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Abstract 
Background: Long non-coding RNAs (lncRNAs) play a wide variety of 
biological roles without encoding a protein. Although the functions of 
many lncRNAs have been uncovered in recent years, the regulatory 
mechanism of lncRNA expression is still poorly understood despite 
that the expression patterns of lncRNAs are much more specific 
compared to mRNAs. Here, we investigated the rhythmic expression 
of Per2AS, a novel lncRNA that regulates circadian rhythms. Given that 
Per2AS expression is antiphasic to Period2 (Per2), a core circadian clock 
gene, and transcribed from the antisense strand of Per2, we 
hypothesized that the rhythmic Per2AS expression is driven either by 
its own promoter or by the rhythmic Per2 transcription via 
transcriptional interference. 
Methods: We leveraged existing circadian RNA-seq datasets and 
analyzed the expression patterns of Per2AS and Per2 in response to 
the genetic or environmental disruption of the circadian rhythm in 
mouse liver. We tested our hypotheses by comparing the changes in 
the expression patterns of Per2AS and Per2. 
Conclusions: We found that, in some cases, Per2AS expression is 
independently controlled by other circadian transcription factors. In 
other cases, the pattern of expression change is consistent with both 
transcriptional interference and independent regulation hypotheses. 
Although additional experiments will be necessary to distinguish 
these possibilities, findings from this work contribute to a deeper 
understanding of the mechanism of how the expression of lncRNA is 
regulated.

Open Peer Review

Approval Status   

1 2

version 2

(revision)
31 Oct 2022

version 1
20 Sep 2022 view view

Hikari Yoshitane , The University of 

Tokyo, Tokyo, Japan 

Tokyo Metropolitan Institute of Medical 

Science, Tokyo, Japan

1. 

Yao Cai , University of California Davis, 

Davis, USA

2. 

Any reports and responses or comments on the 

article can be found at the end of the article.

 
Page 1 of 17

F1000Research 2022, 11:1073 Last updated: 31 OCT 2022

https://f1000research.com/articles/11-1073/v2
https://f1000research.com/articles/11-1073/v2
https://f1000research.com/articles/11-1073/v2
https://f1000research.com/articles/11-1073/v2
https://f1000research.com/articles/11-1073/v2
https://orcid.org/0000-0002-3866-3104
https://orcid.org/0000-0001-9579-7830
https://doi.org/10.12688/f1000research.125628.1
https://doi.org/10.12688/f1000research.125628.2
https://f1000research.com/articles/11-1073/v2
https://f1000research.com/articles/11-1073/v1
https://f1000research.com/articles/11-1073/v2#referee-response-150976
https://f1000research.com/articles/11-1073/v2#referee-response-151597
https://orcid.org/0000-0001-6319-3354
https://orcid.org/0000-0002-3571-2978
http://crossmark.crossref.org/dialog/?doi=10.12688/f1000research.125628.2&domain=pdf&date_stamp=2022-10-31


Corresponding author: Shihoko Kojima (skojima@vt.edu)
Author roles: Miao L: Data Curation, Formal Analysis, Investigation, Project Administration, Supervision, Validation, Visualization, 
Writing – Original Draft Preparation; Batty KR: Formal Analysis, Investigation; Jackson AN: Formal Analysis, Investigation; Pieno HA: 
Formal Analysis, Investigation; Rhoades MW: Formal Analysis, Investigation; Kojima S: Conceptualization, Data Curation, Funding 
Acquisition, Project Administration, Resources, Supervision, Validation, Writing – Review & Editing
Competing interests: No competing interests were disclosed.
Grant information: This work was supported by R01-GM126223 from the National Institutes of Health (to S.K.). 
The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
Copyright: © 2022 Miao L et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, 
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
How to cite this article: Miao L, Batty KR, Jackson AN et al. Genetic and environmental perturbations alter the rhythmic expression 
pattern of a circadian long non-coding RNA, Per2AS, in mouse liver [version 2; peer review: 2 approved] F1000Research 2022, 11
:1073 https://doi.org/10.12688/f1000research.125628.2
First published: 20 Sep 2022, 11:1073 https://doi.org/10.12688/f1000research.125628.1 

Keywords 
LncRNAs, circadian rhythm, antisense, rhythmicity, feeding regimen

 

This article is included in the Genomics and 

Genetics gateway.

 

This article is included in the Cell & Molecular 

Biology gateway.

 

This article is included in the Circadian Clocks in 

Health and Disease collection.

 
Page 2 of 17

F1000Research 2022, 11:1073 Last updated: 31 OCT 2022

mailto:skojima@vt.edu
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.12688/f1000research.125628.2
https://doi.org/10.12688/f1000research.125628.1
https://f1000research.com/gateways/genomics-genetics
https://f1000research.com/gateways/genomics-genetics
https://f1000research.com/gateways/genomics-genetics
https://f1000research.com/gateways/cell-molecular-biology
https://f1000research.com/gateways/cell-molecular-biology
https://f1000research.com/gateways/cell-molecular-biology
https://f1000research.com/collections/circadian-clocks
https://f1000research.com/collections/circadian-clocks
https://f1000research.com/collections/circadian-clocks


Introduction
Long non-codingRNAs (lncRNAs) are a subgroup of RNAs longer than 200 nucleotides that do not produce proteins and
play a variety of roles in a number of biological processes, including innate immune response,1 cell cycle control,2 cell
differentiation,3,4 X-inactivation,5,6 and neuronal activity.7,8 Because lncRNAs do not produce proteins, it is important
for lncRNAs to interact with other molecules, such as other nucleic acids and RNA-binding proteins, to exert their
functions. For example, nuclear lncRNAs interact with DNA, chromatin, and proteins and modulate nuclear processes,
like chromatin organization, RNA transcription, splicing, and lncRNA nuclear export and retention. In contrast,
cytoplasmic lncRNAs interact with proteins, other RNAs, or different organelles to alter mRNA stability and localization,
protein translation, post-translational modification, mitochondrial functions, or protein trafficking.9–15 In some cases, the
act of transcription, rather than the lncRNA transcripts, is the functional entity to regulate target gene expression locally.16

Although significant progress has been made in understanding the functions of lncRNAs in recent years, their
transcription regulatory mechanism has been poorly understood. Similar to mRNAs which are transcribed by RNA
Polymerase II, a considerable number of lncRNAs are also transcribed by RNA Polymerase II, 50 capped, 30 poly-
adenylated, and multi-exonic.17 Interestingly, however, lncRNAs exhibit more cell type-, tissue-, developmental stage-
or disease state-specific expression patterns compared to mRNAs.18–21 This has raised many interesting questions: What
are the regulatorymechanisms of lncRNA transcription to achieve highly specific expression patterns? Is the transcription
of lncRNAs also regulated by transcription factors which bind to its promoter/enhancer, similar to mRNAs? If so, why is
lncRNA expression more specific? Is there a universal mechanism to regulate the transcription of all lncRNAs, or is the
transcription of different lncRNAs regulated by different mechanisms? Does the expression of lncRNAs respond to
external inputs similar to mRNAs?

We have recently shown that Per2AS, a lncRNA, plays an important role in regulating circadian rhythms,22 an internal
timing mechanism to anticipate and respond to daily environmental rhythms driven by the rotation of the Earth.
Interestingly, Per2AS is transcribed from the antisense strand of Period 2 (Per2), one of the core clock genes essential
for generating circadian rhythmicity, and its expression is rhythmic and antiphasic to Per2mRNA.23–26 Most strikingly,
we further demonstrated that the transcription of Per2AS, rather than its transcripts, is important for regulating circadian
rhythms.22 These data prompted us to interrogate how rhythmic Per2AS transcription is regulated.

In this study, we analyzed the expression patterns of Per2AS under conditions in which the circadian clock was perturbed
either genetically or environmentally. We used publicly available circadian transcriptomic datasets from mouse liver,
where Per2AS is abundantly and rhythmically expressed.23–26 Our first hypothesis is that the rhythmic Per2AS
transcription is regulated by rhythmic antiphasic transcription of Per2 by means of transcriptional interference, in which
the transcription process on one strand suppresses the transcription process of the other strand.27–29 Our alternative
hypothesis is that rhythmicPer2AS expression is driven by its own promoter, similar tomRNAs.30–33 If the former is true,
we anticipate that changes inPer2 andPer2AS expressionwould always be antiphasic. If the latter, thenwe anticipate that
a change inPer2AS expressionwould be independent of that ofPer2.Wealso take into account the possibility that the two
hypotheses are not mutually exclusive. Results from this study contribute to our mechanistic understanding of how
circadian rhythm is regulated by Per2AS and, more broadly, how the transcription of antisense lncRNAs is regulated.

Methods
RNA-seq data acquisition and processing
All the fastq files were obtained from NCBI SRA (GSE135898, GSE135875, GSE107787, GSE102072,
GSE143528,34–37 except for PRJDB7789, which was obtained from DDBJ DRA (PRJDB7789).38 Fastq reads were
mapped to the Ensembl mouse genome release 38 (mm10) using STAR 2.7.7a39 with outFilterScoreMinOverLRead =
0.3 and outFilterMatchNMinOverLRead = 0.3 options. The ‘condenseGenes’ option was also used to select the most
abundant isoform of each gene. The mapped reads were quantified by HOMER (v 4.11.1)40 and normalized by the
transcripts permillion (TPM) option.We used the -sspe option for paired-end reads and the -strand – or -strand + option to
quantify mapped reads in a strand-specific manner. The option -bp10 was used for GSE102072 and PRJDB7789 to filter
alignments with mapQ smaller than 10. Per2AS expression was calculated from the antisense strand of the Per2 genomic
region as it is not annotated in Mus musculus GRCm38.95 GTF or NCBI RefSeq mm10 GTF files.

REVISED Amendments from Version 1

We revised ourmanuscript to clarify some points raised by the reviewers. We also added an extended data file that contains
RNA expression levels of all the core clock genes (Table S2.xlsx, doi:10.6084/m9.figshare.21375783).

Any further responses from the reviewers can be found at the end of the article
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Statistical analyses
Weused the two-way analysis of variance (ANOVA) inMicrosoft Excel to test for differences in RNA levels between the
experimental groups (i.e., genotype, diet), except for the dataset GSE102072 in which some samples had only one
biological replica. The rhythmicity of each RNA expression was assessed by MetaCycle,41 which integrates three
algorithms, ARSER, JTK CYCLE, and Lomb-Scargle, to determine the p-value, Benjamini-Hochberg q-value (BH.Q
value), period, phase, baseline value, amplitude (AMP), and relative amplitude (rAMP). We defined the expression of an
RNA as rhythmic when meta2d p<0.05.

Results
Core clock genes Bmal1, Cry1/2, and Nr1d1/2 affect the expression patterns of Per2AS and Per2
To test whether any of the core clock genes have an effect on the expression of Per2AS and Per2, we analyzed the
circadian transcriptomic datasets from mice livers lacking one or more “core” clock genes (Figure 1). Circadian rhythms
in each cell are driven by a cell-autonomous molecular clock, composed of a group of core clock genes that form a
network of transcriptional–translational feedback loops (TTFLs)42 and regulate daily rhythms in biochemistry, physi-
ology, and behavior. In the first loop, transcription activators BMAL1 (gene name: Arntl) and CLOCK form a
heterodimeric complex and bind to the E-box sequence in the promoter regions to regulate the rhythmic expression of
their target genes, including Per1-3 and Cryptochrome (Cry)1-2. High levels of PER and CRY proteins form a protein
complex in the cytoplasm, then translocate back to the nucleus to inhibit its own transcription by interacting with
CLOCK/BMAL1. This cycle takes approximately 24 hours, and this is the molecular basis of generating circadian
rhythms. The secondary feedback loop is comprised of the transcriptional repressors REV-ERBs (gene name: Nr1d)
and the activator RORs that are regulated by BMAL1/CLOCK. REV-ERB and ROR proteins both recognize and bind to

Figure 1. The expression patterns of Per2AS and Per2 in the knockoutmice of core clock genes.Mice were kept
under an L:D=12:12 cycle and fed ad libitum. Liver RNAs were extracted every four hours in (A) Bmal1, (B) Nfil3,
(C) Cry1/2 double, and (E)Dbp/Tef/Hlf triple knockoutmice (n=2), or every three hours in (D)Nr1d1/2 double knockout
mice (n=3). Y-axis represents strand-specific TPM. Points and error bars represent mean�SE. (**) p<0.01, (***),
p<0.001, N.S. indicates no significant difference between genotypes (two-way ANOVA). Data derived from Weger
et al., Proc Natl Acad Sci U S A, 202034; Yoshitane et al., Commun Biol., 201938; Guan et al., Science, 2020.37
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the RORE sequence in the promoter region and compete with each other to drive the rhythmicity of the target gene
expression, including Bmal1. The last loop consists of transcription activators of proline and acidic amino acid-rich basic
leucine zipper (PAR bZip) proteins: DBP, TEF, and HLF, and the repressor NFIL3, all of which target genes containing
D-box element within their promoters, including Rev-erbs, Rors, and Pers.42

Removal of Bmal1 from the TTFL results in arrhythmic locomotor activity and disrupts circadian expression of hepatic
core clock genes.43,44 Similarly, removal of both Cry1 and 2 also results in the loss of the rhythm in locomotor activities
and core clock gene expression.45,46 In both Bmal1 knock-out (KO) and Cry1/2 double knock-out (DKO) animals, our
analysis demonstrated that the rhythmicity ofPer2was abolished but expressionwasmaintained at intermediate levels, as
was reported previously34,47,48 (Figure 1A, C, Table S185). Whereas the expression of Per2AS was markedly low and
arrhythmic, indicating that Bmal1 and Cry1/2 promote the expression of Per2AS (Figure 1A, C, Table S185).

In contrast, the removal of Nfil3 or PAR bZip genes (Dbp/Tef/Hlf) did not change the expression pattern of Per2
(Figure 1B, E). This is in line with previous findings that the rhythmic expression of core clock genes was nearly identical
between wild-type (WT) and Nfil3 or PAR bZip-deficient mice in liver.38,49 Interestingly, however, the amplitude of
Per2AS increased in both Nfil3 KO and Dbp/Tef/Hlf triple knock-out (TKO) mice, indicating that the NFIL3 and PAR
bZip proteins repress the expression of Per2AS without affecting Per2 (Figure 1B, E, Table S185).

Removal of bothNr1d1 andNr1d2 in the SCNdid not disrupt the circadian locomotor activity, but significantly shortened
the free-running period.50 Also, Nr1d1/2 DKO mice showed interfered circadian expression of many hepatic core clock
genes, including dampening the rhythm of Per2.51 Consistent with this, the amplitude of Per2 expression was decreased
in Nr1d1/2 DKO mice while the relative amplitude of Per2AS expression was increased (Figure 1D, Table S185). These
data suggest that Nr1d1/2 have an opposing effect on Per2 and Per2AS, activating Per2 while repressing Per2AS. We
confirmed the genotypes of each dataset by checking the mRNA levels of the knock-out genes, all of which were
significantly decreased (Figures 1, 3, 4).We also provided themRNA levels of all the other core clock genes (Table S2).86

24-hr fasting decreased the amplitude of the rhythmic expression of Per2, but not that of Per2AS
Wenext tested the effect of environmental perturbation on the expression patterns ofPer2AS andPer2. Inmammals, light
is the most potent environmental cue that entrains the circadian clock through the suprachiasmatic nucleus (SCN) of the
hypothalamus. However, food intake also serves as a strong ‘Zeitgeber’ (time giver) to entrain the circadian clock of
peripheral organs in an SCN-independent manner.52–55 Previous studies have demonstrated that fasting directly affects
a large number of physiological parameters, such as body temperature,56,57 body weight,58,59 hormone levels,60,61 and
hepatic glucose levels,62,63 in addition to the expression patterns of the core clock genes in mouse liver.

In particular, the expression levels of BMAL1-target genes, including Per2, are lower in the liver of fasting mice.35,64–68

In line with this, the amplitude ofPer2 expressionwas considerably lower in the fastedmice (Figure 2, Table S185) whose
liver samples were collected after 24 hours of fasting for each time point, compared to the mice fed under the ad libitum
(ad lib) condition. In contrast, the expression patterns of Per2AS show little or no difference between the ad lib fed and
24-hr fasting conditions (Figure 2, Table S185). These data indicate that the 24-hr fasting alters the expression pattern of
Per2, but not that of Per2AS.

Figure 2. The expression patterns of Per2AS and Per2 under ad libitum or 24-hr fasting conditions. Mice were
kept under an L:D=12:12 cycle andeither fed ad libitumor foodwas removed24 hours prior to tissue sampling for the
fasting group of mice. Liver RNAs were extracted every four hours. Points and error bars represent mean�SE (n=3).
(***) p<0.001, N.S. indicates no significant difference between feeding conditions (two-way ANOVA). Data derived
from Kinouchi et al., Cell Rep., 2018.35
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Bmal1 and Cry1/2 regulate Per2AS expression even under the time-restricted feeding condition
Time-restricted feeding (TRF) is a form of intermittent fasting in which food consumption is restricted to a certain time
window of the day. The TRF regimen can protect mice from excessive body weight gain and liver damage depending on
the timing of the food availability, and also improve metabolic and physiological rhythms when food access is restricted
to the active phase.69–72 Here, we also looked at the differences inPer2AS andPer2 expression patterns when food access
was restricted to nighttime (i.e., the active phase ofmice) to understandwhether core clock genes still have the same effect
on the expression ofPer2AS and Per2. Similar to what was observed with the ad lib feeding condition (Figure 1A, C), the
expression of Per2ASwas very low and arrhythmic in Bmal1KO andCry1/2DKO animals experiencing TRF compared
toWT (Figure 3, Table S185). The expression of Per2was also arrhythmic but still maintained intermediate levels both in
Bmal1 KO and Cry1/2 DKO animals even under TRF (Figure 3, Table S185). Compared to ad lib feeding, TRF did not
affect the expression patterns of Per2AS and Per2, showing that the core clock gene KO is the primary factor to alter
the expressions of Per2AS and Per2. Additionally, these findings further support that BMAL1 and CRY are crucial
transcription factors to promote Per2AS expression, regardless of the feeding patterns.

Core clock genes Bmal1, Cry1/2, andNr1d1/2 knockout abolished the expression of Per2AS and dampen
the rhythm of Per2 when feeding with HFD
In addition to the timing of diet, the composition of the diet, such as high-fat or ketogenic, also affects circadian rhythms
and alters core clock gene expression.69,73–76 To understand whether different diet compositions affect the expression of
Per2AS andPer2 differently, we also examined the expression levels ofPer2AS andPer2whenmicewere fedwith a 60%
high-fat diet (HFD) either ad lib or TRF during the active phase (ZT13-22 or 23).36

The expression of Per2 was arrhythmic in WT fed with HFD under the ad lib condition (Figure 4A, Table S185), as was
reported previously.74 However, it was rhythmic under the TRF condition (Figure 4D, Table S185), supporting the idea
that TRF restores peripheral oscillations of core clock gene expressions.77,78 Similar to the results observed with a regular
chow diet under the ad lib condition (Figure 1), Per2 expression was arrhythmic but maintained intermediate expression
in both ad lib and TRF conditions in Bmal1 KO and Cry1/2 DKO (Figure 4, Table S185), but not in Nr1d1/2 DKO mice
with HFD (Figure 4C, F, Table S185). In contrast, Per2AS levels were low and arrhythmic in both ad lib and TRF
conditions inBmal1KOandCry1/2DKOmice compared toWTmicewithHFD (Figure 4A-B,D-E), similar to what was
observed in regular chow mice under both ad lib and TRF conditions (Figure 1A, C; Figure 3). This further supports the
idea that Per2AS expression is regulated by Bmal1 and Cry1/2, regardless of the composition of the diet. On the other
hand, Per2AS expression was arrhythmic in Nr1d1/2 DKO mice with HFD in contrast to the regular chow diet under ad
lib condition (Figure 1D), suggesting that the effect of Nr1d1/2 on Per2AS is different between regular chow and HFD
(Figure 4C, F; Table S185).

Discussion
In this study, we focused on the circadian antisense lncRNA, Per2AS, and asked whether the rhythmic expression of
Per2AS is regulated independently by its own promoter like many other circadian mRNAs, or transcriptional interference

Figure 3. The expression patterns of Per2AS and Per2with time-restricted feeding (TRF).Mice were kept under
an L:D=12:12 cycle and access to food were restricted between ZT12 to ZT24. Liver RNAs were extracted every four
hours in (A) Bmal1 and (B) Cry1/2 double knockoutmice. Y-axis represents strand-specific TPM. Points and error bars
represent mean�SE (n=2). (**) p<0.01, (***) p<0.001, N.S. indicates no significant difference between genotypes
(two-way ANOVA). Data derived from Weger et al., Proc Natl Acad Sci U S A, 2020.34
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driven by the antiphasic expression of its sense-strand gene Per2.By using circadian transcriptomic datasets frommouse
liver, in which the molecular clock machinery was genetically and environmentally disrupted, we examined how these
perturbations affect the expression patterns ofPer2AS andPer2.Our data demonstrated that the expression ofPer2AS can
be altered by both genetic and environmental perturbations of the circadian clock.

Wewere able to test the effect ofBmal1, Nfil3, Cry1/2, Nr1d1/2, andDbp/Tef/Hlf, but not that ofRora/b/c as the circadian
transcriptome dataset forRora/cKOmouse liver is only available with amicroarray platform and this does not allow us to
quantify Per2AS levels.79We also tested the effect of fasting, TRF, and an HFD on the expression patterns ofPer2AS and
Per2. Even though the expression of many core clock genes, including Per2, is affected by fasting (Figure 2) or HFD
(Figure 4),35,36,64–68 Per2AS appears to be less sensitive to these changes and its expression remained rhythmic under
fasting, TRF, or HFD conditions (Figures 2-4). These data suggest that the timing of food intake, the composition of the
diet, and fasting are not the primary factor that regulates the rhythmic expression of Per2AS. By contrast, the effect of
genetic perturbation within the circadian rhythm system is stronger than environmental perturbation on the expression
Per2AS.

We tested our hypotheses for Per2AS transcription regulation by comparing the changes in the expression pattern
between Per2AS and Per2.We found that, in some cases, the Per2AS expression pattern was altered even when that of
Per2was unaltered (Figure 1B, E). We also found, in other cases, that the Per2AS expression pattern was unaltered even
when that of Per2 was altered (Figure 2). These data strongly support the independent hypothesis that the expression of
Per2AS is regulated by its own promoter, and its transcription is independent from that of Per2. Indeed, the expression of
many lncRNAs is controlled by their promoter or other DNA elements, such as enhancers.30,80 The majority of lncRNAs
also contain highly conserved core promoter sequences and can be regulated by different transcription factors.81,82 In
addition, the promoters of lncRNAs are evolutionarily conserved as much as that of mRNAs at least between humans and
mice, even though their nucleotide sequences are less conserved than mRNAs. These data support the significance of
promoter sequences in regulating lncRNA expression patterns.83 Our data also indicate that BMAL1 and CRY1/2 are the
activators, and NFIL3 and PAR bZip proteins are the repressors of Per2AS (Figure 1, 3). However, the removal of one
particular core clock gene may alter the expression of other core clock genes or their downstream genes.34,84 Thus, we
cannot eliminate the possibility that the Per2AS expression is indirectly impacted by the change of the core clock gene
circuit.

Although these data strongly support the independent hypothesis, we cannot completely reject the alternative hypothesis
that Per2AS expression is regulated by transcriptional interference from Per2, since there are some instances where the
changes in the expression pattern ofPer2AS andPer2 can still be explained by the transcriptional interference hypothesis.
For example, in Bmal1KO and Cry1/2 DKO animals under any dietary conditions (i.e., ad lib, TRF, and HFD feeding),
the Per2AS expression was completely abolished, and the Per2 expression pattern was also arrhythmic but stayed at the

Figure 4. TheexpressionpatternsofPer2ASandPer2withhigh-fatdiet (HFD).Micewere kept under an L:D=12:12
cycle and fed with a 60% high-fat diet either ad lib (A-C) or with TRF (D-F) condition. Liver RNAs were extracted every
four hours inwild type and (A) Bmal1 knockoutmice, or every three hours in (B) Cry1/2 double and (C)Nr1d1/2 double
knockoutmice. Y-axis represents strand-specific TPM. The sameWTmice were used in each group. Points and error
bars represent mean�SE (n=2). Two-way ANOVA analysis was not performed for this dataset, because the KO
samples consisted of a single biological replicate. Data derived from Chaix et al., Cell Metab., 2019.36
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intermediate levels (Figures 1A, C, 3, 4D, E, Table S185). It is possible that the constant Per2 expression prevents the
transcription of Per2AS on the other strand, leading to the decreased and arhythmic Per2AS expression. Additionally, in
Nr1d1/2 DKO mice, Per2AS expression increased and its rhythmicity became more robust, while Per2 expression
decreased and its rhythmicity was dampened (Figure 1D). This could be due to decreased Per2 transcription leading to
the increased Per2AS transcription on the other strand. Therefore, the two alternative hypotheses can both be viable
and coordinated together to regulate the rhythmic transcription of Per2AS. At the same time, these data can also be
explained solely by the independent hypothesis, and additional experimental evidence will be required to distinguish
these possibilities. For example, it would be helpful to understand whether these core clock proteins are indeed recruited
to thePer2AS promoter or enhancer sequences.We can alsomodify the transcription ofPer2 directly and test whether this
would lead to changes in Per2AS expression patterns.

Regardless, these results help us better understand not only how the transcription of Per2AS is regulated, but also how
Per2AS is wired with other core clock proteins in transcriptional-translational feedback loops to regulate circadian
rhythms because the rhythmic transcription ofPer2AS is important for its functions in regulating circadian rhythms.More
broadly, our results also help us understand the transcription regulation mechanism of antisense lncRNAs.

Data availability
Underlying data
NCBIGEO: Temporal profiles of gene expression inCry1/2KO,Bmal1KOunder night restricted feeding and ad libitum
feeding regimen. Accession number: GSE135898, https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE135898.
NCBI GEO: Temporal profiles of hepatic gene expression in PAR bZip triple knockout mice. Accession number:
GSE135875, https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE135875.

NCBI GEO: Fasting Imparts a Switch to Alternative Circadian Transcriptional Pathways in Liver andMuscle. Accession
number: GSE107787, https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE107787.

NCBI GEO: Hepatic transcriptome by Next Generation Sequencing of WT and clock mutant mice fed a HFD ad libitum
or time-restricted feeding. Accession number: GSE102072, https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=
GSE102072.

NCBI GEO: The Hepatocyte Clock and Feeding Interdependently Control Chrono-Homeostasis of Multiple Liver Cell
Types (RNA-seq). Accession number: GSE143524, https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE143524.

NCBI BioProject: Transcriptome of mouse liver in Per2::LucKI and E4bp4KO/Per2::LucKImice. Accession number:
PRJDB7789, https://www.ncbi.nlm.nih.gov/bioproject?term=PRJDB7789&cmd=DetailsSearch.

Extended data
figshare: Table_S1.xlsx. https://doi.org/10.6084/m9.figshare.21067537.v1.85

figshare: Table_S2.xlsx. https://doi.org/10.6084/m9.figshare.21375783.v1.86

This project contains the following underlying data:

‐ Table S1.xlsx (Metacycle analysis to determine whether the gene expression is rhythmic)

‐ Table S2.xlsx (RNA expression levels (strand-specific TPM) of the core clock genes)

Data are available under the terms of the Creative Commons Attribution 4.0 International license (CC-BY 4.0).
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Yao Cai   
Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, 
University of California Davis, Davis, CA, USA 

Miao et al. investigated how genetic and environmental manipulations influence the expression of 
Per2AS, a circadian long non-coding RNA. Despite the identification of Per2AS in several circadian 
transcriptome studies and publication of a functional studies (Mosig et al., 2021, G&D), how Per2AS 
transcription is regulated remains a major gap in knowledge. A lncRNA transcription can be 
regulated via transcriptional interference. Alternatively, the promoter of a lncRNA is regulated 
independent of its sense RNA transcript. To gain insights on the transcriptional regulation of 
Per2AS, the authors analyzed the expression pattern of Per2AS and Per2 in response to genetic 
and/or environmental manipulation from publicly available RNA-seq database. Per2AS expression 
is altered in most core clock gene mutant mice. Whereas Per2AS expression is less sensitive to 
environmental manipulations including fasting, time-restricted feeding and high-fat diet. They 
authors suggest both models regarding transcription of the Per2AS lncRNA may be true. (1) In 
some conditions (e.g. Cry1/2 double knock-out) where Per2 expression is in intermediate level 
throughout the day, Per2AS level remains in a trough level, supporting the transcriptional 
interference hypothesis. (2) When Per2 expression remains in the trough level under 24-hour 
fasting condition, Per2AS level is unaltered, favoring the independent regulation hypothesis. Taken 
together, this manuscript provides new insights on the transcriptional regulation of Per2AS. Below 
are some minor suggestions for the authors to improve the manuscript.

Clarify what transcriptional interference (TI) means in the introduction section. Is there a 
specific TI mechanism you refer to, such as promoter competition, RNAPII collision? I 
believe this helps readers who are unfamiliar with TI to understand the TI hypothesis. 
 

1. 

Transcripts of Per2AS seems to be a few fold higher than Per2 in any given conditions (e.g., 
Figure 1A). Is this relevant to the two hypotheses? Can the authors comment on this 
phenomenon? 
 

2. 

Can the authors speculate whether Per2AS is more sensitive to signals from the central clock 
than the peripheral liver clock? It is interesting that Per2AS is unaltered under 24-hour 

3. 
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fasting condition (Figure 2), despite the dampening of Per2 transcripts. Maybe analyzing 
Per2AS level in the liver of SCN lesioned mice or mice kept under constant light will be 
informative. 
 
To date, there are no data that can solidly differentiate whether BMAL1 and CRY1/2 
activates or depresses Per2AS transcription. For this reason, I think the word “promote” is 
better than “activate” when describing upregulation of Per2AS expression (e.g., the sentence 
that cites Figure 1A, C, Table S1). This will include both possibilities. 
 

4. 

I have difficulty understanding the first sentence of the last paragraph in the Discussion 
section. What do the authors mean by “interacts with other core clock proteins”? To my 
understanding, this manuscript investigates how Per2AS transcription is influenced upon 
genetic manipulation on core clock genes, instead of how Per2AS regulates core clock 
proteins.

5. 

 
Is the work clearly and accurately presented and does it cite the current literature?
Yes

Is the study design appropriate and is the work technically sound?
Yes

Are sufficient details of methods and analysis provided to allow replication by others?
Yes

If applicable, is the statistical analysis and its interpretation appropriate?
Yes

Are all the source data underlying the results available to ensure full reproducibility?
Yes

Are the conclusions drawn adequately supported by the results?
Yes

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Circadian clock, phosphorylation, Drosophila genetics

I confirm that I have read this submission and believe that I have an appropriate level of 
expertise to confirm that it is of an acceptable scientific standard.

Author Response 26 Oct 2022
Shihoko Kojima, Virginia Tech, Blacksburg, USA 

1. We agree that the explanation of transcriptional interference (TI) will help readers better 
understand our hypothesis. We supplemented this information, and it now reads: “Our first 
hypothesis is that the rhythmic Per2AS transcription is regulated by rhythmic antiphasic 
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transcription of Per2 by means of transcriptional interference, in which the transcription 
process on one strand suppresses the transcription process of the other strand. 27-29” We 
currently do not have any specific mechanism in mind and did not mention any. 
 
2. The reviewer is correct that the strand-specific TPM (transcripts per million) for Per2AS is 
generally higher than that of Per2. This is because we had to separately calculate the strand-
specific TPM on each strand. Since the total number of raw read counts is different in each 
strand, the expression level of Per2 and Per2AS cannot be directly compared with each 
other. This is not relevant to the two hypotheses. 
 
3. We have shown that Per2AS is sensitive to the local liver clock as well as environmental 
perturbation triggered by changes in diet (Figs 1-4). It is unclear whether Per2AS is sensitive 
to the central clock (i.e., SCN). To our knowledge, there is no circadian transcriptome 
dataset in liver from SCN-lesioned mice. 
 
4. We agree with the reviewer that the word “promote” is more accurate than “activate”. We 
have now changed these, as suggested. 1) “Whereas the expression of Per2AS was markedly 
low and arrhythmic, indicating that Bmal1 and Cry1/2 promote the expression of Per2AS 
(Figure 1A, C, Table S1 84).” 2) “Additionally, these findings further support that BMAL1 and 
CRY are crucial transcription factors to promote Per2AS expression, regardless of the 
feeding patterns. ” 
 
5. We apologize for the confusion. We revised this sentence, which now reads: 
“Regardless, these results help us better understand not only how the transcription of 
Per2AS is regulated, but also how Per2AS is wired with other core clock proteins in 
transcriptional-translational feedback loops to regulate circadian rhythms because the 
rhythmic transcription of Per2AS is important for its functions in regulating circadian 
rhythms.”  
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Dr. Shihoko Kojima and their colleagues focused on the molecular basis of the rhythmic 
expression pattern of a circadian long non-coding RNA, PerAS, in the mouse liver. PerAS gene is 
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located in the genomic locus of one of the core clock gene, Per2, and is transcribed as an 
antisense strand RNA. Intriguingly, PerAS shows a clear circadian rhythm of its RNA expression in 
the mouse liver, and the rhythmic pattern is almost anti-phasic to that of Per2 mRNA. Many 
chronobiologists, including me, predict that these genes probably repress each other's 
transcription, resulting in their anti-phasic RNA rhythms. In this study, however, the authors 
clearly demonstrated that Per2AS expression and Per2 mRNA expression are independently 
controlled by unknown mechanisms that will be revealed in the near future. They obtained a 
series of RNA-Seq datasets in this field to analyze RNA expression patterns of Per2AS in the mouse 
livers that lack core clock genes or under altered food conditions. The results are clear and the 
conclusion is so simple, and I strongly encourage to Approve this research in F1000Research 
paper with the following minor modifications.

The authors cite Cho et al., (2012) in which conditional DKO mice of Nr1d1/2 (REV-ERBs) 
genes did not show clear circadian rhythms in the locomotor activity. However, this 
arrhythmic phenotype was probably due to the severe unhealthiness of the mutant mice, 
because canonical DKO mice are lethal. In Adlanmerini et al., (2021)1 (from the same Dr. 
Lazar Lab), they showed clear locomotor rhythms with significant short period in the SCN-
specific DKO of REV-ERBs. Therefore, REV-ERBs are not essential genes for the circadian 
oscillation. This will be informative for the readers to understand the results in this paper. 
 

1. 

The authors re-analyzed a series of RNA-Seq datasets in this field to analyze RNA expression 
patterns of Per2AS in the mouse livers. Since the bioinformatic methods for analyzing RNA-
Seq data are advancing day by day and the obtained results will change depending on the 
method, the results analyzed by the same authors using the same method are very useful 
for many chronobiologists. For example in Figure 1, they showed only expression patterns 
of Per2AS, Per2, and the deleted genes in a series of KO mice, but I suggest them to show 
expression patterns of core clock genes in all the case probably in supplemental figures; 
especially E-box genes (Dbp and Rev-erb) expression in Bmal1-KO and Cry-DKO mice and 
RRE genes (Bmal1 and E4bp4) expression in Rev-erb-DKO. These results will support the 
quality of their bioinformatic method in this paper and also will show the quality of the raw 
data in the previous studies.

2. 

Minor:
I find it easier to compare the gene expression patterns if panels are displayed in the same 
size even between different figures. For example, panels in figure 2 is too big and figure 4 is 
too small.

1. 
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Yes

If applicable, is the statistical analysis and its interpretation appropriate?
Yes

Are all the source data underlying the results available to ensure full reproducibility?
Yes

Are the conclusions drawn adequately supported by the results?
Yes

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Circadian clock, post-translational modifications, phosphorylation, LC-MS/MS

I confirm that I have read this submission and believe that I have an appropriate level of 
expertise to confirm that it is of an acceptable scientific standard.

Author Response 26 Oct 2022
Shihoko Kojima, Virginia Tech, Blacksburg, USA 

1. We thank the reviewer for the suggestion. We have added the paper that the reviewer 
mentioned, and edited the last paragraph of the section “Core clock genes Bmal1, Cry1/2, 
and Nr1d1/2 affect the expression patterns of Per2AS and Per2”. 
 
2. We agree with the reviewer. We have now provided an additional extended data file as 
Table S2, which includes RNA expression levels (i.e., strand-specific TPM) of the core clock 
genes as well as the rhythmicity analysis of the expression patterns with MetaCycle (doi: 
10.6084/m9.figshare.21375783). We also mentioned this extended data by the end of the 
session “Core clock genes Bmal1, Cry1/2, and Nr1d1/2 affect the expression patterns of 
Per2AS and Per2”. 
 
3. Unfortunately, we, the authors, have no control over the size of the figures and are not 
able to change their sizes.  
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