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Abstract

Summary: Here, we present an automated pipeline for Download Of NCBI Entries (DONE) and continuous updating
of a local sequence database based on user-specified queries. The database can be created with either protein or nu-
cleotide sequences containing all entries or complete genomes only. The pipeline can automatically clean the data-
base by removing entries with matches to a database of user-specified sequence contaminants. The default contam-
ination entries include sequences from the UniVec database of plasmids, marker genes and sequencing adapters
from NCBI, an E.coli genome, rRNA sequences, vectors and satellite sequences. Furthermore, duplicates are
removed and the database is automatically screened for sequences from green fluorescent protein, luciferase and
antibiotic resistance genes that might be present in some GenBank viral entries, and could lead to false positives in
virus identification. For utilizing the database, we present a useful opportunity for dealing with possible human con-
tamination. We show the applicability of DONE by downloading a virus database comprising 37 virus families. We
observed an average increase of 16 776 new entries downloaded per month for the 37 families. In addition,
we demonstrate the utility of a custom database compared to a standard reference database for classifying both
simulated and real sequence data.

Availabilityand implementation: The DONE pipeline for downloading and cleaning is deposited in a publicly
available repository (https://bitbucket.org/genomicepidemiology/done/src/master/).

Contact: rosa.lundbye@cpr.ku.dk

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Next-generation sequencing is widely used and as a result, the
amount of generated data has increased substantially. One common
task is to classify sample data to identify possible origins. To do this,
reference sequence databases are often used. Depending on the ques-
tion addressed, a balance is sought between highly curated, reliable
and yet limited reference sets versus more broadly inclusive reference
sets that might contain misclassified or misassembled data. To estab-
lish a comprehensive database with as few problematic entries as
possible is a critical step and has great impact on the results and con-
clusions made using these sets. In addition, for many agents such as
RNA viruses, genomic changes over time can be extensive and
using older reference genomes might not be optimal for novel strain
identification. In addition, given the explosive growth of the use of

next-generation sequencing, the publicly available datasets are
growing fast. Thus, merely using an established reference database
like the one provided by the National Center for Biotechnology
Information (NCBI) might be suboptimal, compared to using all the
available data from GenBank (NCBI Resource Coordinators, 2018),
for discovery of new variants that have evolved over time (Goodacre
et al., 2018). Therefore, it would benefit the research community to
be able to rapidly create new, clean and yet comprehensive data-
bases from all publicly available data with easy updates to accom-
modate for the need for keeping up with increasing data availability.

NCBI’s GenBank has been an extremely valuable resource for
sequence classification and the ever-growing, open access and
inclusive nature of the database provide a wealth of information for
the field. Because of the large number of entries, however, many
redundancies exist. In addition, many entries contain contaminating
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sequences (e.g. host, vector) and improperly annotated entries
(Holliday et al., 2015). A simple download and use strategy, espe-
cially if taxonomy information is used, can lead to a high frequency
of misclassifications. This is especially the case for read-based classi-
fication methods which, because of the limited information in a
short read, can easily misclassify query sequences. Therefore, effort
must be put into cleaning each of the downloaded sequences to fa-
cilitate classification and to avoid misclassifications in downstream
analyses.

For viral discovery, the need for correctly documented and
comprehensive reference databases is obvious and several exist for
specific species or virus elements, such as HIV, influenza and repeti-
tive elements (Bao et al., 2015; Sharma et al., 2015). However,
the problems stated above particularly apply for virus discovery
applications, as well as metagenomic diagnostics and surveillance
(viromics), in which much broader databases are required and more
comprehensive databases with most viral species and virus-
associated species also exist (Brister et al., 2015; Goodacre et al.,
2018). New viruses are added to the public domain on a weekly
basis, and state-of-the-art application of viromics, updated reference
databases are essential to capitalize on this fast-growing new know-
ledge. Simple and automated methods to prepare either nucleotide
or protein databases would be useful, and have the potential to
provide a standard for laboratories seeking to move metagenomics
into routine settings. The inclusion of protein sequences for viral
identification may provide higher specificity and sensitivity to detect
more distant relatives, which is essential for research applications
(Cotten et al., 2014; Ho and Tzanetakis, 2014).

We here present an automated workflow called Download Of
NCBI Entries (DONE) with an easy update function for generating
annotated and computationally well-structured databases by down-
loading all entries in either nucleotide or protein sequences from
NCBI that match user-specified search strings. The workflow pro-
vides built-in options to add several cleaning steps including the re-
moval of sequences matching appropriate predefined contamination
entries. Furthermore, we show the applicability of this workflow on
a case example with a virus database showing how the cleaning step
can have a high impact on the classification results.

2 Approach

2.1 Automated download from NCBI
The DONE pipeline was created to be as user-friendly as possible by
allowing database-specific changes and adjustments of both the
download and structure of the database. At the same time, this ap-
proach is amenable to standardized searches for use in situations
where accreditation is needed, like in diagnostic applications. This is
achieved by a user-provided input file with each line containing the
name of the database followed by a Boolean search string in the
format used by NCBI’s GenBank. The number of raw entries down-
loaded will then correspond to the number of hits obtained when
using the search string at the NCBI GenBank home page. To
account for modifications in the database structure, DONE allows,
in theory, an unlimited number of sub-databases specified as lines in
the input file. The final database can then be a concatenated version
of all sub-databases or kept as separate files. The final database will
include a summary file keeping track of entries within each sub-
database by saving information on which accession numbers belong
to each database. This ensures ease of tracking of the content of
each database and allows for subsetting the databases without hav-
ing to download and create a new database.

The pipeline utilizes the UNIX-based Entrez Direct (Kans, 2019)
to extract all accession numbers associated with each user-provided
search string and then uses the URL-based E-utilities (Kans, 2019)
for downloading GenBank files for each accession number. From
each downloaded entry, information on available taxonomy and
organism was extracted along with the actual sequence to provide
additional information that can be included in the output when
using the database. DONE supports the download of either nucleo-
tide or protein sequences from the same input file, which is specified

as a command line option. Within the download script, additional
steps have been included to ensure all entries are downloaded even if
internet connections are temporarily lost or unstable and to reduce
the risk of overloading the NCBI server. These include keeping track
of the number of entries compared to FASTA headers and down-
loading entries in batches.

To facilitate updates, the pipeline has an update function that
compares newly extracted accession numbers from the same search
string with accession numbers already included in the current ver-
sion of the database. Consequently, only new entries will be down-
loaded when updating the database. In addition, entries that have
been removed since the last download will be removed from the
database. All changes will be written to a log file keeping track of
the database history. The accession numbers from the old download
will be kept to make it easy to switch back to an older version.

Including all genes and smaller subparts of a genome associated
with a given taxonomy ID can often complicate downstream ana-
lysis. Therefore, it might be more optimal to limit the download to
only complete or nearly complete genomes. To achieve this, we
included an option for the user to add a ‘complete’ argument, that
will add the keyword ‘complete’ to all search strings. However,
given that the use of ‘complete’ in GenBank entries is not specific for
‘complete genome’; this does not guarantee to capture all complete
genomes and many entries might be missed in the process. We tested
other options for downloading only complete or nearly complete
genomes, such as using length requirements and adding other key-
words to the search string. The length requirements were based on
viral genome/segment length information from Viral Zone (https://
viralzone.expasy.org/). This was combined with a manual check of
entry numbers as lengths were made more inclusive and a review of
the literature was also made for select viruses. The accepted lengths
included a buffer to include sequences 10% longer than the largest
known genome (or segment) in the family and 10% shorter than the
shortest genome (or segment) in the family.

Furthermore, additional search criteria may be beneficial to add,
such as excluding sequences from patents (which are largely redun-
dant) and certain species that often can be co-occurring, e.g. Homo
sapiens. Standard arguments for the exclusion of patent and
H.sapiens (by taxonomy ID) entries for all sub-databases have
therefore been included as an argument in DONE. Other exclusion
criteria can be added manually when generating the input file. The
software code is available at https://bitbucket.org/genomicepidemiol
ogy/done/src/master/.

2.2 Cleaning of databases
We tested the impacts of database cleaning. To do this, we included
a series of cleaning steps as an extension of the DONE process. The
first step of the cleaning was to exclude known problematic entries
in an automatic manner. These include a set of GenBank entries that
are known to be improperly annotated or include problematic se-
quence data. The accession numbers of these can be provided as a
list in a separate file that can be expanded as knowledge grows.
These lists can potentially be shared as they are being built by users.
The second cleaning step was to remove any entries matching a se-
quence in a contamination database with a certain user-defined
threshold. The contamination database can be any FASTA file with
sequences that the user does not wish to include in the database. In
the case of the virus database presented here, the contamination
database consists of the UniVec database from NCBI (https://www.
ncbi.nlm.nih.gov/tools/vecscreen/univec/), a bacterial plasmid data-
base, a set of rRNA sequences and a collection of satellite sequences.
A kmer-based nucleotide alignment algorithm, KMA (v1.2)
(Clausen et al., 2018), was applied to compute the alignment scores
between each entry and the sequences in the contamination data-
base. Consequently, the cleaning with the contamination database is
currently only supported on nucleotides. The removal criteria were
set to a percentage coverage of the contaminant. How to set this
threshold and how it will impact the downstream analysis will be
discussed in Section 3. The final step was to remove redundant
entries from the database using USEARCH (v8.1) (Edgar, 2010).
Furthermore, the user has the option to cluster sequences with a
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user-defined threshold if a further database reduction is desired. An
overview of the download and cleaning process with DONE is
shown in Figure 1.

2.3 Use of cleaned database for kmer-based viral

identification
To demonstrate how the database with supplementary taxonomy
and sub-database information can be applied, KMA was additional-
ly used to build a kmer-based viral identification tool (KVIT). KVIT
uses KMA with default mapping parameters but allows user’s inputs
in parsing the output such as minimum identity and coverage crite-
ria. The tool outputs text files with the best hits in the database and
illustrates how the taxonomy can be used to show the composition
of metagenomic samples on both species and family levels. KVIT has
been implemented as an online web service that can be used with both
assembled (FASTA format) and raw (FASTQ format) data at https://
cge.cbs.dtu.dk/services/kvit/. Databases used for KVIT were all pre-
pared and indexed with KMA using a kmer length of 16. In order to
test the impact of cleaning, the DONE database and the accuracy of
KVIT, a mock virus dataset was used containing short paired-end
reads simulated from 18 different virus entries belonging to 5 different
families, E.coli K12 along with one human chromosome
(Supplementary Table S1). The dataset was constructed using wgsim
(Li, 2019). Furthermore, KVIT was tested on real metagenomic sam-
ples with both the cleaned database downloaded with DONE and the
NCBI viral reference database (RefSeq) (Brister et al., 2015). The real
metagenomic data were obtained from agnostically sequenced porcine
fecal samples (Phan et al., 2016).

3 Results

In this study, we developed a pipeline for automatic download and
cleaning of reference sequences and showed the applicability of DONE
by generating a virus database comprising 37 predefined virus families
(see Supplementary Material BitBucket repository, https://bitbucke-
t.org/genomicepidemiology/done/src/master/ for full list). To access the
current development of each family in terms of amount of sequence
data and contamination level, entries for each virus family were down-
loaded into separate sub-databases and concatenated into one final
database post-cleaning. Initially, the search term for each sub-database
included only the taxonomy ID(s) of that specific virus family. The
Boolean search strings were then expanded by adding terms to exclude
patents along with entries with an association to the human taxonomy
ID (see Supplementary Material). The following results and discussion
points will be based on variations of this database.

The full database download of all entries was completed June 7,
2019 and the size was 3.3 GB after concatenation of sub-databases.
The largest contributor to download time and size was the
Orthomyxoviridae database (which includes the influenza viruses)
with a size of 1.1 GB, and the second-largest database was

Herpesviridae at 525 MB. To assess the pace of data accrual, the
databases were updated after approximately one month (July 8,
2019) and showed an increased database size with 16 776 new
entries downloaded. Here, Orthomyxoviridae and Hepacivirus were
the biggest contributors with 7542 and 3659 new entries, respective-
ly. The average increase in entries per virus family was 453 per
month. Therefore, the simple update implementation described here
will be of great utility for maintaining fully up-to-date databases. If
viral sequence data archives continue to grow at current pace, add-
itional clustering of sequences to reduce the size may be necessary in
the future to keep database size manageable.

Restriction to download to complete viral genomes for many re-
search purposes, it is desirable to limit the database to only complete
viral genomes rather than including all available genetic data, as this
will both speed up the alignments and simplify downstream analy-
ses. However, for some cases, it may be beneficial to include every-
thing reported such as when dealing with rare species, or viruses
subject to surveillance based on partial genomic data. Therefore, the
opportunity to download everything is included as default in DONE
to account for differences in usage and allow users to include their
own specific filtering steps, if preferred.

When limiting the download to complete genomes only, a few
options exist and are easily applicable using DONE. The preferred
option is to set length criteria for each sub-database. However, this
option requires prior knowledge of the species to be downloaded.
Another option is to trust what is stated in the submission by only
including hits with both ‘complete’ and ‘genome’ in the entry title.
This can be further adjusted by allowing ‘partial’ as well, as it may
include submissions with doubt about the actual completeness of the
data even when assumed complete. The two options for download-
ing complete genomes mentioned above were tested on four virus
families of different sizes; Coronaviridae (30 000 nt), Herpesviridae
(250 000 nt), Picornaviridae (6–8 000 nt) and the Reoviridae
(Segmented 200–3000 nt).

Both the length and text-based criteria were introduced in the
search string for each of the four sub-databases and downloaded
with DONE. The download differences were then evaluated by
comparing length profiles to the downloaded databases with and
without the two criteria, as well as the actual entry overlap based on
accession numbers. When downloading all entries, it is clear based
on length profiles that the majority of downloads for the three non-
segmented viral taxa were partial genome sequences (Fig. 2 and
Supplementary Fig. S1). When limiting the download to full
genomes another smaller peak around the size of the virus was iden-
tified. Especially for Picornaviridae, there was a large data reduction
when applying the text-based (96%) or length criteria (93%). Here,
the length criteria seem to include a few more entries than the com-
plete/partial criteria, but they generally agree on which entries com-
prise full genomes (Fig. 1a and b). For the two larger vira,
Coronaviridae and Herpesviridae, using the complete/partial and
length criteria resulted in approximately the same reduction and the
entries preserved are roughly the same (Supplementary Fig. S1). The
main difference in the two approaches was found for Reoviridae
where the length criteria included almost all data available (Fig. 3c
and d). As Reoviridae have segmented genomes, the length criteria
were more difficult to set due to large differences in lengths between
segments so most data were included. From the complete/partial
search term, almost 2/3 of the data was removed, indicating that not
all entries from the length criteria are stated to contain a whole seg-
ment (Supplementary Table S2). Thus, the use of the length argu-
ment results in more comprehensive full genome or full segment
databases. To create a more precise database of the segmented virus,
a separate sub-database for each segment with the appropriate
length requirements for that segment could be an easy solution.
However, for this analysis, we decided to keep it simple and only in-
clude one sub-database for the segmented viruses. In conclusion, the
length and complete/partial search term-based downloads showed
similar results, except for the segmented Reoviridae. The complete
database could be obtained in a more standardized manner across
families by using the complete/partial search term instead of specific
length criteria. However, the length criteria from our analysis tended

Fig. 1. Overview of the automated download and cleaning process with DONE.
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to include more data than the complete/partial search term and it
does not rely on the classification in the submission. Consequently,
the database used for further analysis consisting solely of genomes
or segments, referred to as the ‘length filtered database’ was

downloaded based on the family-specific length criteria. For the
‘Unclassified’ virus family the ‘complete or partial genome’ search
term was used, as an appropriate length criterion was not available.

When downloading the length filtered database, the total num-
ber of entries was reduced by 52% (from 1 880 052 to 905 203
entries) across all sub-databases, and the total size of the database
was reduced by 32% (from 3.3 to 2.5 GB). The smaller reduction in
size was primarily because small entries were removed, such as genes
or targeted sequences. The decreased number of entries and size for
each sub-database are shown in Supplementary Table S3.

3.1 Cleaning of the database
When downloading all available data without manual curation,
some automatic cleaning steps will be highly beneficial for generat-
ing a trustworthy database. The downloads with DONE, both the
‘all’ database and the ‘length filtered’ database based on the length
criteria, were cleaned using the described cleaning pipeline. Because
entries were removed if they had too high similarity with a sequence
in the database of known problematic sequences; it was necessary to
determine a similarity threshold. Therefore, four different thresholds
(0.5, 0.6, 0.75 and 0.95) for sequence identity with the contamin-
ation database were tested and the differences in the number of
entries removed were evaluated for each virus family. The percent-
age of entries removed at each threshold is shown in Table 1 for the
virus families with more than 0.5% of the entries removed at the
lowest threshold for one of the databases. For the ‘all’ database only
two families, Herpesviridae and Polyomaviridae, had more than
0.5% entries removed. When comparing the number of entries
removed between the ‘all’ and ‘length filtered’ databases within each
family there were not many extreme differences (Supplementary
Table S4). This suggests that the entries with possible contamination
sequences were generally observed in entries of partial or complete
genomes. Consequently, only a small percentage of entries were
removed from the ‘all’ database. Furthermore, it was clear that all
removed entries mapped to the vector database.

Based on these results, decreasing the threshold from 75 to 50%
results in six sub-databases with more than 0.5% entries removed
compared to the 3 with the 75% threshold. Therefore, it is import-
ant to consider the threshold when cleaning the databases and the
best threshold might change depending on database usage. The
Herpesviridae database had the most entries removed, and the num-
ber of entries removed did not change between the 50% and 60%
thresholds. Furthermore, the amount of additional entries lost for
the other families by choosing lower thresholds were limited be-
tween 50% and 60%, while the 75% and 95% thresholds had a big-
ger impact. Consequently, it was decided to use the clean database
with a threshold of 50% for further analysis to ensure that the data-
base did not contain any contamination even though it might result
in decreased completeness of the database. We next set out to inves-
tigate the removed entries to check what they are and if they are
indeed inappropriate. For Herpesviridae, the majority of the
removed entries were from the same submissions and several were
annotated as assemblies, which can contain errors or include non-
related elements. Some removed entries were annotated as clones
(e.g. MF468140) or specifically as unverified misassemblies (e.g.

Fig. 3. Percentage of mapped reads in the simulated viral metagenomic sample

mapping to each of the sub-databases using the kmer-based alignment tool KVIT.

The simulated sample contains equal amounts of reads for the five included viral

families (Caliciviridae, Coronaviridae, Paramyxoviridae, Polyomaviridae and

Rhabdoviridae) and additional contamination reads (phages, human and E.coli).

Here, we show the distribution on a viral family level

Fig. 2. Results on three different downloading options for two virus families,

Picornaviridae and Reoviridae, including all entries, entries with ‘complete’ or ‘par-

tial’ in the description and entries within predefined length criteria specific for each

virus family. (a) Venn diagram of entry overlap for Picornaviridae. (b) Length pro-

file distributions for Picornaviridae. (c) Venn diagram of entry overlap for

Reoviridae. (d) Length profile distributions for Reoviridae. The colors in (a) and (c)

are as follows; Gray: ‘all’ þ, ‘complete/partial’ -, ‘length’ -. Light blue: ‘all’ þ, ‘com-

plete/partial’ -, ‘length’ þ. Blue: ‘all’ þ, ‘complete/partial’ þ, ‘length’ -. Dark blue:

‘all’ þ, ‘complete/partial’ þ, ‘length’ þ

Table 1. Percentage of entries removed at each similarity threshold against the contamination database of common contaminants

All database Length-filtered database

Threshold 50% 60% 75% 95% 50% 60% 75% 95%

Herpesviridae 8.74 8.51 6.75 1.33 65.01 64.95 52.83 12.63

Papillomaviridae 0.16 0.0042 0.0042 0 0.61 0.017 0.017 0

Picornaviridae 0.051 0.042 0.033 0.00088 0.6 0.54 0.46 0.013

Polyomaviridae 1.1 1.1 1.1 0.41 2.18 2.18 2.18 1.27

Retroviridae (not HIV1) 0.2 0.16 0.097 0.026 3.35 2.91 1.26 0.62

Togaviridae 0.21 0.2 0.024 0.012 0.63 0.63 0.049 0

Note: We only list virus families for which more than 50% entries were removed at the lowest threshold (50%) in one of the databases. The ‘all’ database con-

sists of every entry associated with the downloaded taxid. The ‘length filtered’ database includes length criteria on downloads specific for each database.
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KX689266). In addition, for Picornaviridae, we observed some
entries that contained replicons (e.g. AJ428955). Thus, we have
manually confirmed that some of the entries are indeed appropriate
to remove from the database prior to downstream analysis.

We decided not to include screening for human DNA contamin-
ation, as our approach completely removes hits above the coverage
threshold. This could be a problem for viruses such as Retroviridae
and Herpesviridae, as alignments to human sequences might
actually be true positives. This complicates the analysis of real envir-
onmental samples, as human contamination could result in a false-
positive detection and is one of the weaknesses of classification from
short-read data. To deal with possible human contamination, we
used a kmer-based masking approach implemented in KMA when
using the database for species identification, which will be further
assessed when using the database on simulated and real datasets.

The next part of the cleaning was to reduce redundancy, which
was quite abundant (Supplementary Fig. S2). To further reduce the
size of the database, clustering based on sequence similarities could
be an option, however, we chose to construct a database with as
much information included within reasonable criteria, as the level of
diversity differs greatly among and within virus families and setting
criteria would be a challenge. Especially, with the large variations
within viral taxa keeping all but exact matches can be beneficial for
further analysis and precise annotation. For our use of the database,
we decided to only remove exact matches.

3.2 Results on simulated dataset
To further investigate how the downloaded databases can be utilized
and what impact both the length requirements and cleaning have on
usability, we tested the possibility to uniquely identify hits from a
simulated sample of mixed viral genomes along with known usual
contaminants, E.coli and human genomic DNA (Supplementary
Table S1). The kmer-based identification tool, KVIT, was used to-
gether with each of the four final databases named ‘all raw’ (all
entries without cleaning), ‘all clean’ (all entries with cleaning),
‘length filtered database raw’ (length-filtered database without
cleaning) and ‘length filtered database clean’ (length-filtered data-
bases with cleaning). The NCBI viral RefSeq database was down-
loaded on the same date as our final update (July 8, 2019) to
compare the effects of using our databases with that of an estab-
lished database. Generally, all four databases downloaded with
DONE could be used for identifying the correct species and family
and to identify the exact entry used to generate the simulated sam-
ple. However, some differences were observed between the data-
bases regarding false-positive mappings and final identifications.

When using the two raw databases, 4.6% of the reads for the
‘all’ database and 4.2% for the ‘length filtered’ database mapped to
Herpesviridae, which is not included in the simulated samples.
Furthermore, some reads mapped to other databases such as
Retroviridae (not HIV1), Hepacivirus and HIV1, but all with less
than 1% for the ‘all raw’ database and less than 0.5% for the ‘length
filtered raw’ database. When looking into the distributions of
mapped reads, the ‘length filtered raw’ database seems to include
less false-positive mappings than the ‘all raw’ database (Fig. 3). This
indicates that the ‘all’ database contains small entries that might
overlap with either the included families or the added contamin-
ation. When including the length criteria these are then removed.

For the ‘all raw’ database, the false-positive mappings lead to ac-
tual false-positive identifications above the coverage threshold for
one sequence mapping to Herpesviridae and 20 mapping to
Retroviridae (not HIV1), as seen in Table 2. For the ‘length filtered
raw’ database none of the entries identified was above the coverage
thresholds. When cleaning the ‘all’ database, the one Herpesvirus-
designated entry was removed from the final result, but the 20
Retroviridae (not HIV1) hits remained and Herpesviridae still had a
false-positive mapping of above 0.5%. This indicates that the con-
tamination problem for the Retroviridae (not HIV1) is not removed
in the cleaning step. A likely explanation is that this is caused by the
presence of human genomic DNA.

For the ‘length filtered clean’ database, the result was again
slightly better than the ‘all clean’ database in terms of a higher per-
centage of mapped reads to the correct organisms (shown in
Supplementary Fig. S3) and again only the correct hits were included
in the result file.

To avoid false-positive assignments to human DNA, the KMA
method used in KVIT was used to mask sequences based on a refer-
ence file and exclude them from the results. When using this decon-
tamination option for the ‘all clean’ database against the human
reference genome, 80 502 864 kmers mapped to the human genome
corresponding to 57.44% of the database. For the ‘length filtered
clean’ database 64 678 854 kmers mapped (58.10%). In a subsequent
analysis with KVIT, the Retroviridae (not HIV1) hits were reduced to
only one hit or not observed. The number of positive mappings to
Herpesviridae was largely unchanged, suggesting that the hits were
not a result of human contamination of the Herpesviridae. Given the
repetitive sequence content of this virus family, an alternate possibility
is that the positive hits are due to shared repetitive elements between
material in the sample and the Herpesviridae references. For the
‘length filtered clean’ database, the decontamination option resulted in
a small improvement with almost a perfect mapping distribution to
the included organisms (Supplementary Fig. S3).

Consequently, these results highlight that more pre-processing is
necessary for a database of all available entries without length
requirements, while a length-filtered database in most cases can be
used without additional cleaning if only hits with high coverage are
accepted. We will recommend not using a database of all entries
without the decontamination option or a similar approach to deal
with human contamination in the input.

When comparing to the viral RefSeq database on species level,
some false positives were identified compared to the databases down-
loaded with DONE (Supplementary Fig. S3). However, the correct
identification of the known components was still achieved. One of the
main differences is that the viral RefSeq database contains bacterio-
phages, which our database does not. The simulated dataset includes
three types of phages, which explains why they are correctly identified
in the sample using the viral RefSeq database and not using the
DONE database. As expected both databases are highly useful for cor-
rect identification of components on a simulated dataset.

3.3 Results from a real case dataset
In real applications, the contamination is most likely even more
complex and an inappropriate cleaning of the database might lead
to missing actual hits. Therefore, we tested how the two cleaned
databases (‘all’ and ‘length filtered database’) differed in both

Table 2. Additional hits identified with KVIT above the coverage threshold of 80% besides the known species included in the simulated

sample

Family hit (entry name/species) All raw All

clean

All clean

(decon)

Length filtered

raw

Length filtered

clean

Length filtered

clean (decon)

Herpesviridae (Stealth virus 1) 1 0 0 0 0 0

Retroviridae not HIV1 (Human Endogenous

Retrovirus K, Multiple sclerosis associated

retrovirus, Human endogenous retrovirus)

20 20 1 0 0 0

Note: The number states the unique entries identified for the family with the name of specific species listed for each family.
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distributions of mapping rates and final hits identified above an
80% coverage threshold on real metagenomic samples from pigs.
We ran the analysis both with and without the decontamination op-
tion of both databases to evaluate whether possible mapping to
Herpesviridae and Retroviridae could be human contamination. The
results were compared to results obtained using the viral RefSeq
database. This analysis has no ‘correct’ answer and, consequently,
we can only compare differences observed when using the two
approaches. For both ‘all clean’ (Supplementary Fig. S4a) and ‘all
clean with decontamination’ (Fig. 4a), there were some issues presum-
ably with wrongly identified Herpesviridae in most samples taking up
almost all mapped reads except for sample 12070_4. From the results
above, the coverage threshold the ‘all’ database did produce more hits
(Supplementary Table S5), however, these come with some uncer-
tainty due to the large amount of false-positive mappings to
Herpesviridae. Nevertheless, even though many of the reads in the
two versions of the ‘all’ database mapped to Herpesviridae, we only
get one hit above the coverage threshold (Supplementary Table S5)
without using the decontamination option. This supports that this
database option can be useful with extensive cleaning and masking/re-
moval of possible host sequences. For the length filtered databases, the
contamination issue is absent indicating that small Herpesviridae
entries are most likely the cause. The human decontamination again
removed the Retroviridae mapping for the all ‘database’.

Based on these results, we would recommend using a ‘length fil-
tered’ database with length criteria. This is especially the case if the
database includes genomes of organisms with a high overlap with
common contaminants and if a coverage threshold is not applied. If
length criteria is not known, including ‘complete or partial’ in the
search string can be an option, however, we do not recommend it.
Again, using the NCBI viral RefSeq database indicating the presence
of phages, and these were not included in the DONE database
download. However, even without phages, the best hits were com-
pletely different looking at the exact entry level (Supplementary Fig.
S5). Besides that, both the ‘length filtered’ and ‘all’ databases pro-
vided additional hits compared to the RefSeq database on an organ-
ism level (Supplementary Fig. S6). In addition, when looking at the
hits with more than 80% coverage, the RefSeq database had little, if
any, actual hits (Supplementary Table S5). This highlights that more
precise and complete classifications can be obtained using a more
comprehensive database.

4 Conclusion

Here, we show how a custom database can be prepared and main-
tained in an easy and user-friendly manner including fast update
functions with detailed tracking information. Furthermore, we iden-
tify issues that can arise when using a partially uncurated database
and how to deal with them in real applications for viral identifica-
tion. The DONE pipeline for downloading, cleaning and updating a
custom database requires only limited programming skills and com-
bined with the KMA algorithm allows for additional cleaning with
larger references. With some modifications to the download of
length filtered data and establishing appropriate problematic se-
quence databases, DONE can be applied to create databases for
other classification purposes such as for bacteria and eukaryotes. A
similar analysis of the optimal cleaning procedure has to be com-
pleted to ensure the database is of good quality. Furthermore, the
detailed tracking of included and removed entries makes the data-
base easy to document and reproduce. Compared to other tools and
databases, currently available DONE provides a more comprehen-
sive cleaning and several easy options for customization of the data-
base while still being reproducible and allowing fast comparison to
other databases with a list of included accession numbers. This is
highly useful in research where reproducibility and data sharing are
becoming more troublesome with the high increase of new data.
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