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Two novel bacteriophage genera 
from a groundwater reservoir 
highlight subsurface environments 
as underexplored biotopes 
in bacteriophage ecology
Ole Hylling1, Alexander B. Carstens1,2, Witold Kot1,2, Martin Hansen1, Horst Neve3, 
Charles M. A. P. Franz3, Anders Johansen1, Lea Ellegaard‑Jensen1 & Lars H. Hansen1,2*

Although bacteriophages are central entities in bacterial ecology and population dynamics, there 
is currently no literature on the genomes of bacteriophages isolated from groundwater. Using 
a collection of bacterial isolates from an aquifer as hosts, this study isolated, sequenced and 
characterised two bacteriophages native to the groundwater reservoir. Host phylogenetic analyses 
revealed that the phages targeted B. mycoides and a novel Pseudomonas species. These results 
suggest that both bacteriophages represent new genera, highlighting that groundwater reservoirs, 
and probably other subsurface environments as well, are underexplored biotopes in terms of the 
presence and ecology of bacteriophages.

Despite metagenomics revealing that groundwater reservoirs harbour complex bacterial communities that are 
closely associated with biogeochemical cycling, much remains uncharted about their microbial ecology1. In 
this context, it could be argued that bacteriophages (phages) have been studied to an even lesser extent, but 
they are generally considered to play a fundamental role in shaping bacterial communities and consequently 
influencing biogeochemical cycling2, 3. While viruses (including phages) only constitute 0.04% of the earth’s 
biomass4, they are widely regarded to constitute the largest and most diverse family of biological entities5. Thus, 
mapping out their taxonomy, distribution and ecological role is a daunting task. Currently, there are no genome 
sequences of phages, isolated from groundwater systems, despite descriptions of phage abundances and viromes 
in these systems6,7. This study isolated, sequenced and characterised two novel phages from a groundwater res-
ervoir. To the authors’ knowledge, this is the first report on groundwater phages that includes their sequenced 
genome and phylogenomic affiliation. The aim of the present study was to describe the first isolated groundwater 
bacteriophages that target actual bacterial isolates from the groundwater reservoir through isolation, genome 
sequencing, bioinformatics and protein characterisation. Predator–prey pairs are of relevance not only in the 
study of environmental microbiology, including the food webs of groundwater aquifers, but also in the context 
of bioaugmentation for purification of contaminated groundwater, where knowledge of indigenous enemies is 
crucial to the survival of introduced degrader bacteria.

Results and discussion
Phage isolation and phage host identification.  Using a collection of natural bacterial groundwa-
ter isolates as hosts, two phages—Anath (Genbank accession MG983742.1) and Lana (Genbank accession 
MK473373.1)—were successfully obtained and their hosts identified as Bacillus mycoides and Pseudomonas sp., 
respectively, by means of the publicly available online tool for strain identification Type (Strain) Genome Server 
(TYGS) (https​://www.tygs.dsmz.de)8. Besides being the first sequenced groundwater phages, this is also the 
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first record of a B. mycoides phage (https​://www.milla​rdlab​.org; Millard Lab Bioinformatics—July 2019). Whole 
genome and 16S rRNA-based phylogenetic trees of the phages’ hosts, built in TYGS, are provided in Figures S1-
S4 in the Supplementary Information.

Phage morphologies.  Transmission electron microscopy of both phages (Fig. 1A,B) revealed morpholo-
gies to suggest that both Anath and Lana are affiliated to the family Siphoviridae in the order Caudovirales. This 
suggestion is also supported by the BLASTn results (described below). Phage Anath (Fig. 1A) exhibited a head 
diameter of 58 ± 2 nm and a tail length of 137 ± 3 nm, with the tail ending in a distinct baseplate structure (nine 
phage particles measured). Phage Lana (Fig. 1B) exhibited a head diameter of 67 ± 2 nm and a tail length of 
275 ± 5 nm, with its tail ending with a thin central tail-fibre (106 ± 16 nm long) (25 phage particles measured).

Burst size.  For each phage, a one-step growth curve experiment9 was conducted to determine the phage 
latency period and phage burst size. A preliminary requirement to this experiment, though, is to establish the 
CFU–OD600nm relationship of the host at the relevant conditions. This relationship is in turn used to determine 
the OD at which the appropriate concentration of (viable) host cells is reached, and a sensible inoculum is used 
for the given experimental conditions. Unfortunately, a reliable OD600nm–CFU relationship for the host of Anath 
was not possible due to the rhizoid growth behaviour of B. mycoides. Furthermore, microscopy observations 
during exponential growth of this host (data not shown) revealed that the cells existed not as singular cells, but 
predominantly as multicellular filamentous growth as well as singular cells. Naturally, this type of growth dis-
torts an accurate burst size determination for Anath and stresses the need for the development of new methods 
to study phage-host interactions in non-model organisms. Thus, it was only possible to complete the one-step 
growth curve for Lana. For Lana, the latency period was found to be 106.67 ± 3.33 (SEM) min and burst size was 
determined to be 19.85 ± 3.55 (SEM) phage progenies per cell. The one-step growth curve for phage Lana is pro-
vided in Figures S5 in the Supplementary Information. The phage-host interactions were all performed under 
standard laboratory conditions (planktonic cells and room temperature). This evidently does not reflect the 
natural conditions in groundwater and as such it is possible that the growth parameters determined for Lana are 
not representative of its natural growth. Ideally, methods should also be developed that allow the study of phage-
host interactions under conditions closer to those found in groundwater, such as cells growing in biofilms.

General features of phage genomes.  Assembly of Anath (average coverage × 3,168) revealed a 52 
369 bp linear genome with a 41.1% GC content. Interestingly, this is a higher GC content compared with its 
host (35.2%). Thus, the sequence of Anath is in contrast to the common trend found among phages that shows a 
lower10,11 or similar GC content to their hosts12, but falls within the variability of the phage-host GC ratio at this 
genome size13. Anath harboured 76 ORFs (Fig. 2A), and via protein database analysis, putative protein functions 
were assigned to 20 of the 76 ORFs. Furthermore, its genome contained genes with a similarity to counterparts 
found in other Bacillus phages14 associated with DNA replication/metabolism and lysis. An overview of phage 
Anath genes annotated with predicted functions is provided in Supplementary Table S1.

The assembly of phage Lana (average coverage × 142.6) revealed a linear 88 342 bp genome with a 60.8% GC 
content. The GC content of Lana was similar to its host (60.65%) and thus shared the common trend in phage-
host GC relationships13. Putative protein functions were assigned to 27 of the 133 ORFs (Fig. 2B). An overview 
of phage Lana genes annotated with predicted functions is provided in Supplementary Table S2.

Similarity with other phages.  As one of the first two sequenced groundwater phages and a novel B. 
mycoides phage, Anath was expected to show a weak resemblance to known phages. A BLASTn search15 of Anath 
(June 2019) resulted in 11 Siphoviridae hits, of which one was an unclassified Siphoviridae member—vB_BpsS-36 

Figure 1.   Transmission electron micrograph showing the long-tailed Siphoviridae morphotype of phage Anath 
(A) and phage Lana (B). The arrows indicate faint central tail-fibre structures.

https://www.millardlab.org
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Figure 2.   Genome structure of phage Anath (A) and phage Lana (B) with annotated putative protein functions 
(outside) and their gene product no. (inside). Structural genes are labelled blue and the lytic gene in red. Genes 
encoding hypothetical proteins are shown as grey.
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(Genbank accession no. MH884513.1, 22% coverage, ~ 70% sequence identity)—and ten belonged to the genus 
Andromedavirus (10–15% coverage, ~ 70% sequence identity); Curly (Genbank accession no. KC330679.1), 
Andromeda (Genbank accession KC330684.1), Gemini (Genbank accession KC330681.1), Glittering (Genbank 
accession KF669651.1), Leo2 (Genbank accession KU836751.1), Finn (Genbank accession KC330683.1), Tay-
lor (Genbank accession KC330682.1), Eoghan (Genbank accession KC330680.1), Riggi (Genbank accession 
KF669659.1) and Blastoid (Genbank accession KF669648.1). An overview of BLASTn results, E-value, query 
coverage and sequence identity is provided in Supplementary Table S3. The phylogenomic relationship between 
Anath and these phages was analysed using Gegenees (version 2.2.1)16 in a tBLASTx fragmented multiple align-
ment (accurate mode; fragment size = 200 bp, sliding-step size = 100 bp). The analysis revealed a similarity in 
amino acid sequence of just 28–32% between Anath and any of the included phages (Fig. 3A). Genomes were 
then compared between Anath, vB_BpsS-36 and selected representatives of Andromedavirus (Gemini, Leo2, 
Taylor and Finn) using the Easyfig visualisation tool (version 2.2.3)17 in BLASTn mode (Fig. 3B). As expected, 
the results revealed similar synteny with the closely related Andromedavirus. However, while Anath shared syn-
teny with these phages, several differences were also revealed that suggested a more distant phylogenomic rela-
tion, with phage vB_BpsS-36 as its closest known relative. Based on the relatively conserved large terminase 
gene in the genomes (Fig. 3B), a maximum-likelihood phylogenetic tree was constructed using the MUSCLE 
algorithm18 (default settings) in MEGA719 (Tamura-3 model20 (T92) and gamma distributed (+ G)). It included 
Anath, the entire Andromedavirus genus, vB_BpsS-36 and eight other outlying Bacillus phages (Fig. 3C). This 
placed Anath in a separate clade that included vB_BpsS-36 as the only other member. Thus, in agreement 
with the current guidelines of the International Committee on Taxonomy of Viruses (ICTV) for genus-level 
classification21 (< 50% nucleotide similarity), and considering the differences in nucleotide and protein similar-
ity between Anath and vB_BpsS-36, it is proposed that phage Anath represents a separate and novel genus of 
Bacillus phages.

For Lana, a Genbank BLASTn search revealed only one single unclassified Siphoviridae, Pseudomonas phage 
PMBT3 (accession no. MG596799.1), that shares sequence similarity (57% coverage, 78% nucleotide identity). 
Sequence alignment between Lana and PMBT3 in BLASTn, standardised to the Lana genome, produced a 44% 
overall nucleotide similarity, placing Lana in a distinct Pseudomonas phage genus21. In support of this, a com-
parison between the Lana and PMBT3 revealed some discrepancies in gene synteny (Fig. 4). Due to the lack of 
other BLASTn phage hits, no further phylogenomic analyses were undertaken for phage Lana.

To assess the phylogeny of both phages including more distantly related phages and prophages, trees were 
built based on the conserved nucleotide sequences of the major capsid protein (Anath) and terminase (Anath 
and Lana). For the analyses phages from a combination of both BLASTp and BLASTn searches were included. 
However, the results did not provide any new information with regards to the classification. The trees are shown 
in Figures S6, S7 (Anath) and Figures S8 (Lana) in the Supplementary Information.

Verification of phage virion proteins.  The presence and identity of virion proteins from both phages, 
harvested from enrichment cultures, were successfully verified. Eight virion proteins were identified for phage 
Anath: gp2 (portal protein), gp7 (hypothetical protein), gp8 (major capsid protein), gp10 (putative tail fibre), 
gp15 (hypothetical protein), gp18 (hypothetical protein), gp19 (hypothetical protein) and gp20 (hypothetical 
protein); and five for phage Lana: gp4 (hypothetical protein), gp5 (hypothetical protein), gp11 (hypothetical 
protein), gp14 (phage tail protein), and gp19 (phage tail fibre protein). Supplementary Table S4 shows all 136 
identified proteins associated with both the host and the phage.

Conclusions
The sampling method in the present study followed the method applied in the recent study by Korbel et al. 
(2017)22 to investigate the microbiology of groundwater. It recommends that groundwater wells are purged of 
(at least) three times their volume before a sample is designated as “aquifer” water. Since the wells were purged a 
minimum of 13 times of their volume before sampling, there can be confidence that bacteriophages indigenous 
to the reservoir were isolated. In summary, this study revealed for the first time the complete genomes of two 
novel phages isolated from groundwater, which are likely to represent their own separate genera. Thus, in view 
of (i) the distant relationship between the Anath and Lana hosts (Bacillus and Pseudomonas, respectively) and 
(ii) the present evidence suggesting that the phages represent novel genera, it can be argued that the limited 
scope of this study further confirms that groundwater reservoirs are an underexplored, heterogenic and poorly 
understood biotope. This is in line with recent findings that describe aquifers as (i) harbouring diverse microbial 
communities1,6,23 and (ii) acting as viral reservoirs7. This also emphasises the great potential of groundwater 
reservoirs for elucidating novel food web interactions and novel phage discoveries. Therefore, continued effort 
should be made to further isolate and catalogue phages from subsurface environments in order to contribute 
significantly to studies of predator–prey interactions and biogeochemical cycling, for example, and to the devel-
opment of groundwater bioremediation strategies.

Materials and methods
Media and culture conditions.  All bacterial culturing steps, with or without phages, were undertaken at 
room temperature (~ 22 °C) using R2A agar and R2B broth (Alpha Biosciences Inc., Baltimore, Maryland, USA) 
as growth media. Liquid cultures were grown with agitation at 200 rpm. Between uses, bacterial isolates were 
stored on R2A agar at 4 °C or as cryostocks at − 80 °C (~ 20% glycerol). Purified phage suspensions were stored 
at 4 °C between uses. The buffer solution (SM buffer) for phage resuspension contained 100 mM NaCl, 8 mM 
MgSO4 and 50 mM Tris–Cl (pH 7.5) in autoclaved Milli-Q water.
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Figure 3.   Comparative genomics and phylogenomic affiliation of phage Anath with other Bacillus phages. 
(A) Heat-map of fragmented multiple alignment (tBLASTx) constructed in Gegenees version 2.2.1 (accurate 
mode: fragment size = 200 bp, sliding-step size = 100 bp) between Anath (bold) and the 11 phages hits from 
BLASTn search. (B) Genome comparison of Anath (bottom) and selected representatives (Gemini, Leo2, 
Taylor, Finn and vB_BpsB-36), using the Easyfig genome visualisation tool in BLASTn mode (version 2.2.3). 
Nucleotide similarity at different regions between genomes is given in percentages (right bar) (C) Maximum-
likelihood phylogram, based on the terminase nucleotide sequence of Anath (highlighted as red), vB_BpsS-36 
the Andromedavirus genus and eight outliers. The selected phages are labelled according to their taxonomy 
classification in GenBank (right bar). The percentage of trees in which the associated taxa clustered together is 
shown next to the branches. A bootstrap value of 100 was used in the analysis.
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Bacterial isolation from sampled groundwater.  Groundwater from 11 wells at the Skelstofte test sites 
(Vedby, Denmark, 54°52′34.1ʺN 11°16′18.7ʺE) was sampled at depths of between 7 and 12 m below the surface. 
These test sites are used to study bioremediation and monitoring strategies of groundwater contamination24. 
Briefly, to obtain water samples representative of the reservoir, wells were purged of ~ 13–22 times their volume 
(well ø = 4 mm) using a peristaltic pump with a 0.2 L min−1 flow rate to avoid disruption of the natural water 
movement, and stable values were observed for O2, pH, conductivity, temperature and other redox parameters 
before sampling (individual parameters varied between wells) (data not shown). Subsequently, 1-L samples were 
extracted into sterile glass bottles and stored at 4 °C until use. From the samples, heterotrophic bacteria were 
isolated on R2A agar (Alpha Biosciences Inc., Baltimore, Maryland, USA), which gave a collection of 84 isolates 
representing diverse colony morphotypes.

In brief, sample bottles with groundwater were shaken thoroughly and 100 µL of each well sample was plated 
and left to grow for 4–14 days. Colony growth from samples varied greatly and library building was based on 
acquiring all the colony morphotypes throughout the incubation period. Where possible, several colonies of a 
distinct morphotype (up to a maximum of eight) were picked. To obtain pure isolates, colonies were re-streaked 
three times.

Phage screening, isolation and amplification.  Phage activity was detected in a pre-screening of phage 
enrichment cultures containing sample water, concentrated media and the relevant isolate. Screening hits, indi-
cated by clear or turbid zones in the top agar layer as a result of plausible phage activity, were then followed by a 
new enrichment to verify phage activity and subsequently obtain pure phage isolates.

The initial enrichment and pre-screening were performed by mixing 2.5 mL 2 × R2B, 2.5 mL sample water 
and then inoculating with 50 µL culture of the relevant isolate (isolated from that sample water). Following five 
days of growth, enrichment cultures were centrifuged at 10,000 g for three minutes and supernatant was filtered 
through a 0.22-µm sterile syringe PVDF membrane filter (Millex Durapore, Burlington, MA, USA). Phage activ-
ity in the filtrate from each enrichment was screened in a standard double agar overlay assay. Briefly, 10 µL of each 
filtered enrichment was drop-plated in 10 replicates onto a semisolid agar, R2B + 50 mM CaCl2/MgCl2 + 0.6% 
agarose, inoculated with 100 µL culture of relevant bacterial isolate, using R2A as the bottom agar layer. Plates 
were incubated at room temperature and inspected daily for one week, with any potential plaque forming noted 
as ‘hits’ for groundwater sample and isolate.

The follow-up enrichment cultures of phage-host ‘hits’ contained 4 mL 10 × R2B broth, 35 mL groundwater 
sample, 1 mL culture of relevant host and 10 mM CaCl2/MgCl2. Enrichment cultures were incubated for 24 h. 
Subsequently, the culture was supplemented with 1 M NaCl and incubated for 30 min. The culture was then 
centrifuged at 5,000 g for five minutes and the supernatant was filtered through a 0.45-µm PVDF syringe filter 
(Millex Durapore, Burlington, MA, USA). Then 100 µL of the filtered supernatant was used in a double agar 
overlay assay as described above, and individual plaques were picked and re-plated three times to obtain pure 
phage samples.

A high titre of both phages was obtained by polyethylene glycol (PEG) precipitation as described in9 with 
modifications. Briefly, 200 mL R2B was inoculated with 100 µL host culture, infected with 100 µL of pure phage 
lysate and left overnight. The following day, 1 M NaCl was added to cultures and left on an orbital shaker for 
one hour to burst bacterial cells. Cultures were then spun at 12,000 g for 10 min, supernatant was collected 
and PEG was added to reach 10% w/v. The mixture was left for two hours on an orbital shaker for phage-PEG 
adsorption. Finally, the mixture was centrifuged at 12,000 g for 10 min and the pellets with phage virions were 
resuspended and collected in 3–5 mL SM buffer. Following PEG precipitation, titre was determined by PFU 
counts by drop-plating dilution series of collected particles on an agar overlayer, as described above. A titre range 
between 1010–1011 PFU mL−1 was obtained. Single plaques or high-titre phage samples (1010–1011 PFU mL−1) 
were used in downstream analysis to characterise and determine the phage’s (i) morphology, (ii) burst size, (iii) 
general genome features (iv) homology with other related phages, and (v) virion proteins. For TEM imaging 
and peptide sequencing, phage samples were further purified by a caesium chloride gradient according to the 
protocol of Clokie & Kropinski25.

Host DNA extraction, sequencing and identification.  DNA was extracted from 5 mL of each host 
culture (grown for five days) using an Ultraclean Microbial DNA Isolation Kit (Mo bio Laboratories, Carlsbad, 

Figure 4.   Genome comparison of Lana (bottom) and PMBT3 using the Easyfig genome visualisation tool 
in BLASTn mode (version 2.2.3). Nucleotide similarity at different regions between genomes is given in 
percentages (right bar).
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California, USA), following the manufacturer’s protocol. DNA libraries were prepared with the Nextera XT 
DNA kit (Illumina, San Diego, USA) according to the manufacturer’s protocol. The prepared libraries were 
then sequenced in a 2 × 251 paired-end sequencing run, as part of a flow cell, using the Illumina MiSeq v2 kit 
(Illumina, San Diego, CA, USA). In assembling host draft genomes, CutAdapt (v1.8.3) was used to quality-
trim sequence reads (bases with < q20 removed from read ends) and to remove any contaminants (primers and 
indexes). Shorter reads (< 50 bp) were then removed and overlapping read pairs merged using AdapterRemoval 
(v2.1.0)26 at default settings. Finally, the cleaned merged and unmerged reads were assembled using SPAdes 
(v3.6.0)27 and assemblies evaluated in QUAST (v3.1)28.

For each host, the genome sequence data were uploaded to the Type (Strain) Genome Server (TYGS), a 
free bioinformatics platform available at https​://tygs.dsmz.de, for a whole genome-based taxonomic analysis8. 
Methods (and results) for strain identification are provided in the Supplementary Information.

Transmission electron microscopy of virions.  The caesium chloride-purified phage sample was 
adsorbed to freshly prepared ultra-thin carbon film and fixed with 2% (v/v) EM-grade glutaraldehyde (20 min). 
Fixed samples were then negatively stained with 1% (w/v) uranyl acetate and picked up with 400-mesh copper 
grids (Plano, Wetzlar, Germany). Finally, prepared samples were analysed using a Tecnai 10 transmission elec-
tron microscope (Thermo Fisher, Eindhoven, the Netherlands) at an acceleration voltage of 80 kV. Micrographs 
were taken with a MegaView G2 CCD-camera (EMSIS, Muenster, Germany).

Phage Lana burst size.  Phage latency period and burst size were determined for phage Lana in a one-step 
growth curve experiment as described elsewhere9. Here, the host was grown to OD600nm 0.75, corresponding 
to 4 × 107 CFUs mL−1. Then, 10 mL culture was infected with a 0.05 multiplicity of infection and incubated for 
20 min at 200 rpm to allow phage-host adsorption. After adsorption, three aliquots of infected culture were 
diluted × 10,000, and PFUs in the three diluted cultures were followed over time to determine the phage latency 
period and phage burst size. Experimental cultures were sampled at the beginning of the experiment and then 
every 10 min from 90 min until the end. Average PFU numbers before and after the burst event were used to 
calculate the burst size. In calculating the burst size, the infection efficacy of phage Lana after the adsorption 
step was also considered. After adsorption, one sample from the infected culture was centrifuged at 6,000 g for 
five minutes, thereby separating infecting phages (pellet) and unadsorped phages (supernatant). Subsequently, 
three technical replicates from the resuspended pellet and the supernatant were plated and PFUs were counted. 
The infection efficacy of Lana was then determined to be 19.27% ± 1.04 SEM. Prior to the experiment, the 
study established (i) a growth curve for the host strain to determine the OD600nm—CFU relationship and (ii) an 
approximate phage latency period (data not shown).

Phage DNA extraction and genome sequencing.  For both phages the protocol for the direct plaque 
sequencing (DPS) method was used as described by Kot et al.29 with the following modifications for phage Anath 
only: 500 µL high titre lysate was used as input (~ 2 × 1010 PFU mL−1), 10 µL (100 mg mL−1) of protein kinase K 
(Thermo Scientific, Waltham, USA) was used in capsid DNA release, and 10 µL was used as elution volume for 
purified DNA. Phage DNA libraries were prepared with the Nextera XT kit DNA kit (Illumina, San Diego, USA), 
using the DPS method described in Kot et al.29 for phage Lana and the manufacturer’s kit protocol for phage 
Anath. Prepared libraries were sequenced in a 2 × 250 paired-end sequencing run, as part of a flow cell, using the 
Illumina MiSeq platform (Illumina, San Diego, USA).

Phage genome assembly and annotation.  Sequence reads were trimmed and assembled in the CLC 
Genomic Workbench 11.1.0 (CLC bio, Aarhus, Denmark) using standard settings, and assembly was cross-
verified using SPAdes (version 3.13.0, using trimmed and merged reads as input running on-careful mode), as 
described elsewhere30. Assembled genomes were automatically annotated using the RAST online tool31 and were 
manually curated by cross-referencing with four other publicly available protein recognition tools: BLASTp, 
Pfam, HHpred and Phyre32–35. Predicted protein functions were annotated accordingly when identical functions 
were predicted in at least three of the five databases used.

De novo peptide sequencing—identification of structural proteins.  To identify the proteins, the 
previous procedure for protein purification from Lavigne et  al.36 was followed with minor modifications. In 
short, 100 µL of the phage extract was transferred to an Amicon Ultra filter unit (MWCO 30 kDa) and cen-
trifuged at 14,000 × g for 20 min and further desalted four times with 450 µL water. The filtrate containing the 
phage particles (10 µL) was denaturised in 25 µL buffer consisting of 6 M urea, 5 mM dithiothreitol and 50 mM 
Tris–HCl (pH 8). The phage particles were destabilised by five successive freeze-thawing cycles followed by 
a full hour incubation at 60 °C to reduce the phage proteins. The proteins were alkylated by adding 25 µL of 
100 mM iodoacetamide and 150 µL of 50 mM ammonium bicarbonate and incubated for 45 min at room tem-
perature. Phage proteins were digested with 0.8 µg trypsin dissolved in 40 µL 50 mM ammonia bicarbonate 
and incubated for 24 h at 37 °C. The protein digest was diluted with 200 µL 0.1% trifluoroacetic acid (TFA) and 
purified by solid-phase extraction using 2 mg hydrophobic reversed phase well-plate cartridges (Thermo Fisher 
Scientific) preconditioned with 200 µL acetonitrile and 200 µL 0.1% TFA. The peptides were eluted from the 
cartridges with two times 25 µL 70% acetonitrile and diluted with 150 µL 0.1% TFA. The phage peptides were 
analysed using an Ultimate 3,000 RSLCnano UHPLC system hyphenated with a Q Exactive HF mass spec-
trometer (Thermo Fisher Scientific, Denmark). An amount of 6.4 µL of the sample was loaded on a precon-
centration trap (C18 300 µm × 5 mm cartridge, Thermo Fisher Scientific) and eluted onto an analytical column 
(75 µm × 250 mm, 2 µm C18, Thermo Fisher Scientific) with a chromatographic triple-phasic 53 min gradient 
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ranging from 1 to 64% mobile phase B (98% acetonitrile and 0.1% formic acid) at a 300 nL per minute flow rate. 
The total analysis time was 65 min and mobile phase A consisted of 2% acetonitrile and 0.1% formic acid. The 
high-resolution mass spectrometer was operated with positive electrospray ionisation in data-dependent mode 
by automatically switching between MS and MS/MS fragmentation. Based on a survey MS scan in the Orbitrap 
operated at a mass resolution of 120,000 at m/z 200 with a target of 3e6 ions and a maximum injection time at 
50 ms, the twelve most intense peptide ions were selected for MS/MS fragmentation in subsequent scans. The 
selected ions were isolated (in a m/z 1.4 window) and higher-energy collision dissociation was performed at a 
normalised collision energy (28) and fragments recorded in centroid mode at a resolution of 60,000 (m/z 200) 
with a 250 ms maximum filling time and target of 1e5 ions. The high-resolution data generated were analysed 
in Proteome Discoverer 2.2 (Thermo Fisher Scientific) and searched against predicted phage/host proteins by 
the Sequest HT algorithm in an iterative processing pipeline. The search criteria were enzyme, trypsin (full); 
dynamic modifications, methionine oxidation and acetyl (N-terminus); precursor mass tolerance, 5 ppm; frag-
ment mass tolerance, 20 mDa. The processed data were filtered in a Proteome Discoverer consensus workflow 
with the Peptide Validator algorithm (q-value < 0.01) to ensure the peptide-spectrum match had a false dis-
covery rate under 1%. The de novo peptide sequencing identified 136 proteins in total with a false discovery 
rate < 1%. Individual samples contained proteins mapping to predicted proteins of both the phage and its host: 
17 identified proteins in Anath/B. mycoides and 122 identified proteins in Lana/Pseudomonas sp. To avoid false 
positive identification, only phage proteins identified with quality scores (sequest HT score) exceeding the high-
est quality score of identified host proteins were regarded as virion proteins.
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