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ABSTRACT

Diversity-disease relationship (DDR) is a de facto standard analysis in the studies of human microbiome
associated diseases (MADs). For example, the species richness or Shannon entropy are routinely com-
pared between the healthy and diseased groups. Nevertheless, the basic scale of the standard diversity
analysis is individual subject rather than a cohort or population because the diversity is computed for
individual samples, not for the group. Here we aim to expand the current DDR study from individual
focus to population level, which can offer important insights for understanding the epidemiology of
MADs. We analyzed the diversity-disease relationship at cohort scale based on a collection of 23 datasets
covering the major human MADs. Methodologically, we harness the power of a recent extension to the
classic species-area relationship (SAR), i.e., the diversity-area relationship (DAR), to achieve the expan-
sion from individual DDR to inter-subject diversity scaling analysis. Specifically, we apply the DAR anal-
ysis to estimate and compare the potentially maximal accrual diversities of the healthy and diseases
groups, as well as the inter-subject diversity scaling parameters and the individual-to-population diver-
sity ratios. It was shown that, except for the potential diversity (Dmax) at the cohort level in approximately
5.4% cases of MADs, DAR parameters displayed no significant differences between healthy and diseased
treatments. That is, the DAR parameters are rather resilient against MADs, except for the potential diver-
sity in some diseases. We compared our population-level DDR with the existing individual-level DDR pat-

terns and proposed a hypothesis to interpret their differences.
© 2021 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-
commons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Medical geography combines biogeography with medicine, whose
aim is to produce distribution patterns in the world biota by deter-

Species diversity indexes such as species richness and Shannon
entropy are routinely computed in virtually all studies of the
human microbiome associated diseases (MADs). However, a recent
meta-analysis [19] suggested that the diversity-disease relation-
ship (DDR) is far less consistent than commonly perceived. In only
approximately 1/3 of the analyzed cases, the DDR exhibited
statistically significant disease effects, and in majority of the cases
(approximately 2/3), there was not a consistent DDR relationship.
Here, we further expand the current DDR study from individual
focus [19] to cohort or population level (p-DDR).

The diversity scaling is a classic topic in biogeography that
studies the spatial and temporal distribution of biodiversity [9].
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mining the interactions between multiple processes [21]. The
macro-scale or biogeography perspective of disease can help us
better describe, explain and predict the occurrence and develop-
ment of diseases at community level. However, with the rise of
molecular biology, medical geography has been gradually fading
from our focus, even though it has a long and rich history [21].
Recently, Murray et al. [22], [23] reintroduced the theory and
application of biogeography in the study of human infectious dis-
eases, and referred it as pathogeography. Murray et al. [22]
sketched the biogeographic map of 187 human infectious diseases
across 225 countries, and found that there are distinct spatial
patterns of human infectious diseases across the globe. They
further reviewed the pathogeography and developed a framework
for the study and management of human infectious diseases at
macro-scale, heterogeneous-scale or biogeography level [21]. The
DDR relationship explored in this study can be an important
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supplement to Murray et al. [21] pathogeography framework, with
examples from the field of human microbiome associated diseases
(most of which are non-infectious diseases).

While the focus of the previous DDR study by Ma et al. [19] was
to investigate whether two different individuals, one from the
healthy (H) treatment (group) and another from the diseased (D)
group (treatment) has significant difference in their microbiome
diversities, in the present study, we are interested in whether or
not two treatments, each as a whole, are significantly influenced
by the MAD in terms of their cohort or population level diversity
characteristics. For example, whether or not the healthy and dis-
eased cohorts possess the same number of potential number of
species (OTUs)? For another example, whether or not the intersub-
ject scaling (changes) of diversity differs between the H & D
cohorts? The expansion is significant because it extends the inves-
tigation from individual to cohort (population) level, and the scal-
ing parameters may offer insights into the epidemiology of MADs—
how diversity scaling is influenced by MADs in a population. Such
scaling parameters are also of practical significance for devising
public polices related to MADs.

Methodologically, we adopted the diversity-area relationship
(DAR) [13,14,15,11], which is a recent extension to the classic
SAR (species-area relationship) [27,3,28,5,12,4,32,31,6,29,30,33,
36,7]. The SAR describes the relationship between the number of
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species (S) and the number of individuals (or the so-termed “areas”
A) accrued within a cohort or population (or the region), which can
be described by a power law relationship. With the DAR analysis,
one can estimate the potentially maximal accrual diversity in a
cohort or population (Dy,qy), the ratio of individual-to-population
diversity (RIP), and also the parameter of diversity scaling (z) that
can be considered as a measure of the intersubject heterogeneity
in their microbiome diversities. The D,,,, offers estimates for the
potential microbial diversity, also known as “dark” diversity in a
cohort (or population), and rigorous statistical tests can be per-
formed to compare two or more cohorts (H & D in the case of this
study). For example, one may postulate that the number of oppor-
tunistic pathogens in the diseased treatment could rise, and the
statistical test of D,,,x would be able to generate the answer.

Therefore, by adopting the DAR analysis, we are to deepen
our understanding of the DDR in the human MADs by looking
into the disease-associated changes at a larger scale of cohort
(or population) beyond the de facto standard scale of individual
subject in the current diversity analysis (as shown in Fig. 1).
The objective of this study is then to investigate whether or
not the p-DDR in MADs has similar patterns as in the case of
individual level DDR previously investigated by Ma et al. [19].
We also propose a mechanistic hypothesis to interpret the
observed p-DDR patterns.
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population is influenced by the human microbiome associated diseases (MADs)

Fig. 1. A diagram showing the framework for investigating population-level diversity-disease relationship.
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2. Material and Methods
2.1. The 23 datasets of the human microbiome associated diseases

The twenty-six 16s-rRNA datasets of the human microbiome
associated diseases (MADs), which cover 7 human microbiome
habitats (gut, oral, respiratory tract, skin, vaginal, semen and milk)
and 16 diseases, were used in the diversity-disease relationship
(DDR) study [19,15,16,17]. These 16 diseases included most of
the high profile MADs such as obesity, IBD (inflammatory bowl dis-
ease), diabetes, autism, and schizophrenia. A brief introduction on
those 23 datasets was presented in Table S1 of the online supple-
mentary information (OSI).

2.2. The diversity-area relationship (DAR)

The DAR (diversity-area relationship) is an extension to the
classic SAR (species-area relationship) and the history of the latter
can be traced back to the 19th century [35], two decades earlier
than Darwin’s “Original of Species” was published. The SAR was
considered as one of the most important laws in biogeography
and conservation biology (ecology). For example, it plays a critical
role in setting up the size of conservation region because the power
law of SAR is rightly about the relationship between the number of
species (S) in an area and the size of area (A), with a power function
form: S = cA?, where c and z are the parameters of the power func-
tion. Ma [13]extended the classic SAR to the general diversity-area
relationship (DAR) by replacing the number of species (S) with the
Hill numbers in the power law function. The Hill numbers are a
series of diversity measures corresponding different diversity
orders (q), weighted differently with species abundance frequency
(distribution) in terms of q [8,1,2]. When g = 0, the Hill number
defaults to the number of species or species richness (S). When
q = 1, the Hill number (D) is an exponential function of familiar
Shannon entropy and can be considered as the number of typical
or common species in the community. When q = 2, the Hill number
(D) is the reciprocal of Simpson index. Generally, 9D is the diver-
sity of a community consisting of x= 9D equally abundant species.
The Hill numbers are computed with the following formula:

s 1/(1-q)
i=1

where S is number of species, p; is the relative abundance of species
i, q is the order number of diversity.

In this study, we fitted two DAR models to the datasets of the
human microbiome associated diseases (MADs). The first DAR
model Ma (2018a, 2018b) selected and tested is the traditional
power law (PL) model originally used for SAR modeling, i.e.,

D = cA*

(1)

(2)

where 9D is diversity measured in the g-th order Hill numbers, A is
area, and c & z are PL parameters. Based on the parameter z, we can
estimate the pair-wise diversity overlap (PDO or g) of two bordering
areas of the same size as:

g=2-2" 3)

Another DAR model is the power law with exponential cutoff
(PLEC), also originally used for modeling SAR [26,34,31], which
has the following form:

1D = cA’exp(dA) (4)

where d is a third parameter with taper-off effect. The item exp(dA)
introduces the exponential decay to the original power law function
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(egn. (1)), which ultimately overwhelms the power law behavior
when A becomes very large. Because both the human body and
microbial species inhabited on or in human body are finite, the
taper-off item in the PLEC should be justified. To fit the PL and PLEC
models with Hill numbers, the following equations (5)(6) (log-
linear transformation) will be used to estimate the model parame-
ters of Eqns. (2)(4), respectively:

In(c) + zIn(A)

In(D) (5)

In(D) = In(c) + zIn(A) + dA (6)

In addition, a series of z-value in the DAR-PL model at different
diversity orders (q = 0, 1, 2, 3) are termed as DAR profile [13].

2.3. Estimating the maximal accrual diversity profile with DAR-PLEC
models

Ma [13] defined the concept of maximal accrual diversity of a
cohort (or population) and derived its computational formula
based on the PLEC model [eqn. (4) & (6)] as follows:

) eXp(~2) = cAn,exp(~2) (7)

and the number of individuals (Anax) required to reach the max-
imum can be estimated by

Amax = _Z/d

Max(D)=9Dpax = ¢(—

8)

where all the parameters are the same as in eqns. (4) & (6).

The maximal accrual diversity profile (Dmax-q pattern) was
defined as a series of Dy« values at different diversity order (q)
[13]. It is also a measure of “dark diversity” or potential diversity,
which accounts for the species (diversity) locally absent but pre-
sent in a habitat-specific regional species pool [23,24,10,27,20].

2.4. Estimating the RIP (the ratio of individual-to-population accrual
diversity) profile

The RIP (Ratio of Individual diversity to Population accrual
diversity) was defined as [18]:

IRIP=1¢/Dnax 9)
where 9Ic is the DAR-PL (eqn. (2)) parameter at diversity order of g,
and 9D, is the estimated maximal accrual diversity of the popula-
tion (cohort) with eqn. (7) at diversity order q. The 9RIP-q series
(there is a RIP for each q) is known as the RIP profile. The RIP indi-
cates the average level of an individual can represent a population
(or cohort) from which the individual comes from. Since (Dpax)
can be considered as a proxy of potential diversity, RIP is also
related to the concept of potential diversity.

2.5. Testing the differences in the DAR parameters between H & D
treatments

The permutation (randomization) test was utilized to test the
differences in the parameters of DAR models between the H & D
treatments. The null hypothesis (Hy) of permutation test is that
the difference of a DAR parameter between the H and D treatments
exceeds that between two randomly mixed groups (treatments). In
other words, the difference in the values of a parameter is signifi-
cantly influenced by random effect only and there is not a treat-
ment effect. The steps of permutation test can be summarized as
the following steps:
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(i) Computing the absolute values of the difference of DAR
parameters between the H and D treatments, e.g., for param-
eter z, referred to as the true or observed difference (A,).

(ii) Pooling together all samples from the H and D treatments.

(iii) Randomly reassigning the pooled samples into two groups
generating the new H and D groups. The numbers of samples
of new H and D groups remain the same with that of corre-
sponding observed treatments in step (i). Fitting the DAR
models based on the new H and D datasets. Getting the abso-
lute values of the difference of their parameters between
these two groups, and these differences are referred to as
the expected or simulated differences (As,).

(iv) Repeating step (iii) for 1000 times, we will get 1000 sets of
expected differences.

(v) For each parameter of DAR model, computing the p-value,
which is defined as,

P = Dasz-4-/1000 (10)

where Dj,-.a, iS the number of times when the expected (simu-
lated) differences exceeds the observed difference. If p-
value < 0.05, we can reject the null hypothesis and accept the alter-
native hypothesis, i.e., the treatment effect is significant or that the
difference in parameter z is due to disease effects.

3. Results and discussion

In this study, we fitted two DAR models to the datasets of the
human MADs, i.e. DAR-PL and DAR-PLEC models. The difference
between DAR-PL and DAR-PLEC models are two-fold. First, the lat-
ter is an extension of the former by introducing a taper-off (or
exponential cutoff) parameter, which sets a maximum for the
accumulation of diversity. This extension should be more realistic
because diversity on the earth planet is not unlimited. Second, the
PLEC model allows one to estimate the potential (dark) diversity,
which considers the contributions of species that are absent locally
but present regionally (globally). The regional (global) species may
act as potential sources for immigration to local communities.

Table S2 in the online supplementary information (OSI) lists the
results of fitting DAR-PL and DAR-PLEC models to the 23 MAD
datasets. Table S3 lists the results from the permutation tests for
the differences in the DAR parameters between the healthy (H)
and diseased (D) treatments. Figs. 2-5 illustrate the same informa-
tion contained in these tables. In addition, Table 1 below summa-
rizes the range of DAR parameters for the H & D treatments,
respectively. From these results, we summarize the following
findings:

(i) DAR profile: Diversity scaling parameter or rate (z) measures
the inter-individual differences in species richness (Hill number for
q = 0) or community diversity (Hill number for g > 1) of the micro-
biome for a population or cohort. A fast (rate) or larger z-value sug-
gests large difference in diversity among individuals, or the higher
heterogeneity among individuals. The DAR profile describes the
relationship between scaling parameter (z) and diversity order
(q). As shown in Fig. 2 and Table S2, the average scaling parameter
(z) of the H treatment across diversity order g = 0-3 is z = (0.558,
0.387, 0.293, 0.248), and the average z value of the D treatment
across diversity order g = 0-3 is z = (0.519, 0.344, 0.275, 0.236).
In either treatment, the scaling parameter (z) decreases with the
diversity order (q), which is determined by the nature of Hill num-
bers—higher order diversity is weighted less by common species.
Therefore, at higher diversity order, the scaling (scale of change)
parameter becomes smaller.
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(ii) PDO (pair-wise diversity overlap) profile: PDO and diversity
scaling are like two sides of a coin, in which later describes the
inter-individual difference, and the former describes the inter-
individual similarity. As shown in Fig. 3 and Table S2, the average
PDO parameter (g) of the H treatment across diversity order q = 0-3
is g=(0.511, 0.668, 0.745, 0.784), and the average g value of the D
treatment across diversity order q = 0-3 is g = (0.555, 0.712, 0.766,
0.799). The PDO profiles of both H and D treatments monotonically
increased with g. This is again determined by the nature of Hill
numbers, as explained previously, because at high diversity orders,
the scaling (scale of change) parameter becomes smaller and con-
sequently, the overlap (g) parameter rises.

(iii) Maximal accrual diversity profile: As mentioned in the sec-
tion of Methods, maximal accrual diversity or parameter Dp.x
equals to the potential microbial biodiversity for a human popula-
tion or cohort. For example, when q = 0, D;,.x estimates the maxi-
mum number of species that a population can have. When ¢q > 1,
Dnmax €stimates the maximum number of species with higher level
of commonness of a cohort. In the case of this study, it measures
the influences of other individuals in a population on the microbial
diversity of a specific individual (an “average Joe”). As shown in
Fig. 4 and Table S2, the average D, of the H treatment across
diversity order g = 0-3 is Dya = (2495.5, 625.7, 62.2, 39.0), and
the average D4 Of the D treatment across diversity order q = 0-
3 is Dy = (2418.9, 256.8, 62.7, 40.3). The maximal accrual diver-
sity profiles of both H and D treatments decreased monotonically
decreasing with q. This, of course, is determined by the nature of
Hill numbers.

(iv) RIP (ratio of individual diversity to population accrual diver-
sity) profile: RIP can be used to estimate the percentage of popula-
tion diversity represented by an average individual. As shown in
Fig. 5 and Table S2, the average RIP of the H treatment across diver-
sity order g = 0-3 is RIP = (20.2, 31.3, 51.3, 60.4), and the average
RIP of the D treatment across diversity order q = 0-3 is RIP =
(21.3, 37.0, 44.5, 53.2). The RIP profiles of both H and D treatments
monotonically increased with q.

(v) As shown in Table S3, only 8 out of 148 comparisons (5.4%)
in the Dy,.x parameter showed significant differences between the
H & D treatments. However, virtually no significant differences
were detected for any of the other parameters. There was only
one comparison of PDO parameter (g) showed significant differ-
ence between the H & D in the case of BV at diversity order g = 0.

In summary, the previous results indicate that all diversity-area
relationship (DAR) parameters, except for D;,,x parameter, are not
significantly influenced by the microbiome-associated diseases.
Even in the exceptional case of Dy, only in 5.4% cases, Dpax
showed significant differences between the H & D treatments. That
is, diseases may significantly influence the cohort and population
level potential diversity.

Given that the individual-level diversity-disease relationship
(DDR) was influenced significantly by diseases in only approxi-
mately 1/3 of the cases, the lack of disease effects on most DAR
parameters should not be surprising. We postulate the following
interpretations for the findings revealed previously. First, the pre-
vious individual level DDR already revealed that in the majority
of cases (2/3), diseases did not have significant effects on individ-
ual level diversity [19]. Obviously, it is unlikely that in the same
majority cases, diseases could have significant effects on the cohort
or population level DDR. Second, as to the difference between the
previous individual-level DDR and this study in the minority of
cases, i.e., with effects in 1/3 of the cases vs. virtually 0 case in all
DAR parameters except for D,,., we postulate that, at the cohort
or population level, the difference in diversity may be canceled
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Fig. 2. Graphs of the DAR-PL scaling parameter (z) at different diversity order q = 0, 1, 2, & 3 (DAR profile), for the healthy (H) and diseased (D) treatments of the 23 case
studies. Light green and dark green indicate healthy cohort, orange and brown indicate diseased cohort. Note that most datasets only have one healthy or diseased state, but
some may have two, then all color bars were necessary. See Table S2 (in Supporting Information) for the numeric values of the parameter z. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)

each other at the cohort level, due to the inter-subject heterogene- other. A net effect is then the reduction of the differences at the
ity (differences) in their individual (base) level diversities. In other cohort or population level.
words, some individuals may have inherently high diversity than As to why the D,,.x showed 5.4% disease effects, which is still

others, and others may have inherently lower diversity than the lower than the 1/3 of the cases in previous individual-level DDR
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Fig. 3. Graphs of the PDO (pair-wise diversity overlap) profile (g-q series): g corresponding to different diversity order q = 0, 1, 2, & 3 for the healthy (H) and diseased (D)
treatments of the 23 case studies. Light green and dark green indicate healthy cohort, orange and brown indicate diseased cohort. Note that most datasets only have one
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pattern, but significantly higher than the disease effects on the pair-wise overlap (similarity) between two individuals. Similarly,
other DAR parameters (which are zero except for one case), the the DAR scaling parameter (z) is also determined by two points
answer can be found by examining the differences among (eqn. (4) is a straight line). In other words, both z and g could be
the DAR parameters. The PDO parameter (g) measures the determined by two individuals or by the pair-wise heterogeneity.
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Fig. 4. Graphs of the maximal accrual diversity profile (Dmqe-q series): Dyqx corresponding to different diversity order g = 0, 1, 2, & 3 for the healthy (H) and diseased (D)
treatments of the 23 case studies. Light green and dark green indicate healthy cohort, orange and brown indicate diseased cohort. Note that most datasets only have one
healthy or diseased state, but some may have two, then all color bars were necessary. Comparisons with significant differences in D,,,x between H & D treatments were
marked with asterisks. See Table S2 (in Supporting Information) for the numeric values of the parameter D,,q,. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

In contrast, Dy,qy is a ‘global’ parameter given that it is the ‘total’ much more difficult to cancel the differences globally that pair-
diversity owned by the whole cohort or population, rather than wisely. This explains why D,,,.« preserved certainly level of differ-
determined by a pair of two individuals. Obviously, it should be ences in the disease effects passed up from individual-level diver-
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Table 1

Computational and Structural Biotechnology Journal 19 (2021) 2297-2306

The ranges of DAR (diversity-area relationship) parameters for the healthy and diseased treatments, respectively, averaged from 23 MAD case studies exhibited in Tables S1-S2.

Order Treatment Statistics PL (Power Law) PLEC (Power Law with Exponential Cutoff)
z In(c) g z d In(c) Amax Dax RIP (%)
q=0 Healthy Mean 0.558 5.391 0.511 0.724 —-0.020 5.251 51.859 2495.5 20.2
Min 0.092 2219 0.053 0.170 —-0.087 1.948 0.000 109.2 14
Max 0.960 7.358 0.934 1.013 0.000 7.169 195.797 10663.0 79.9
Std. Err. 0.034 0.210 0.035 0.036 0.003 0.211 8.049 442.516 2.849
Disease Mean 0.519 5.567 0.555 0.667 -0.018 5.437 63.317 24189 213
Min 0.196 3.367 0.152 0.254 —-0.054 3.219 0.000 1249 4.1
Max 0.885 7.577 0.853 1.021 0.001 7.334 362.256 8792.3 66.3
Std. Err. 0.027 0.170 0.027 0.031 0.002 0.166 13.411 365.281 1.969
g=1 Healthy Mean 0.387 3.475 0.668 0.515 -0.015 3.358 99.682 625.7 313
Min 0.102 0.855 0.080 0.135 —-0.048 0.719 0.000 3.6 1.2
Max 0.938 4.990 0.925 0.971 0.005 4.906 1149.590 6398.3 65.3
Std. Err. 0.039 0.173 0.039 0.043 0.003 0.170 41.003 298.537 2.891
Disease Mean 0.344 3.570 0.712 0.470 -0.013 3.426 53.032 256.8 37.0
Min 0.116 1.542 0.138 0.086 -0.034 1.410 6.517 10.5 2.8
Max 0.896 4.930 0914 0.993 0.018 4.874 192.343 3466.4 77.0
Std. Err. 0.031 0.126 0.030 0.036 0.002 0.127 7.739 102.446 2.749
q=2 Healthy Mean 0.293 2.636 0.745 0.398 -0.012 2.538 534.429 62.2 51.3
Min —0.085 0.662 0.118 -0.172 -0.038 0.538 0.000 2.6 33
Max 0.908 3.948 1.029 0.938 0.011 3.888 14,091 524.0 129.4
Std. Err. 0.047 0.144 0.044 0.050 0.003 0.142 502.120 20.842 5.220
Disease Mean 0.275 2.673 0.766 0.371 —-0.009 2.561 82.883 62.7 44.5
Min -0.127 1.013 0.156 —0.001 —0.033 0.902 0.000 4.7 2.1
Max 0.881 3.953 1.061 0.956 0.009 3.935 428.557 526.1 89.6
Std. Err. 0.036 0.106 0.034 0.038 0.002 0.107 16.934 16.695 3.569
q=3 Healthy Mean 0.248 2319 0.784 0.348 -0.012 2.226 32.493 39.0 60.4
Min -0.163 0.579 0.160 -0.250 —0.041 0.470 0.000 24 34
Max 0.874 3.467 1.077 0.907 0.014 3.432 132.299 348.7 164.0
Std. Err. 0.048 0.129 0.044 0.048 0.003 0.128 5.470 13.694 6.230
Disease Mean 0.236 2.346 0.799 0.323 -0.010 2.243 54.200 40.3 53.2
Min -0.188 0.874 0.182 —0.053 —-0.041 0.765 0.000 3.6 1.8
Max 0.859 3.582 1.103 0912 0.018 3.553 234.313 431.9 101.0
Std. Err. 0.037 0.096 0.034 0.038 0.002 0.096 11.078 13.340 4.052

sity difference. As to the RIP parameter, the ratio nature is again
easy to cause the cancelation of the differences in disease effects,
and hence, displayed similar behavior as z and g.
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