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Coccidiosis in poultry, caused by protozoan parasites of the genus Eimeria, is an
intestinal disease with substantial economic impact. With the use of anticoccidial drugs
under public and political pressure, and the comparatively higher cost of live-attenuated
vaccines, an attractive complementary strategy for control is to breed chickens with
increased resistance to Eimeria parasitism. Prior infection with Eimeria maxima leads
to complete immunity against challenge with homologous strains, but only partial
resistance to challenge with antigenically diverse heterologous strains. We investigate
the genetic architecture of avian resistance to E. maxima primary infection and
heterologous strain secondary challenge using White Leghorn populations of derived
inbred lines, C.B12 and 15I, known to differ in susceptibility to the parasite. An intercross
population was infected with E. maxima Houghton (H) strain, followed 3 weeks
later by E. maxima Weybridge (W) strain challenge, while a backcross population
received a single E. maxima W infection. The phenotypes measured were parasite
replication (counting fecal oocyst output or qPCR for parasite numbers in intestinal
tissue), intestinal lesion score (gross pathology, scale 0–4), and for the backcross
only, serum interleukin-10 (IL-10) levels. Birds were genotyped using a high density
genome-wide DNA array (600K, Affymetrix). Genome-wide association study located
associations on chromosomes 1, 2, 3, and 5 following primary infection in the backcross
population, and a suggestive association on chromosome 1 following heterologous
E. maxima W challenge in the intercross population. This mapped several megabases
away from the quantitative trait locus (QTL) linked to the backcross primary W strain
infection, suggesting different underlying mechanisms for the primary- and heterologous
secondary- responses. Underlying pathways for those genes located in the respective
QTL for resistance to primary infection and protection against heterologous challenge
were related mainly to immune response, with IL-10 signaling in the backcross primary
infection being the most significant. Additionally, the identified markers associated
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with IL-10 levels exhibited significant additive genetic variance. We suggest this is a
phenotype of interest to the outcome of challenge, being scalable in live birds and
negating the requirement for single-bird cages, fecal oocyst counts, or slaughter for
sampling (qPCR).

Keywords: intercross, backcross, Eimeria maxima, QTL, resistance, interleukin-10, oocyst output

INTRODUCTION

Coccidiosis is an intestinal disease caused by intracellular
protozoan parasites of the genus Eimeria (Shirley et al., 2005).
The control of coccidiosis is a challenge to the international
poultry industry, with economic losses estimated at USD 3
billion annually (Dalloul and Lillehoj, 2006). Current control of
coccidiosis relies on the prophylactic use of anticoccidial drugs,
or vaccination with formulations of live wild-type or attenuated
parasites (Crouch et al., 2003; McDonald and Shirley, 2009).
However, use of some anticoccidial drugs has been curtailed by
legislation, while the limited production capacity and costs of
live attenuated vaccines compromise their utility in broiler flocks
(Hong et al., 2006). Thus, there is a need for complementary
strategies to control coccidiosis in poultry. A promising approach
would be to breed chickens for increased genetic resistance and
increased vaccine response to Eimeria parasitism since there is
evidence for relevant host genetic variation (Johnson et al., 1986;
Bumstead and Millard, 1992).

Coccidiosis in poultry is caused by seven distinct Eimeria
species (Reid et al., 2014), with Eimeria maxima being one of
the most common causes of coccidiosis in commercial broilers.
Immunity introduced by primary infection (vaccination) against
E. maxima is commonly strain-specific, with immune escape
contributing to sub-clinical coccidiosis symptoms that include
decreased feed conversion efficiency, marked weight loss and low
performance (Fitz-Coy, 1992; Blake et al., 2005).

Johnson et al. (1986) demonstrated variance in coccidiosis
susceptibility in chickens as a prerequisite to selective breeding
for resistance. A subsequent study using several inbred White
Leghorn lines established variance for benchmark phenotypes
when chickens were infected with controlled doses of Eimeria
spp. (Bumstead and Millard, 1987, Bumstead and Millard, 1992).
The between-line variation observed in oocyst production by the
different lines was not correlated with weight loss or mortality,
indicating that within-trait observations were a result of effect
accommodation rather than parasite restriction. The greatest
differences in parasite replication (PR) were between lines 15I
and C major histocompatibility complex (MHC) haplotype
B12 (C.B12) chickens that produced relatively high and low
numbers of oocysts, respectively (Bumstead and Millard, 1987;
Smith et al., 2002). Most notably, primary infection with the
Houghton or Weybridge reference E. maxima strains induce
100% protection against secondary homologous challenge in 15I
and C line chickens (Smith et al., 2002). However, the outcome
of heterologous challenge varied by parasite strain and host
genotype combination (Smith et al., 2002; Blake et al., 2004,
2005). Regardless of the substantial financial losses to industry
caused by coccidiosis, few studies have attempted to identify

quantitative trait loci (QTL) for resistance to E. maxima infection
and there are no relevant studies on the genetics of heterologous
secondary challenge response.

The present study extends previous work in inbred chicken
lines to determine the genetic architecture of E. maxima
resistance, i.e., lack of PR, and protection against secondary
challenge with a heterologous E. maxima strain. First, an F2
intercross of inbred White Leghorn chicken lines C.B12 × 15I
were initially infected with E. maxima H, followed 3 weeks
later by challenge with E. maxima W to investigate response
to challenge with the heterologous strain. Fecal oocyst output
was counted to determine severity of challenge. Second,
a backcross population from the same two inbred lines
[(C.B12 × 15I) × C.B12] was infected with E. maxima W
to study primary resistance to parasitism. Three phenotypes
were determined for these birds following infection: PR by
qPCR for parasite numbers in intestinal tissue, intestinal lesion
score (LS) (gross pathology, scale 0–4) and levels of serum
interleukin-10 (IL-10), a novel biomarker, found to be positively
correlated with the pathology trait in chickens infected with E.
tenella (Wu et al., 2016; Boulton et al., 2018). All birds were
then genotyped using a 600K Affymetrix R© Axiom R© HD array
(Kranis et al., 2013), enabling genome-wide association studies
(GWASs), followed by pathway analysis to identify candidate
genomic regions, pathways, networks and genes for resistance to
E. maxima primary infection and effective responses to challenge
with a heterologous strain.

MATERIALS AND METHODS

Ethics Statement
These trials were conducted under Home Office Project Licence
in accordance with Home Office regulations under the Animals
(Scientific Procedures) Act 1986 and the guidelines set down by
the Institute for Animal Health and RVC Animal Welfare and
Ethical Review Bodies.

Parasites
The E. maxima Houghton (H) and Weybridge (W) strains
were used throughout these studies (Norton and Hein, 1976).
Routine parasite passage, sporulation, and dose preparation were
undertaken as described previously (Eckert et al., 1995) using
specific pathogen free Light Sussex or Lohman LSL chickens.
Oocysts were used within 1 month of harvest.

Animals
Inbred chicken lines 15I and C derived from White Leghorn
flocks at USDA-ARS Avian Disease and Oncology Laboratory
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in East Lansing, MI, United States, were maintained by random
mating within the specified-pathogen-free (SPF) flocks at the
Pirbright Institute [formerly the Institute for Animal Health
(IAH)], United Kingdom since 1962 and 1969, respectively.

F2 intercross birds (n = 195) were generated by crossing nine
F1 (C.B12 × 15I) male progeny with 27 unrelated F1 female
progeny at the IAH (Compton site). Six birds from each of the
two parental lines, 15I and C.B12, were also hatched and kept
under the same experimental conditions as F2 (individual cages
post-challenge).

To generate the backcross (n = 214), 20 F1 (C.B12 × 15I)
male progeny were crossed with 100 unrelated C.B12 line females.
The breeding was performed in the SPF Bumstead facility at the
Roslin Institute, The University of Edinburgh, United Kingdom.
Day old chicks were transported in isolated SPF containment to
the Royal Veterinary College poultry barn, University of London,
United Kingdom, where the primary infection with E. maxima W
sporulated oocysts were conducted in floor pens.

Eimeria maxima Challenge Experiments
Intercross Population
F2 intercross (n = 195), and 12 parental line birds were initially
infected by oral gavage with 100 sporulated oocysts of E. maxima
H at 25 days of age and moved to individual cages. Feces were
collected from each bird on a daily basis during the 5–10 days
post-challenge (pi) period following infection. Three weeks later
(47 days of age) a secondary challenge was initiated by oral gavage
of 250 sporulated oocysts of E. maxima W. Feces were again
collected from each bird on a daily basis during the 5–10 day
post-challenge period.

Backcross Population
At 21 days of age, chickens were inoculated by oral gavage
with either 1 ml distilled water (control group, n = 20) or 100
sporulated oocysts of E. maxima W (infected group, n = 194).
To avoid cross-infection the control group was housed separately.
Birds were euthanised humanely at day 7 pi, coinciding with the
peak pathological effects of E. maxima (Rothwell et al., 2004),
providing the greatest sensitivity for parasite genome detection
(Blake et al., 2006). A blood sample from each bird was collected
post-mortem via aortic rupture into 1.5 ml Sigma-Aldrich
(Dorset, United Kingdom) microcentrifuge tubes. Bijou tubes
(7 ml SterilinTM) containing 5–10 volumes of room temperature
RNAlater R© (Life Technologies, Carlsbad, CA, United States) were
used to store 5.0 cm of intestinal tissue and content from either
side of Meckel’s diverticulum.

Phenotyping
Individual oocyst output was used to study the outcome of the
E. maxima H primary infection and secondary heterologous
E. maxima W challenge in the intercross chicken population.
Oocysts were quantified daily (5 to 10 days post- infection and
challenge) using a microscope and saturated salt flotation in a
McMaster counting chamber (Eckert et al., 1995; Smith et al.,
2002). Daily totals were combined to provide a total count
for oocyst output per bird for both the primary infection and

secondary challenge. Oocyst counts were log-transformed to
approximate normal distribution.

The phenotypes used to study resistance to E. maxima W
primary infection in the backcross population were relative
intestinal Eimeria genome copy number (PR, measured using
quantitative PCR as parasite genomes per host chicken genome),
intestinal LS (pathology, on a scale 0–4), and serum IL-10 level
(IL-10). Quantitative real-time PCR targeting the E. maxima
microneme protein 1 (EmMIC1) and Gallus gallus β-actin
(actb) loci was performed using total genomic DNA extracted
from a 10 cm length of intestinal tissue centered on Meckel’s
diverticulum using a DNeasy Blood and Tissue kit (Qiagen,
Hilden, Germany). Briefly, each complete tissue sample was
disaggregated using a Qiagen TissueRuptor and an aliquot was
processed for extraction of combined host and parasite DNA
(see Blake et al., 2006, for full details). A CFX96 Touch R© Real-
Time PCR Detection System (Bio-Rad Laboratories, Hercules,
CA, United States), was used to amplify each sample in
triplicate (Nolan et al., 2015), with an additional Bead-Beater
homogenization step prior to buffer ATL treatment (including 1
volume 0.4–0.6 mm glass beads, 3,000 oscillations per minute for
1 min). Intestinal pathology was assessed by the same experienced
operator scoring lesions according to Johnson and Reid (1970).
A capture ELISA was used to measure IL-10, employing ROS-
AV164 and biotinylated ROS-AV163 as capture and detection
antibodies, respectively (see Wu et al., 2016, for full details). IL-
10 levels and parasite genome numbers were log-transformed to
approximate normal distribution.

Phenotypic Correlations
Following log-transformation for PR and IL-10, all backcross
phenotypic traits were rescaled to modify the unit of
measurement differences. Then, fitting host sex as a fixed
effect in a multivariate linear model, phenotypic correlations (rP)
were estimated using ASReml 4.1 (Gilmour et al., 2015).

Genome-Wide Association Studies
Sixty-seven F2 birds exhibiting the most extreme phenotypes,
plus the 12 intercross parental line birds and the entire backcross
generation were genotyped using the 600K Affymetrix R© Axiom R©

HD genotyping array (Kranis et al., 2013). Although each
data set was analyzed separately, the same GWAS steps were
used for both populations. The marker genotype data were
subjected to quality control measures using the thresholds: minor
allele frequency < 0.02 and call rate > 90%. Deviation from
Hardy–Weinberg equilibrium was not considered a reason for
excluding markers since these were experimental populations of
inbred lines. After quality control 203,845 intercross and 204,072
backcross markers remained and were used, respectively, to
generate separate intercross and backcross genomic relationship
matrixes (GRMs) to investigate the presence of population
stratification. Next, each GRM was converted to a distance matrix
that was analyzed with a classical multidimensional scaling using
the GenABEL package of R (Aulchenko et al., 2007) to obtain
principal components. These analyses revealed three principal
components in the intercross population (one for each parental
line and one for F2 birds), but no substructure in the backcross.
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GWAS for each trait were then conducted using GenABEL based
on a mixed model, with the population principal components
fitted as a co-variate (intercross population only), sex fitted as a
fixed effect in both studies, and GRM fitted as a random polygenic
effect to adjust for population sub-structure. In the case of GWAS
for heterologous secondary challenge response, the oocyst output
following the first challenge was also fitted as a covariate to
account for the effect of the first challenge. After Bonferroni
correction for multiple testing, significance thresholds were
P ≤ 2.45 × 10−7 and P ≤ 4.90 × 10−6 for genome-wide
(P ≤ 0.05) and suggestive (namely one false positive per genome
scan) significant levels, respectively corresponding to −log10 (P)
of 6.61 and 5.30. The extent of linkage disequilibrium (LD)
between significant markers located on the same chromosome
regions was calculated using the r-square statistic of PLINK v1.09
(Purcell et al., 2007).

Effects of the significant markers identified in each GWAS
were re-estimated in ASReml 4.1 (Gilmour et al., 2015) by
individually fitting the markers as fixed effects in the same model
as used for GWAS analyses. Effects were calculated as follows:
additive effect, a = (AA – BB)/2; dominance effect, d = AB-
((AA + BB)/2), where AA, BB, and AB were the predicted trait
values for each genotype class.

All significant markers identified in GWAS for responses
to primary infection and secondary E. maxima W challenge
were mapped to the reference Gallus gallus domesticus genome
and annotated using the variant effect predictor1 tool within
the Ensembl (genome browser 92) database and the Gal-gal5
assembly2. Furthermore, genes located within 100 kb up- and
down-stream of the significant markers were annotated using
the BioMart data mining tool3 and the Gal-gal5 assembly. This
method of annotation enabled all genes located in the vicinity of
the identified significant markers to be identified and cataloged.

Re-sequencing Data Analysis
To identify possible protein-coding genes associated with the
detected QTL, genomic sequences in the regions of interest
from the line 15I and C.B12 chickens were compared. The
two parental chicken lines were entirely re-sequenced at 15–20
fold coverage, using pools of 10 individuals per line, performed
on an Illumina GAIIx platform using a paired-end protocol
(Krämer et al., 2014). Re-sequencing data of the candidate
regions (i.e., 1 kb up- and downstream of the candidate gene
end sites), for resistance to primary infection and heterologous
challenge derived from intercross and backcross analyses, were
then extracted and examined separately. Using the Mpileup tool
for marker calling (SAMtools v0.1.7; Li et al., 2009), single
nucleotide variants (SNVs) between the two parental lines and
the reference genome in these regions were detected. These were
then annotated using the same variant effect predictor software
as above. Information for all SNV [intergenic, intronic, exonic,
splicing, 3′ and 5 untranslated regions (3′ UTR, 5′ UTR)] present
in the regions of interest were collated. Intergenic, intronic, and

1http://www.ensembl.org/Tools/VEP
2https://www.ncbi.nlm.nih.gov/assembly/GCF_000002315.4/
3http://www.ensembl.org/biomart/martview/

exonic synonymous variants were then filtered out along with
SNV that were common in the two parental lines but different
from the reference genome. Thus, only sites that were different
between the parental lines and had an effect on the coding
sequence (nonsense, missense, splicing) or a potential effect on
the gene expression (3′ UTR and 5′ UTR) were retained for
further study.

Pathway, Network, and Functional
Enrichment Analyses
Identification of potential canonical pathways and networks
underlying the candidate genomic regions associated with
outcomes of primary infection and heterologous secondary
E. maxima challenge were performed using the ingenuity
pathway analysis (IPA) program4. IPA constructs multiple
possible upstream regulators, pathways, and networks that serve
as hypotheses for the biological mechanism underlying the
phenotypes based on a large-scale causal network derived from
the Ingenuity Knowledge Base. After correcting for a baseline
threshold and calculating statistical significance, the most likely
pathways involved are inferred (Krämer et al., 2014). The
constructed networks can then be ranked using their IPA score
based on the P-values obtained using Fisher’s exact test [IPA score
or P-score =−log10 (P-value)].

The gene lists for each phenotype were also analyzed using
the Database for Annotation, Visualization and Integrated
Discovery (DAVID; Dennis et al., 2003). To understand the
biological meaning behind these genes, gene ontology (GO)
was determined, and functional annotation clustering analysis
was performed using the integral G. gallus background. The
enrichment score (ES) of DAVID is a modified Fisher exact
P-value calculated by the software, with higher ES reflecting more
enriched clusters. An ES > 1 means that the functional category
is overrepresented.

RESULTS

Descriptive Statistics
Phenotypic distributions for oocyst counts following primary
infection with E. maxima H and secondary challenge with
E. maxima W in the intercross and parental populations along
with relative DNA and IL-10 levels in the backcross populations
after primary infection with E. maxima W are presented in
Figures 1A–C. After primary infection the pure line C.B12
birds produced fewer E. maxima oocyst counts compared to
the pure line 15I and F2 birds, with the highest oocyst output
recorded in the pure line 15I group. Conversely, inverse findings
regarding oocyst output were recorded in the two parental
lines following heterologous secondary strain challenge. These
results agree with previous findings that show line C.B12 birds
develop no cross protection between primary H and secondary
W strain challenges, while line 15I birds develop significant
cross-protection when infected in this order (Smith et al.,
2002; Blake et al., 2005). As expected, for both primary and

4www.ingenuity.com

Frontiers in Genetics | www.frontiersin.org 4 November 2018 | Volume 9 | Article 528

http://www.ensembl.org/Tools/VEP
https://www.ncbi.nlm.nih.gov/assembly/GCF_000002315.4/
http://www.ensembl.org/biomart/martview/
http://www.ingenuity.com
https://www.frontiersin.org/journals/genetics/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-09-00528 November 24, 2018 Time: 15:33 # 5

Boulton et al. Maxima Genomics

FIGURE 1 | Distribution of the intercross Eimeria maxima replication in (A) primary infection with Houghton and (B) secondary challenge with Weybridge
heterologous strain for F2 and parental lines 14I and C.B12. (C) Backcross relative DNA and IL-10 distributions. (D) Backcross Lesion Score (LS) and (log10) IL-10
correlations, with significance value (P). For (A–C), black horizontal bars represent the distribution means and gray error bars the SE of the mean.

secondary challenges F2 intercross population oocyst count level
was intermediate between those of the two parental lines.

Among the backcross chickens, following infection with
E. maxima W, phenotypic scores for intestinal lesions were
low (0–2), however significant variance (P = 0.05) was noted
(Table 1). Estimated phenotypic correlations between the three
measured traits ranged from 0.8 to 0.15, with only the
correlation between LS and IL-10 being statistically significant
(rLS,IL−10 = 0.15± 0.07; Figure 1D and Table 1).

Genome-Wide Association Studies
Intercross Study
Genome-wide association study analysis for oocyst output
following primary infection of the intercross population with
E. maxima H did not reveal significant associations after

TABLE 1 | Genetic covariance/variance/correlation matrix ( ± SE), for the
backcross primary E. maxima infection trial.

PR LS IL-10

PR 0.92 (0.09) 0.12 (0.07) 0.08 (0.07)

LS 0.11 (0.07) 0.90 (0.09) 0.15 (0.07)

IL-10 0.07 (0.07) 0.14 (0.07) 1.0 (0.10)

Significant values are highlighted in italics. Covariances are presented below the
diagonal, variances are shaded on the diagonal, with between-trait correlations
above. Measured traits are parasite replication per host genome (PR), lesion score
(LS), and serum interleukin-10 (IL-10).

the strict Bonferroni correction. However, an association with
markers on chromosome 2, just below the suggestive threshold
was reported (results not shown). GWAS analysis following
secondary challenge with the heterologous E. maxima W strain
identified 11 markers on chromosome 1, all having suggestive
associations with the trait in the intercross population. These
11 markers belonged to the same LD block (499 bp, r2 = 1;
Figure 2 and Table 2). The corresponding Q–Q plot for the
GWAS intercross result is found in Figure 2.

The 11 significant markers associated with the outcome
of secondary challenge by the heterologous E. maxima strain
were all located in intronic, upstream, and downstream regions
of the phenylalanine hydroxylase (PAH) gene (Supplementary
Table S1). In the 0.5 Mb candidate region for enhanced response
to heterologous secondary E. maxima challenge only 16 protein
coding genes were located (Supplementary Table S2).

Backcross Study
Genome-wide association study results for resistance to
E. maxima W primary infection in the backcross population
revealed several of significant genomic associations for each of
the measured phenotypes. However, there was no overlap of the
candidate genomic regions linked to parasite reproduction,
intestinal pathology, or IL-10 induction (Figure 3 and
Table 3). Specifically, a single marker on chromosome 3
had a suggestive association with PR (Figure 3A and Table 3).
Four suggestive marker associations were identified with markers
on chromosomes 1, 2, and 3 for intestinal pathology (i.e., lesion
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FIGURE 2 | (A) Manhattan and (B) corresponding Q–Q plot for GWAS for oocyst output measured from the intercross chickens following heterologous secondary
challenge. The –log10 P-value (on the y axis) indicating genome-wide significance is represented by the red line, while the blue line represents suggestive
significance. The positions of the markers analyzed for the 28 main chicken autosomes (1–28) plus the sex chromosomes Z and W (29 and 30 respectively) and
microchromosomes (31), are represented on the x axis. In (B), the expected chi-squared (χ2) values are plotted on the x axis, whereas the observed χ2 values are
presented on the y axis, with the red line indicating the anticipated slope.

damage; Figure 3B and Table 3). A further four associations
were found for IL-10 on chromosomes 1, 2, and 5 (Figure 3C
and Table 3). None of the markers found on chromosome 2 for

TABLE 2 | Details of GWAS-identified and animal model-verified significant
markers for oocyst output (OoC) from the intercross chickens following secondary
challenge with the heterologous E. maxima W strain.

Trait Marker Location (Chr:mb) GA (P-value)

OoC Affx-50382738 1:55145901 0.82 (<0.001)

Affx-50382750 1:55150313 0.82 (<0.001)

Affx-50382770 1:55160683 0.82 (<0.001)

Affx-50382803 1:55177556 0.82 (<0.001)

Affx-50382825 1:55192552 0.82 (<0.001)

Affx-50382867 1:55217464 0.82 (<0.001)

Affx-50382871 1:55220484 0.82 (<0.001)

Affx-50382878 1:55224572 0.82 (<0.001)

Affx-50382880 1:55225227 0.82 (<0.001)

Affx-50382881 1:55225894 0.82 (<0.001)

Affx-50382786 1:55169757 0.82 (<0.001)

Details provided: Affymetrix marker identifier; chromosome and position of markers
in the Galgal5 assembly (Chr:mb); additive genetic effects (GA), with significance
values (P-value).

LS and IL-10 were in common, nor were they in LD. However,
the candidate QTL region for IL-10 on chromosome 2 was in
proximity with an intercross marker found following primary
infection with E. maxima H in the intercross population that falls
below the suggestive threshold. The corresponding Q–Q plots
for GWAS are displayed in Figure 4. All significant markers
identified in both studies exhibited significant (P < 0.01) additive
genetic effects (Table 3).

All of the significant markers identified for resistance to
primary E. maxima W infection in the backcross population
were located in intronic or intergenic regions (Supplementary
Table S3). The candidate regions for response to primary
E. maxima W infection contains a small number of genes:
36 protein-coding genes and four microRNAs (Supplementary
Table S4).

Resequencing Analysis
In total, 3,230 variants were identified in the candidate regions
associated with resistance to primary E. maxima infections.
SNV located in exonic regions accounted for less than 3%
of the total, while the remaining SNV (97%) were located
in intronic, upstream, and downstream regions. Genes with
SNVs that could potentially lead to non-functional transcripts
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FIGURE 3 | Manhattan plots from the backcross chicken response to E. maxima infection GWAS for the three measured traits: (A) parasite replication (PR), (B) LS,
and (C) IL-10. The –log10 P-value (vertical axis) indicating genome-wide significance is represented by the red line, while the blue line represents genome-wide
suggestive significance. The positions of the markers analyzed for the 28 main chicken autosomes (1–28) plus the sex chromosomes Z and W (29 and 30
respectively) and microchromosomes (31), are represented on the horizontal axes.

were not detected. However, six genes contained missense
SNVs that may affect the function of the encoded proteins.
More specifically, LONRF2, CHST10, PDCL3, and TBC1D8
genes on chromosome 1, FAM69C on chromosome 2, and
IPCEF1 on chromosome 3 had missense with moderate effect
SNVs. Also, these genes contained 3′/5′ UTR variants that may
affect the expression of these genes. Details of the missense
variants identified in the candidate regions for E. maxima
resistance to primary infection are presented in Supplementary
Table S5.

In total, 2,165 SNV were detected in the candidate region
on chromosome 1 for the response to heterologous secondary
E. maxima W challenge. Most of the identified SNV (95%) were
located in intronic, upstream and downstream regions; 5% were
located in exonic regions, mostly in 3′ and 5′ UTR regions.

TABLE 3 | Details of GWAS-identified and animal model-verified significant
markers from the backcross chicken response to E. maxima primary infection.

Trait Marker Location Chr:mb GA (P-value)

PR Affx-51275363 3:49284591 −0.66 (<0.001)

LS Affx-51243371 3:31960902 0.67 (<0.001)

Affx-50321421 1:20945328 0.73 (<0.001)

Affx-50226161 1:150098597 0.57 (<0.001)

Affx-51010702 2:98848476 0.54 (<0.001)

IL-10 Affx-50999702 2:92008902 −1.49 (<0.001)

Affx-50194384 1:132582437 −1.36 (<0.001)

Affx-51587399 5:47737604 −1.76 (<0.001)

Affx-50857122 2:136484786 1.42 (0.002)

Measured traits – parasite replication per host genome (PR), Lesion Score (LS),
and serum interleukin-10 (IL-10). Details provided: Affymetrix marker identifier;
chromosome and position of markers in the Gal-gal5 assembly (Chr:mb); the
additive genetic effect (GA) and significance values (P-value).

Nevertheless, three genes (PMCH, TBXAS1, THL3) containing
missense variants with moderate effects as well as 3′/5′UTR
variants were detected. Details of the missense variants identified
in the candidate regions for heterologous secondary E. maxima
W challenge are presented in Supplementary Table S6.

Pathway, Network, and Functional
Enrichment Analyses
The analyses for resistance to primary E. maxima infection
revealed pathway enrichment for immune response involvement,
including IL-10, interleukin-6 (IL-6), nuclear factor kappa-light-
chain-enhancer of activated B cells (NF-κb) and toll like receptor
signaling (Figure 5). Using the list of candidate region genes, two
networks were constructed, comprising molecular interactions
related to inflammatory response and disease, cell death and
survival, cellular compromise, and cell cycle (IPA scores = 25;
Figures 6A,B). A single enriched cluster was found, related
to immune response linked to interleukin-1 (IL-1), Toll/IL1
response and cytokine-cytokine receptor response (ES = 2.2,
with IL1R1, IL1RL1, IL2R, IL19R18, PTPRM, and COL14A genes
involved).

The pathway analyses for response to heterologous E. maxima
W strain secondary challenge revealed enrichment for both
immune (prostanoid biosynthesis, retinoic acid mediated
apoptosis signaling, eicosanoid signaling) and metabolic
pathways (Figure 7). Two gene networks were constructed,
related to cell signaling, nucleic acid metabolism and
small molecule biochemistry (IPA score = 20), and cellular
development, tissue development and function (IPA score = 45),
respectively (Figures 8A,B). Accompanying functional
annotation clustering analysis revealed the presence of two
enriched clusters related to cell to cell signaling (ES = 1.7) and
metal-ion binding (ES = 1.3).
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FIGURE 4 | Corresponding Q–Q plots from the backcross chicken response to E. maxima infection GWAS of backcross chickens for the three measured traits:
(A) PR, (B) LS, and (C) IL-10. The expected chi-squared (χ2) values are plotted on the x-axis. The observed χ2 values are presented on the y-axis, with the red line
indicating the anticipated slope.

FIGURE 5 | Canonical pathways determined from ingenuity pathway analysis (IPA) of the candidate markers identified in the backcross chicken GWAS for E. maxima
resistance to primary challenge.

DISCUSSION

Coccidiosis remains one of the costliest diseases for the
international poultry industry. Selectively breeding chickens for
enhanced resistance to Eimeria challenge, and for improved
breadth of vaccine response, could provide a tractable strategy
to improve coccidiosis control. We conducted two studies using
different crosses between the White Leghorn inbred lines 15I
and C.B12. Our data confirm that line 15I birds are more
susceptible to primary infection with E. maxima than line C.B12
by overall PR (Smith et al., 2002; Blake et al., 2006). While
the two inbred lines exhibit similar resistance/susceptibility
profiles following primary infection with either of the two
antigenically distinct E. maxima strains, they show radically

different levels of protection against heterologous secondary
challenge by antigenically distinct strains of the same pathogen
(Smith et al., 2002). We therefore investigated the genetic
background of resistance to primary and heterologous secondary
E. maxima W challenges.

The resistance of chickens to Eimeria infection has
traditionally been quantified using measures such as oocyst
output and LS, indicating resistance to PR and parasite-
induced pathology, respectively. For the former, the fewer
oocysts excreted, the more resistant the chicken. Thus, oocyst
shedding is considered to be an indicative trait and an accurate
phenotype for calculating resistance to primary infection and
subsequent parasite challenges and this method was used in
the intercross experiment. However, calculation of oocyst
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FIGURE 6 | Molecular interaction networks constructed from the canonical pathways identified in the backcross infection response relate to (A) inflammatory
response and disease and (B) cell death and survival, cellular compromise and cell cycle.

FIGURE 7 | Canonical pathways determined from IPA of the candidate markers identified in the intercross chickens GWAS for E. maxima resistance to heterologous
secondary challenge.

output by fecal flotation and microscopy is labor intensive.
Thus, quantitative real-time PCR for parasite genome copies
in intestinal tissues was used as an alternative measure of
PR in the more recent backcross experiment (Blake et al.,
2006). A third trait, serum IL-10, was also quantified for these
latter chickens, providing a measure of the innate immune
response to Eimeria infection (Rothwell et al., 2004; Boulton
et al., 2018). IL-10 is produced after E. maxima and E. tenella

primary infection of White Leghorn chickens (lines 15I
and C.B12) and E. tenella primary infection of commercial
broilers (Rothwell et al., 2004; Wu et al., 2016; Boulton et al.,
2018). In all these cases, IL-10 was expressed at high levels in
infected birds only, and significantly correlated with pathology
(lesion scores). Here, GWAS from the backcross experiment
identified markers associated with IL-10 that exhibit significant
additive genetic variance. These findings, in conjunction with
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FIGURE 8 | The gene networks subsequently constructed from the intercross heterologous secondary challenge relate to (A) cell signaling, nucleic acid metabolism
and small molecule biochemistry and (B) cellular development, tissue development, and function.

indications that IL-10 is correlated significantly with gross
pathology in a commercial population primary infection with
E. tenella (Boulton et al., 2018), support the use of IL-10 as an
accessible early-life biomarker in breeding programs aiming
to enhance Eimeria resistance to challenge or pathological
outcomes.

Although the significance of E. maxima in field coccidiosis has
been recognized for many years, there has been a limited number
of genetic studies investigating host resistance to E. maxima
primary infection and challenge. A recent study that investigated
the genetic background of resistance to high-level E. maxima
infection using the same HD genotyping array but measuring
three different phenotypes (body weight gain, plasma coloration,
and β2-globulin in blood plasma) identified several QTL on
chromosomes 1, 2, 3, 5, and 10 in commercial Cobb500
broilers (Hamzic et al., 2015). Similar to our findings, Hamzic
et al. (2015) found no QTL overlap among their different
phenotypes. Interestingly, QTL identified by Hamzic et al. (2015)
on chromosome 1 for β2-globulin in blood plasma is nearby
(2 Mb difference) QTL found in our study linked to for resistance
to heterologous secondary E. maxima W challenge. Similar
enriched biological pathways related to innate immune responses
and metabolic processes were also detected in the two studies
with this parasite species.

In other comparable work, Zhu et al. (2003) performed a
linkage analysis study investigating chicken resistance in terms
of oocyst output following controlled E. maxima infection
using an F2-intercross between two broiler lines with different
susceptibility to primary E. maxima infection. Using 119
microsatellite markers one locus associated with E. maxima
resistance was identified on chromosome 1 (Zhu et al., 2003).
Expanding this work, Kim et al. (2006) used nine microsatellite
markers located on chromosome 1 to refine this region.

According to their results, the peak of QTL was located a
considerable genetic distance (i.e., 254 cM) away from the
chromosome 1 QTL identified here and in the Hamzic et al.
(2015) study. This could be attributed to the use of different
chicken lines, E. maxima strains, analysis methods, and/or
genotyping tools. It is worth mentioning that the power to
detect QTL as well as the resolution of their location using
a few microsatellites is limited compared to HD genotyping
platforms.

Comparison of the re-sequencing data of the two parental
chicken lines identified a small number of genes that differ
regarding the presence of exonic variants with a putative
functional effect on the encoded proteins. Two genes of interest
with missense variants located in the candidate regions for
resistance to E. maxima primary infection encode Phosducin
Like 3 (PDCL3) and TBC1 Domain Family Member 8 (TBC1D8)
proteins. These immune-related genes were included in the
two networks related to inflammatory response, and cell death
and survival, constructed by IPA. PDCL3 acts as a chaperone
for the angiogenic vascular endothelial growth factor receptor,
controlling its abundance and inhibiting its ubiquitination and
degradation, and also modulating activation of caspases during
apoptosis (Wilkinson et al., 2004; Srinivasan et al., 2013).
TBC1D8 is involved in the regulation of cell proliferation,
calcium ion transportation, and also has GTPase activator activity
(Ishibashi et al., 2009).

The genes encoding Thromboxane A Synthase 1 (TBXAS1)
and Pro-Melanin Concentrating Hormone (PMCH) are located
in the candidate region and are of interest in resistance to
secondary challenge by heterologous E. maxima W. TBXAS1
encodes a member of the cytochrome P450 superfamily of
enzymes involved in both immune response and metabolism;
it plays a role in drug metabolism, platelet activation and
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metabolism, and synthesis of cholesterol, steroids, and other
lipids (Yokoyama et al., 1991; Miyata et al., 1994). The pro-
inflammatory actions of thromboxane receptors have been
demonstrated to enhance cellular immune responses in a mouse
model (Thomas et al., 2003). PMCH encodes a preproprotein
that is proteolytically processed to generate multiple protein
products, including melanin-concentrating hormone (MCH)
that stimulates hunger and may additionally regulate energy
homeostasis, reproductive function, and sleep (Viale et al., 1997;
Chagnon et al., 2007). In a further mouse model, MCH has
also been reported as a mediator of intestinal inflammation
(Kokkotou et al., 2008). Although, the genes mentioned above
are good functional candidates for resistance to primary infection
and heterologous challenge with E. maxima, further studies are
needed to confirm the present results and identify the actual
causative genes and mutations.

The immune interactions between an intracellular pathogen
and a host are complex and vary as a consequence of the survival
mechanisms that have evolved in both (Blake et al., 2011; Blake
and Tomley, 2014). It has been suggested that host control
of challenge with Eimeria, an obligate intracellular pathogen,
requires a strong inflammatory, mostly cell mediated response
(Shirley et al., 2005; Dalloul and Lillehoj, 2006). Also, host innate
immune responses have been detected during initial pathogen
exposure in several studies (Kim et al., 2008; Pinard-van der Laan
et al., 2009; Wu et al., 2016; Boulton et al., 2018). According to our
findings, several gene networks and pathways relating to innate,
humoral and cell-mediated, immune responses were highlighted
from the gene products located in the candidate regions for
resistance to primary Eimeria infection. Among the canonical
pathways, IL-10 signaling was the most significant, with relevance
as a regulator of cytokines such as interferon- (IFN-) γ. These
findings agree with previous studies of Eimeria resistance that
have highlighted IFN γ and tumor necrosis factor (TNF) nodes
as crucial (Pinard-Van Der Laan et al., 1998; Smith and Hayday,
2000a,b; Bacciu et al., 2014), since IL-10 downregulates IFNγ

production (Schaefer et al., 2009).

CONCLUSION

We identified genomic regions, putative candidate genes,
canonical pathways and networks involved in the underlying
molecular mechanisms of chicken resistance to E. maxima
primary infection and to secondary heterologous E. maxima
strain challenge. More emphasis should be placed on the relevant
mechanisms for disease resistance, the response to secondary
heterologous strain challenge and the role of IL-10 induction in
immune responses to intestinal challenge in the future selective
breeding of chickens.
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