimed to

examine repetitive or continuous performance of force production,

postural sway and gait. All tests were conducted on the same day

and each participant was provided sufficient time and practice in

order to familiarize themselves with each task.

2.2.1. Strength measurements
In order to assess muscular strength, maximum voluntary iso-

metric contractions (MVICs) were assessed in the knee

extensors and ankle plantarflexors using a dynamometer

(Biodex 3 Pro, Biodex Medical Systems Inc., USA). Participants

were seated in a standardized position [32]. Knee extension

measurements were performed with the right knee flexed at

908, while for ankle measurements, the knee was fully extended

with 108 of plantarflexion at the ankle. Individuals were

requested to push ‘as hard as they could’ against the attachments

for a period of 10 s, while receiving verbal encouragement.

MVICs for both the knee extensors and ankle plantarflexors

were each measured three times with a minimum of 30 s pause

between contractions [33]. The single greatest value from the

three contractions for the knee as well as the ankle was then

used as the respective MVIC.

2.2.2. Muscular control
In order to assess muscular control, the quality of continuous force

production was assessed using the same experimental set-up as

described above. Here, an objective or target torque (TT) of

either 15, 20 or a ramped 15–20% of the MVIC level was provided

visually on a digital monitor. The active torque applied by the par-

ticipant was then displayed as a real-time visual feedback at
10 Hz, which overlaid the TT. Participants were instructed to

match the torque level ‘as best they could’ for the duration of

the 15 s test by performing isometric knee extension or ankle plan-

tarflexion, respectively. Participants were provided four to five

practice test repetitions to familiarize themselves with the exper-

imental procedures. The presentation order of the signals was

randomized, with all TTs (i.e. constant 15%, constant 20% and

ramp of the 15–20% MVIC) presented a minimum of three

times. The error, or fluctuations within the force output signal,

was then considered a measure of muscular control.

2.2.3. Quiet standing
The older individuals were requested to perform quiet standing

tasks, in order to assess their postural sway. Subjects performed

trials with eyes open (QEO) and closed (QEC) for a duration of

30 s. In the QEO condition, participants focused on a visual target,

positioned at eye level on the wall, approximately 3 m in front of

them, and were instructed to stand as still as possible, while barefoot

with their hands by their sides. The participants’ feet were posi-

tioned on two separate force platforms (AMTI OR6–7–1000,

Watertown, MA, USA). Each subject was provided a minimum of

60 s practice in order to familiarize themselves with the test,

before performing three repetitions of each task. At least 1 min relax-

ation was provided between each sway test. The tri-axial force data

during standing tasks were recorded at 120 Hz in order to allow

determination of measures of the centre of pressure (CoP).

2.2.4. Gait analysis
In order to assess numerous functional parameters of gait, par-

ticipants were requested to walk barefoot along a 10 m straight

walkway, at their preferred walking speed, with recording begin-

ning after at least three practice walks. A minimum of six walks

were then measured for the determination of mean measures of

gait, as well as gait variability. Three-dimensional kinematics of

both feet were captured using a 10-camera motion capture

system (Vicon, OMG Ltd, Oxford, UK), where eight reflective

markers (14 mm) were attached to the skin at different bony

landmarks: tuber calcanei (heel), caput ossis metatarsale I (first

metatarsus), caput ossis metatarsale V (fifth metatarusus) and

at the base of the os metatarsale II and III (at the base of the

second and the third metatarsus). The first and last strides

from each walk were removed to avoid transients, leaving a

total of approximately 30–40 strides for analysis.

2.3. Data analysis
2.3.1. Muscular control
All torque measurements were collected using Labview (Lab-

view 8.6, National Instruments, Inc., USA). From each trial, the
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first 7 s and the last 2 s of torque output were removed to avoid

any transients during initiation or termination of the trials. All

data were then low-pass filtered (fourth-order, zero-phase lag,

Butterworth, 25 Hz cut-off frequency). In order to assess force

fluctuations, both mean and standard deviation (SD) of the

force production signal were evaluated [32]. In addition, the coef-

ficient of variation (CV) of the force produced was calculated as

the ratio of the SD to the mean of the force output for each type of

muscular control test, and for each joint.

2.3.2. Quiet standing
The obtained CoP time-series [34] was pre-processed by firstly

removing the initial and final 2 s of data to avoid boundary

effects, and then low-pass filtering (Butterworth, second-order,

bi-directional, 5 Hz cut-off frequency). From the CoP time-

series, the mean (Mn-DIST) and root mean square (RMS)

distance, area (AREA), elliptical area (EA), mean velocity

(Mn-VEL) and mean sway frequency (Mn-FREQ) were calculated

for the entire datasets, as well as for both the anterior–posterior

(AP) and medio-lateral (ML) directions individually [28,35].

2.3.3. Gait analysis
The trajectories of both heel markers, together with the markers

at the base of the second and the third metatarsus, were used to

extract stride time information. After low-pass filtering (Butter-

worth, fourth-order, bi-directional, 25 Hz cut-off frequency),

heel strikes were identified using a foot velocity algorithm

[36]. Two consecutive heel strikes defined a single stride.

Stride time was calculated as the time elapsed between two con-

secutive heel strikes, while the distance between heel strikes in

the direction of walking progression provided the stride length.

Cadence (CAD) was calculated based on the stride time infor-

mation, while double support time (DST) was determined as

the time interval during which both feet were in contact with

the ground. The projected distance in the medio-lateral direction

from successive heel strikes of opposite feet was evaluated to

provide step width (SW). The maximum foot clearance

(MaxFC) was calculated as the maximum vertical distance

between the foot and the ground, while minimum foot clear-

ance (MinFC) represented the minimum vertical distance

between the foot and the ground during the mid-swing phase

[37,38]. Walking performance and its variability was assessed

using the mean, SD and CV of the described gait parameters.

To represent the concept of gait variability, both SD as an absol-

ute measure and CV as a relative measure of gait variability

were included in analysis, providing different predictive

powers for the identification of F and NF. As the clear aim of

this study was to avoid subjective pre-selection of parameters,

we included all 92 parameters and then applied principal

component analysis (PCA) to objectively avoid redundant

information. All the calculations were conducted using

MATLAB (R2011b, MathWorks, USA).

2.4. Statistical analyses
2.4.1. Principal component analysis
In total, 92 measures (electronic supplementary material, table

S1) were used to quantify the continuous performance of force

production, postural sway and gait from the 80 participants (pro-

ducing a matrix of 80 � 92). All measures were converted into

standardized Z-scores, thus providing effective management of

any missing data. Here, missing values were simply replaced

with the mean of the sample (i.e. zero) and the actual measure-

ment values were interpreted in relation to the respective

deviations from the mean.

In order to preserve the intrinsic features of task perform-

ance, as well as to reduce the effective dimensions of the
entire dataset, factor analysis (FA) was performed using the

FACTOR procedure (SPSS v. 20, IBM, USA). This correlation

analysis method was applied to extract the components prior

to undertaking the PCA using the ‘VARIMAX’ rotation

procedure. The Kaiser criterion (i.e. components that had Eigen-

values greater than one), was used to extract the appropriate

number of components [39]. In addition, two more criteria

were applied to ensure the consistency of the original measures:

(i) measures with a measure of sampling adequacy less than 0.5

and (ii) measures that caused complex structure, i.e. were

loaded (correlated with r . 0.4) by two or more components,

were removed from the analysis in an iterative process to

ensure appropriate parameter selection [39]. The component

scores obtained by the PCA were then used for all further

statistical analyses.

2.4.2. Binary logistic regression
A binary logistic regression was conducted to assess the ability of

measures derived from activities of daily living to predict the

‘intrinsic’ susceptibility of elderly towards experiencing a fall.

The dependent variable, fallexperience, was dichotomous, with

those that had experienced a fall in the previous 12 months

(fallexperience ¼ 1) or non-fallers (fallexperience ¼ 0). The independent

variables in the analysis were the extracted component scores,

obtained from the PCA. Finally, Hosmer Lemeshow test was con-

ducted in order to test the goodness of fit of the logistic regression.

The significance level for all analyses was set at p , 0.05

and all statistical analyses were conducted using SPSS v. 20

(IBM, USA).
3. Results
3.1. Retrospective classification of fall status
3.1.1. Principal components
A total of six iterations were required within the PCA to reach

measure of sampling adequacy levels above 0.5, as well as

being devoid of any complex structure, after which seven com-

ponents were obtained, representing 90% of the total variance

of the entire dataset (Kaiser–Meier–Olkin¼ 0.714). These

seven components were loaded with 31 measures based

upon the extracted and weighted coefficients (table 2). As a

result, the first component represented standing task perform-

ance during closed eyes condition and was interpreted as

static balance. Similarly, components 2 and 3 represented the

mean temporal and spatial characteristics of gait, respectively,

and interpreted as temporal gait and spatial gait. Components 4

and 5 contained information regarding temporal variability of

gait (inter-cycle variations) from the right and left feet, respect-

ively, and were interpreted as temporal variability right and left.
The sixth component represented spatial variability (inter-

cycle variations) during walking—spatial variability. Finally,

the last component represented the inter-cycle variability of

double support stance time and is termed dynamic balance.

3.1.2. Binary logistic regression
The binary logistic regression procedure revealed a signifi-

cant relationship between components and fallexperience

(Nagelkerke coefficient of determination, R2 ¼ 0.26; Homser

Lemeshow goodness of fit p ¼ 0.44; table 3). Only three of

the seven components (spatial gait, temporal variability left
and temporal variability right—in order of significance) exhib-

ited high importance ( p , 0.1) and were further used to

predict fallexperience (electronic supplementary material,
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table S2). The regression resulted in the following equation

derivation (table 3):

{ fallexperience}F¼1
NF¼0 ¼

e�0:12�0:72�C1þ0:52�C2þ0:32�C3

1� e�0:12�0:72�C1þ0:52�C2þ0:32�C3
, ð3:1Þ

where fallexperience is the dichotomous-dependent variable

with faller group F ¼ 1 and non-faller group NF ¼ 0. C1–

C3 are the independent variables extracted from the

functional parameters via the PCA (i.e.: C1 ¼ spatial gait;
C2 ¼ temporal variability left; C3 ¼ temporal variability right).

The levels of sensitivity and specificity achieved by the

model for identifying fallers were 74% and 76%, respectively

(table 4). Furthermore, positive (PPV) and negative (NPV)

predictive values were 74% and 76%, respectively. The

binary logistic regression revealed that fallers had signifi-

cantly reduced spatial gait scores and significantly increased

temporal variability left scores (figure 2).

3.2. Prospective assessment of fall risk
The follow-up postal questionnaire revealed a 100% response

rate with 10 individuals (of the 80 included in this study)

reporting at least one fall within the 12-month follow-up

period. Six of these 10 individuals were FTF (previously

classified as NF; 68.3+4.9 years, 63.9+4.4 kg, 160.9+
8.7 cm) and four were repeat fallers (previously already

classified as F). Post hoc power analysis revealed that

13–20 subjects would be required to reach statistical power

of 80%. Since only six subjects were included within this

group, only limited conclusions can be drawn from this

sample. Although no statistical tests could be undertaken

with the FTF group in a prospective manner due to the

small and uneven group sizes, FTFs had lower cumulative

spatial gait scores and greater cumulative temporal variability
scores compared with the NF’ cohort, and approaching

those of the F cohort (figure 2).
4. Discussion
With an increasing proportion of elderly worldwide, falls

among older individuals already contribute to over 1% of

annual total healthcare expenditure [1]. While a variety of

tools, questionnaires and assessment methodologies exist to

identify subjects at high risk of falling, these have generally

been unsatisfactory, primarily because falls are a multi-factor-

ial phenomenon. An individual’s fall history remains the

single best predictor of fall risk, but its use is inevitably

excluded in the identification of subjects at risk of falling

prior to their first fall event. Therefore, this study aimed to

extract multiple measures of task performance that show

potential as biomarkers for evaluating fall risk and particu-

larly that allow identification of those subjects that are at

risk of experiencing a first-time fall. The results of the study

suggest that seven components are able to capture the most

essential characteristics that differentiate fallers from non-

fallers, and that mean stride and step length, as well as

inter-cycle temporal variability, are sufficient for predicting

the risk of falling with 74% and 76% sensitivity and speci-

ficity, respectively, and an overall retrospective post hoc

statistical power of 95%.

The use of PCA allowed (i) an effective combination of

functional measures across all domains, while removing

redundancies in the dataset and (ii) an investigation of



Table 3. Results of binary logistic regression. Spatial gait, temporal variability right and left enter the regression equation at an alpha level of p , 0.1.

b s.e. Wald p exp(b)

static balance 1.4 0.97 2.1 0.15 4.1

temporal gait 20.01 0.27 0.002 0.96 0.99

spatial gait 20.94 0.34 7.90 0.005 0.39

temporal variability, right 0.45 0.27 2.82 0.093 1.57

temporal variability, left 0.64 0.28 5.27 0.022 1.90

spatial variability 0.17 0.26 0.41 0.52 1.18

dynamic balance 0.21 0.25 0.71 0.40 1.23

constant 0.20 0.26 0.003 0.96 1.02

Table 4. Classification of retrospectively identified fallers and non-fallers,
showing sensitivity, and specificity, as well as positive (PPV) and negative
predictive value (NPV) in %. FTFs were considered to be non-fallers (i.e. at
the measurement time point). From the faller cohort, four subjects were
removed from the analysis because of extraordinary fall circumstances.

observed

F NF

predicted F 28 10 PPV 74

NF 10 32 NPV 76

sensitivity specificity

74 76
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common components by grouping subsets of parameters with

high correlation while remaining relatively independent of

other parameters [39]. The seven components obtained from

the PCA, which were extracted from a total of 92 functional

measures, displayed a high reliability, as reflected by the

Kaiser–Meier–Olkin test (0.714, where values . 0.6 are con-

sidered good) [39]. This suggests good interpretability of the

extracted components while also reflecting a comprehensive

representation of the functional performance among subjects.

Interestingly, measures of muscular control (i.e. inaccuracy

and fluctuations during force production tasks) had to be

excluded during the PCA owing to the complex nature of

their loading across different components (possessed

weighted correlation coefficients larger than 0.5). This behav-

iour of muscular control at submaximal levels is not

surprising, as previous studies have demonstrated a relation-

ship between force fluctuations and task variability during

both standing as well as walking tasks [40]. Similarly, the par-

ameters capturing maximum isometric strength from ankle

plantarflexors and knee extensors also exhibited a complex

structure and had extremely low levels of sampling adequacy

(MSA , 0.5). The lower levels of sampling adequacy,

especially for knee extensors (MSA¼ 0.12) in this study,

suggest that inclusion of these parameters in combination

with other functional domains of quiet standing and walking

does not provide any unique metric for task performance.

Similarly, low levels of measure of sampling adequacy were

also obtained from quiet standing with eyes open. This

suggests that incorporating standing with eyes open, together
with walking tasks and standing with eyes closed, might be

redundant for identifying motor-related deficits. One possible

explanation is that during both standing and walking tasks,

the primary role of the human sensorimotor system is to main-

tain the centre-of-mass within the base-of-support [41], and

this is clearly more challenging during standing with eyes

closed compared to standing with eyes open. Moreover, walk-

ing is the most frequent activity of daily living, but

counterintuitively, older individuals who walk more indirectly

increase their susceptibility to falling [42–44], possible due to

the longer periods on their feet.

Standing with eyes closed provided both a unique set of

information and formed the first of the seven components

(static balance). As PCA provides an un-biased extraction of

parameters, the ranking of the components was not relevant,

but was rather based on the amount of variation across the

sample of subjects. The large variation captured by static
balance (23%; table 2) probably pertains to the complexity of

the task (standing with eyes closed) rather than the predictive

power of this component on risk of falling, which was revealed

by conducting the binary logistic regression. All the other com-

ponents represented performance during walking. Although

there may have be some redundancy in our choice of the

gait variables calculated, the PCA was useful in condensing

these data into useful and interpretable factors. Important

aspects highlighted by the results pertaining to the extraction

of components via PCA within this study were that:

— components summarizing mean parameters of walking

(temporal gait and spatial gait) were not associated with

those summarizing inter-cycle variability of walking

(temporal variability right, temporal variability left, spatial
variability and dynamic balance),

— components summarizing spatial aspects of walking

(spatial gait and spatial variability) were unique to those

representing temporal aspects of walking (temporal gait,
temporal variability right and temporal variability left),

— parameters summarizing mean levels of walking captured

from left and right limb kinematics were non-unique

(temporal gait and spatial gait). However, parameters that

summarized inter-cycle variability were specific to the

right and left limbs (temporal variability right and temporal
variability left).

These results highlight the importance of assessing walking

performance, particularly mean parameters of stride and step

length, but these measures alone are insufficient to capture
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the dynamics of the sensorimotor system [25,26,45]. Impor-

tantly, this study clearly indicates that these measures need

to also be complemented by considering inter-cycle variability

in temporal parameters during continuous walking. These

results suggest that spatial and temporal aspects of walking

might be governed through different control mechanisms

within the human sensorimotor system [46–48].

While the levels of both sensitivity and specificity were

around 75% in this study, not remarkably higher compared

with other studies, the positive and negative predictive rates

reported here were higher than values reported elsewhere

in the literature [7,10,17,23,30], which include standard

approaches used in the clinic. This indicates that the compre-

hensive combination of functional measures considered here

was able to predict the risk of falls in older individuals with

moderate to low false positive and negative rates. The reduced

levels of false positives and negatives could be a result of the

use of a wide spectrum of measures that directly assessed

the performance of normal functional activities of daily

living. Furthermore, in contrast to other fall risk screening

tools that were based on pre-selected parameters, this study

rather aimed to collect a comprehensive range of functional

data, and then remove the redundant information using an

unbiased principal component approach [49].

The component spatial gait contains mean stride length,

mean step length and maximum foot clearance. A direct com-

parison of this component revealed that fallers walked with

shorter steps and exhibited reduced foot clearance compared

to their non-falling counterparts (figure 2). While reduced

step length and height have previously been associated

with fall risk [50,51], it is still controversially discussed

whether such changes are due to fear of falling or to an

increased requirement for stability during walking [52,53].

A direct comparison of the temporal variability component,

including absolute (SD) and relative (CV) temporal inter-

cycle variability of stride and stance time, revealed increased

levels of temporal gait variability among fallers compared

with non-fallers (figure 2), which is consistent with the litera-

ture [30,44,51,54]. Furthermore, recent investigations have

shown that increased levels of inter-cycle variability during

walking could move the centre-of-mass closer to the limits

of stability (base-of-support) [54,55], which would require
the human sensorimotor system to generate joint torques to

maintain the boundary constraints. In this study, increased

gait variability was accompanied by reduced stride and

step lengths in the faller cohort, thus supporting the concept

that reduced stride and step length is used as a compensation

mechanism for maintaining stability during walking.

The secondary aim of this study was to assess task per-

formance in individuals who experienced a first-time fall

with an overriding goal of predicting the risk of such an

event in older individuals. The rational for such a goal

stems from the overwhelming evidence that older individuals

continue to fall after experiencing their first fall, even after

participating in fall prevention programmes [4,5]. Conse-

quently, there is a critical requirement to prevent falling

before the first fall event, but the usage of fall history as an

identification parameter becomes redundant in this case,

thus indicating the use of intrinsic functional control metrics

to complement clinical questionnaires. Unfortunately, owing

to the small sample size for the FTF group, no far-reaching

conclusions could be drawn on the efficacy of functional par-

ameters for identifying FTF. However, this group was clearly

positioned between the non-fallers (NF’ after excluding the

FTF) and fallers, indicating that this group had a tendency

towards decreased mean spatial gait and increased temporal

gait variability, as seen in fallers (figure 2). A post-hoc sample

size estimation using power analysis based on a set of par-

ameters (e.g. Mn-MaxFC-R, Mn-MaxFC-L, SD-Stn-T-L, etc.;

electronic supplementary material, table S1) revealed a

required sample size of 13–20 FTF subjects before reliable

conclusions can be drawn with a statistical power of 80%,

suggesting future studies should include at least 91 non-

fallers with similar demographics. A further limitation of

this study was the extensive exclusion criteria, which resulted

from the subject recruitment within a larger study. Here, cer-

tain pathologies that are typical for the elderly population

were excluded. However, it was the clear aim of this study

to improve our understanding of the intrinsic control mech-

anisms and the role of functional measures on falling,

rather than external factors such as medication or alcohol

that were controlled for and were homogeneous between

groups. A general issue that needs to be considered in

self-reported fall assessments is under-reporting, which is
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known to result in inaccuracies of approximately 15–30%

[56,57]. It is quite possible that under-reporting resulted in

the low percentage of 12.5% of prospective falls observed in

this study, which is below what has been reported in similar

studies [2,3]. Furthermore, tactile sensation and dementia

were not assessed in this trial, which could play a role on

gait and balance. However, although it was not possible to

identify the aetiology underlying each fall, such comorbid-

ities could be considered to be encompassed within the

wide-ranging spectrum of functional domains (including

strength, gait, balance, etc.) that were assessed within this

study. Since gait was the dominant discriminatory domain,

new technologies such as body-worn inertial sensors that

are able to capture measures of gait and its variability with

sufficient sensitivity [58] might allow rapid screening of
larger patient numbers in clinical settings without the need

for laboratory-based investigations.

The results of this study suggest that task-related deficits

such as isometric muscle strength and standing balance with

eyes open might be redundant compared to parameters of

walking. While further investigation towards quantifying the

efficacy of functional parameters for predicting FTFs in larger

population-based studies is indeed required, the research con-

ducted here has demonstrated that mean parameters of gait

and their variability are key components for assessing motor-

related deficits in the elderly, and could well aid in clinical

screening programmes for identifying FTFs.
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