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ABSTRACT

Objectives: (1) Systematically review the literature on computerized audit and feedback (e-A&F) systems in

healthcare. (2) Compare features of current systems against e-A&F best practices. (3) Generate hypotheses on

how e-A&F systems may impact patient care and outcomes.

Methods: We searched MEDLINE (Ovid), EMBASE (Ovid), and CINAHL (Ebsco) databases to December 31,

2020. Two reviewers independently performed selection, extraction, and quality appraisal (Mixed Methods Ap-

praisal Tool). System features were compared with 18 best practices derived from Clinical Performance Feed-

back Intervention Theory. We then used realist concepts to generate hypotheses on mechanisms of e-A&F im-

pact. Results are reported in accordance with the PRISMA statement.

Results: Our search yielded 4301 unique articles. We included 88 studies evaluating 65 e-A&F systems, span-

ning a diverse range of clinical areas, including medical, surgical, general practice, etc. Systems adopted a me-

dian of 8 best practices (interquartile range 6–10), with 32 systems providing near real-time feedback data and

20 systems incorporating action planning. High-confidence hypotheses suggested that favorable e-A&F sys-

tems prompted specific actions, particularly enabled by timely and role-specific feedback (including patient lists

and individual performance data) and embedded action plans, in order to improve system usage, care quality,

and patient outcomes.

Conclusions: e-A&F systems continue to be developed for many clinical applications. Yet, several systems still

lack basic features recommended by best practice, such as timely feedback and action planning. Systems

should focus on actionability, by providing real-time data for feedback that is specific to user roles, with embed-

ded action plans.

Protocol Registration: PROSPERO CRD42016048695.
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INTRODUCTION

Audit and feedback (A&F) is widely used to improve care quality and

health outcomes.1 Through summarizing clinical performance over time

(audit), and presenting this information to health professionals and their

organizations (feedback), it can drive improvements in health out-

comes.1–3 There is established literature on predictors of A&F effective-

ness, such as targeting low baselines, delivering feedback through

supervisors, and frequent feedback.1,3,4 This has led to theories of how

A&F produces change in clinical practice and hypothesized features of

best practice.5,6 We previously developed a clinical performance feed-

back intervention theory (CP-FIT): a framework for A&F interventions

describing how feedback works and factors that influence success.5

However, little is known about to what extent this translates to auto-

mated or computerized forms of A&F using digital care records and

computational approaches, which are becoming increasingly adopted.

Computerized or electronic audit and feedback (e-A&F) systems,

often delivered as “dashboards,” generally incorporate visualization

elements to deliver feedback of clinical performance.7 With increas-

ing availability of linked care record data, they offer potential

advantages over manual A&F methods through lower costs of pro-

ducing the audits and quicker feedback.7 Developing e-A&F systems

have also changed the dynamics of how clinical performance is un-

derstood, evolving from single graphical displays requiring human

assistance for feedback, into automated multi-functional feedback

displays with interactive components.8 Over the last decade, e-A&F

systems have moved away from static reports, as interactive interfa-

ces enable users to “drill down,” filter and prioritize the data, carry-

ing greater potential for flexibility and specificity in feedback.1 E-

A&F systems are generally used away from the point-of-care (unlike

clinical decision support tools), but can produce timely improve-

ments on individual, team, or organizational levels depending on

how feedback data is used to review care performance.7

Two previous systematic reviews examining e-A&F, yielded limited

insights into the characteristics of successful systems due to the heteroge-

neity of studies and inclusion criteria.7,9 The most recent (2017) review

focused on behavior change theory and included only 7 randomized

controlled trials (RCTs).7 This needed updating and extending to con-

sider a wider range of current e-A&F systems in more detail.

A&F systems continue to demonstrate highly variable effects on

patient care, though effect sizes have been plateauing for some

time.4 Rather than simply studying outcomes, a greater focus on op-

timization of intervention design is required.10 There is a need for

more comprehensive evidence of e-A&F that considers and extends

best practice theory to define successful features and components of

these systems.7,9 Previous studies have shown that contextual factors

need to be considered, which directly affect e-A&F implementation,

such as data infrastructure and existing ways of working.7,9,11 A

narrative synthesis allows deeper exploration of intervention com-

ponents, contextual factors, and mechanisms of action to generate

further hypotheses regarding outcomes and effect modifiers.12

The aim of this study was to summarize and evaluate the current

state of e-A&F, synthesizing the literature to provide useful evidence

through learning from successes and failures. Using an extended the-

oretical framework, we explored how e-A&F system design may be

optimized to reduce variability in outcomes.

OBJECTIVES

Objective 1: Systematically review and summarize the literature on

published e-A&F systems in healthcare.

Objective 2: Compare features of these e-A&F systems against

generic A&F best practices.

Objective 3: Generate hypotheses on how e-A&F systems may

impact patient care and outcomes

METHODS

This article is consistent with PRISMA standards for systematic

reviews.13 The protocol of our study is published on the Interna-

tional Prospective Register of Systematic Reviews [PROSPERO

CRD42016048695].

Search strategy
We replicated the search strategy of the latest Cochrane review on

A&F.1 The search terms for RCT filters were replaced with those re-

lating to computerization (Supplementary File S1), based on the

scoping search (described in our protocol) and previous literature.1,5

We searched MEDLINE (Ovid), EMBASE (Ovid), and CINAHL

(Ebsco) databases starting from January 1 1999, based on the earli-

est publication date of papers from our scoping searches, up to De-

cember 31, 2020. For each included article, we performed a

supplementary search (undertaken up to January 31, 2021) that con-

sisted of reference list, citation, and related article searching to iden-

tify further relevant articles. Related article and citation searching

was performed in Google Scholar and limited to the first 100 articles

to maintain relevance.

Study selection and data extraction
The inclusion criteria are presented in Table 1. We included all peer-

reviewed studies on interactive e-A&F systems used by health pro-

fessionals for care improvements that were implemented in clinical

practice. Two reviewers (JT and BB) independently screened titles

and abstracts using the inclusion criteria. Citations that were

deemed relevant by either reviewer had full texts obtained. All full

manuscripts were then independently read by the 2 reviewers, and

the inclusion criteria reapplied with any disagreements being re-

solved through discussion. Data extraction and quality appraisal

(see below) were undertaken concurrently using a standardized data

extraction tool (Supplementary File S2) by JT and reviewed indepen-

dently by a second researcher (BB). Further discussion of the data

and resolving of discrepancies occurred at weekly meetings. Data

were collected regarding studies’ characteristics, outcomes, and fea-

tures of the e-A&F system being studied.

Quality appraisal
We performed quality appraisal (risk of bias) using the Mixed Meth-

ods Appraisal Tool (MMAT) version 2011.14 The MMAT is a vali-

dated tool that includes assessment criteria of methodological

quality for quantitative, qualitative, and mixed methods studies.14,15

These criteria include 2 screening questions and 3–4 design-specific

questions, with different study designs having different quality crite-

ria. The results are presented as 1–4 stars, allowing direct compari-

son between different study types. This was incorporated into a

GRADE-CERQual assessment to explicitly evaluate the confidence

placed in each individual set of findings from objective 3 (see be-

low).16 The GRADE-CERQuaL approach incorporates 4 compo-

nents including methodological limitations, relevance to the review

question, coherence of the finding, and adequacy of data. Ratings of

“high,” “moderate,” or “low” confidence were given through con-

sidering these 4 components in the context of reviewing the evidence
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supporting the findings, and its relation to the wider review ques-

tion. Thus, quality appraisal was used to inform data synthesis

rather than determine study inclusion to avoid excluding “low qual-

ity” studies that still generated valuable insights.17

Analysis and synthesis
CP-FIT took a central role in framing the analysis and synthesis of

data.5 CP-FIT builds on 30 pre-existing theories from a range of dis-

ciplines including behavior change, goal setting, context, psycholog-

ical, sociological, and technology theories.5 It outlines factors for

successful feedback cycles in producing behavior changes in health

professionals.5 To achieve each of our objectives, we undertook the

following analyses:

Objective 1: systematically review the literature on e-A&F systems

in healthcare

We categorized common conceptual domains and dimensions of e-

A&F systems, allowing grouping and contrasting of interventions to

supplement further analyses. Using thematic analysis, we developed

codes that described and categorized different features of the e-A&F

systems.18 Codes were created both inductively from the data, and

by deductively applying codes that describe A&F systems taken

from CP-FIT.5

Objective 2: compare features of e-A&F systems against generic

A&F “best practices”

We compared each e-A&F system to a list of features from current

literature thought to be associated with effective A&F, determining

whether each feature was present, absent, or not-reported.1,5,6 We

focused on 18 effective features that could be measured more objec-

tively included those from the latest Cochrane review, in addition to

theorized features within CP-FIT.1,5 These included a list of defined

“cointerventions,” such as “clinical education” and “financial

rewards,” but more subjective features of best practice such as credi-

bility and adaptability were excluded.5 We assumed that existing

‘best practices’ for A&F would be applicable to e-A&F systems, but

also looked to refine these best practices to increase their relevance

to e-A&F. We used linear regression to estimate the trend of best

practice features adopted over time.

Objective 3: generate hypotheses on how e-A&F systems may

impact patient care and outcomes

We adopted realist concepts to summarize our findings and to ex-

plore features of e-A&F systems as interventions implemented

within complex health and social contexts.5,19 Moving beyond tra-

ditional review methods, realist methodology allowed us to look

past overall successes or failures of e-A&F systems to generate

explanations about how and why these systems work, for whom,

and in what contexts.19 Drawing on findings developed in objectives

1 and 2, descriptive and analytical themes were organized into

intervention-context-mechanism-outcome (ICMO) configurations

Table 1. Inclusion criteria and typical examples of exclusions

Inclusion criteria Typical exclusion examples

Population
• The system is primarily intended for use by healthcare profes-

sionals (including clinicians and nonclinicians eg, managers)

• Websites primarily intended to help patients choose healthcare pro-

vider

Intervention
• The system provides clinical performance feedback to health-

care professionals. Clinical performance includes compliance

with pre-defined clinical standards, as well as patient outcomes

• Systems that provide feedback primarily regarding nonclinical perfor-

mance, for example, care costs, patient access, and epidemiological

surveillance
• Clinical performance data are obtained from medical records,

computerized databases, or observations from patients

• Clinical performance feedback systems based on peer or supervisor ob-

servation
• Feedback relates to multiple patients • Highly specific systems that only provide data for a single patient
• Feedback to inform quality improvement actions at individual,

team, or organizational levels

• Intensive care unit dashboards that summarize patients’ current clinical

status to primarily inform bedside or point-of care decisions
• Feedback is provided via a dynamic interface with which the

user can interact, (eg, a web-based portal or desktop applica-

tion)

• Feedback primarily provided on paper, verbally or via static interfaces

such as screensavers, e-mail, or electronic documents

• Providing clinical performance feedback is a core and essential

function of the system, that is, in systems with additional func-

tionalities, it is unlikely these would be offered in the absence

of such feedback

• Point-of-care reminder systems that additionally provide clinical per-

formance feedback once per year

Outcome
• The system primarily aims to improve clinical performance (as

defined above)

• Systems primarily intended to reduce costs

Study type
• Empirical research evaluation studies of systems being used by

healthcare professionals as target end-users, reporting findings

from primary data collection and analysis (either qualitative or

quantitative) focusing on the behavior of end-users using the

system, outcomes of their behavior from using the system, or

performance of the system

• Articles reporting system descriptions, or studies conducted with mem-

bers or the system development or research team

• Peer-reviewed publications in scholarly journals, written in En-

glish with abstracts available for review

• Conference abstracts, theses, gray literature, and non-English literature
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to generate further hypotheses.19,20 The resulting synthesis

highlighted possible intervention factors (I) of e-A&F systems that

when implemented in a specific context (C), acted through various

mechanisms (M) to produce particular outcomes (O) of interest (in-

cluding usage, care quality, and patient outcomes). As in CP-FIT,

mechanisms (M) were defined as underlying explanations of how

and why an intervention works, related to the feedback itself, the re-

cipient, and the wider context.5,19 Each ICMO configuration was

assessed through GRADE-CERQual to explicitly evaluate our confi-

dence for each hypothesis. Included papers were then reread to itera-

tively test and refine our emerging hypotheses, starting with papers

with higher scores of the quality appraisal and GRADE-CERQual.19

RESULTS

Study selection
The search of the 3 databases yielded 4584 articles, with 92 more

articles being identified in the supplementary search (Figure 1). After

removing duplicates, 4301 abstracts were screened. Most articles re-

moved at this stage did not describe an e-A&F system impacting

clinical care. A total of 252 full-text articles were assessed and 88

papers studying 65 systems were included in total.

Systematic review of published e-A&F systems

(Objective 1)
Included studies varied in study type, timeframe, and reporting of

results, with some studies looking at clinician performance, others

looking at outcome measures, and some examining systems utiliza-

tion and integration.21–108 The main characteristics are summarized

in Table 2 with full details in Supplementary File S3.

A summary of e-A&F system features is presented in Table 3.

Systems targeted a diverse range of aspects of care, the most com-

mon being prescribing (32 out of 65 systems) and chronic disease

management (24 systems). Most systems (57 of 65) were used by

doctors, with 29 systems being designed for doctors alone and 21

systems also involving users with managerial or senior leadership

roles. For feedback display, over 70% of systems (46 of 65) included

graphical elements. These systems varied in their presentation of

line, bar, pie, and box and whisker plots, with some systems (27 of

65) presenting more than one type of graph. Over 80% (53 of 65)

systems incorporated benchmarking elements with a similar number

of systems (51 of 65) displaying specific performance data at indi-

vidual or practice level. About two-thirds (43 of 65) provided lists of

patients, with over a third (24 of 65) providing detailed patient-level

data. Over half (34 of 65) deployed interactive functions for prioriti-

zation including sorting and color coding functions.

Comparison against generic A&F “best practices”

(Objective 2)
Table 4 below summarizes the number of characteristics each e-

A&F system had compared against a list of 18 recommended best

practices for generic A&F.1,5 Systems adopted a median of 8 best

practices (interquartile range 6–10). None of the 65 systems exhib-

ited all 18 best practices (range 1–14). An increasing number of best

practice features were adopted over time, with linear regression esti-

mating 0.40 (95% CIs, 0.32–0.48) new features per year (Supple-

mentary File S4).

All systems adopted automated audit, with 48 systems showing

data on trend over time in uses and functions. Timeliness of feed-

back data varied with 32 systems reporting immediate or “near real-

time” feedback, and most others (21 systems) reporting feedback

Figure 1. Flow diagram summarizing study selection process. Illustration of the steps used in the study selection process.
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monthly or less frequent. “Cointerventions” that were defined as

part of recommended best practices were commonly offered along-

side e-A&F systems (Tables 3 and 4). Action planning was encour-

aged by 20 systems, with some containing embedded recommended

actions within systems and others encouraging users to define their

own action plans. Other common cointerventions included financial

or other rewards (17 systems) and clinical education (15 systems).

Organizational context was often poorly reported with 19 systems

stating limited information on organizational support and 26 sys-

tems having a limited description of their implementation process.

For those that specified, 33 systems had leadership support, with 34

systems involving intraorganizational networks and 24 systems in-

volving extraorganizational networks. Intraorganization networks

frequently involved management roles and included speciality com-

mittees, working groups and primary care practice teams. Extraor-

ganizational networks were varied encompassing widespread

academic networks, governmental agencies, and pharmacy chains.

How e-A&F systems may impact patient care and

outcomes (Objective 3)
Key findings supported by ICMO configurations are presented in

Figure 2. For readability, we focus on high confidence and novel

findings related to e-A&F, with a full list of ICMO configurations

and CER-QUAL ratings in Supplementary File S5. A substantial

proportion of studies (over 30%) reported insignificant results or in-

cluded negative findings, allowing us to compare and contrast

ICMOs for these systems.23,25,32,34,37,38,40,42,43,45–

47,50,53,54,61,62,70,72,73,77,85,89,93,99,101,108 A large majority of the

codes arose from CP-FIT, though some nuanced codes building on

CP-FIT were identified inductively (see Supplementary Files S5 and

S6).5 When compared with the other mechanisms within CP-FIT,

actionability appeared to be the most important mechanism in pro-

ducing clinical improvements.21–63,65–97,99–108 Actionability is the

ability of e-A&F systems to directly facilitate behaviors for users.

Namely, the more an e-A&F system successfully and directly sup-

ported clinical behaviors with tangible or concrete next steps, the

more users felt empowered and motivated to act on these behaviors

more effectively, also increasing achievability and controllability of

the task.21–63,65–97,99–108 Other mechanisms within CP-FIT (eg, re-

duced complexity, perceived relative advantage, see Supplementary

File S6 for full descriptions and explanations) often contributed to

successful e-A&F systems, but were less important as influencing

factors, and were insufficient to produce clinical improvements

alone.23,25,32,34,37,38,40,42,43,45–

47,50,53,54,61,62,70,72,73,77,85,89,93,99,101,108,109 Contextual factors were

also key effect modifiers of e-A&F systems, as they significantly en-

abled or limited implementation and engagement with each sys-

tem.21,23–25,27–30,32–35,37–59,63,65–70,73–91,93–95,99–108 However,

despite strong organization and contextual backing, systems without

actionable feedback were unlikely to result in clinical improve-

ments.23,25,32,34,37,38,40,42,43,45–

47,50,53,54,61,62,70,72,73,77,85,89,93,99,101,108,109

Three key e-A&F intervention factors were identified that en-

hanced actionability and were more likely to result in clinical

improvements:

• The availability of real-time data for feedback
• Feedback functions specific to user roles
• Action plans embedded within systems

Timely feedback data as a prerequisite to actionability

Systems that provided immediately updated or “near real-time”

feedback resulted in higher engagement and were more likely to re-

port successful outcomes.21,22,24,26,27,31,33,39,41,44,52,55,57,66,70,71,74–

77,79–83,86–88,90–92,94,97,102,105–107 The timeliness of feedback enabled

the data to be viewed as more credible and representative of perfor-

mance.21,22,24,26,27,31,33,39,41,44,52,55,57,58,66,70,71,75,76,80,82,83,86–

88,90–92,94,97,101,102,105–107 Importantly, it was reported as a prereq-

uisite for actionability, with less timely feedback frequently been

seen as extra work, and occurring outside existing work-

flow.24,27,55,77,83,102,107 Although almost all systems provided more

timely feedback compared with manual audit and previous systems,

several of these studies reported that without immediate feedback, it

remained too long for effective action to be taken despite many users

finding the feedback “helpful” or “insightful.” 40,48–

50,53,54,61,73,85,98 Likewise, the lack of real-time feedback was

reported to be a barrier to usage in several studies.48–50,53,73,85

No e-A&F systems providing annual feedback reported signifi-

cant improvements in patient care, with several studies reporting

Table 2. Frequency of main study characteristics

Count (%)a

Publication year 2016–2020 43 (49%)

2011–2015 34 (39%)

2005–2010 11 (12%)

Quality appraisal

(4* being lowest

risk of bias)

4* 4 (4%)

3* 37 (42%)

2* 33 (38%)

1* 14 (16%)

Study type Randomized controlled trial 21 (24%)

Nonrandomized controlled trial 3 (3%)

Cohort study 5 (6%)

Before and after study 8 (9%)

Cross sectional study 3 (3%)

Other quantitative study 11 (12%)

Qualitative study 27 (31%)

Mixed methods study 10 (11%)

Continent North America 57 (65%)

Europe 26 (30%)

Asia 4 (4%)

Australia 1 (1%)

Setting Hospital care (including

secondary and tertiary

settings)

51 (58%)

Outpatient care (including

specialty and primary care

settings)

36 (41%)

Nursing home 1 (1%)

Specialty area Medication safety 19 (22%)

Diabetes 17 (19%)

Cardiovascular 15 (17%)

Respiratory 6 (7%)

Oncology 9 (10%)

Nephrology 2 (2%)

Geriatrics 4 (4%)

General medicine 4 (4%)

Infectious disease 11 (12%)

Surgery 5 (6%)

Obstetrics 1 (1%)

Pediatrics 3 (3%)

Radiology 4 (4%)

Psychiatry (including

substance misuse)

5 (6%)

aCounts may add to more than 100% where papers are in multiple catego-

ries.
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Table 3. Summary of computerized audit and feedback (e-A&F) system features

Goal

What aspect(s) of clinical care were targeted?

Prescribing27,28,32,35,37,48,50,53,55–57,61,62,65,67,69,72,74,75,77,79,81,84,85,89,93–95,98,100,102

,103

Blood test use and monitoring22,39,55,63,80,81

Skill-based performance (eg, surgical/radiological)24,31,40,42,51,96,99,107

Chronic disease management21,26,32,33,35,37,39,43,48,54–56,61,69,75,77–79,84,91,93,97,101,103,104

Acute condition management22,37,41,53,67,70,86,92

Disease prevention and screening25,27,35,39,54,55,60,61,71,74,75,79,101,103,104

Nursing care40,52,59,73,75

Discharge care21,80

Patient experience25,51,103

Health professional

What were the professional role(s) of the users?

Doctors only24–26,31–33,37,42,48,60–63,69,71,74,79,80,84,89,92,93,95–97,99,101,103,104

Doctors and nurses27,40,41,51,54,67,78,91,105

Doctors and pharmacists28,57,65,81,98

Doctors, nurses, and pharmacists21,56,75,77,86,94

Doctors, nurses, and allied health22,35,39,43,50,53,70,107

Nurses only52,59,73

Pharmacists only72,85,100,102

Also involved senior leadership or managerial

users24,27,28,35,39,40,43,50,51,53,54,57,59,65,73,75,77,81,86,95,105

Audit

What were the source(s) of data collected?

Electronic health record data21,24,26,28,32,35,39–41,43,53,56,57,63,65,67,69,71,72,74,75,77,79–

81,84,86,91,93–95,97,98,101,104,107

Specific prescribing system data27,62,65,74,89,92,100,102

Separate biochemistry, laboratory or radiological database22,24,41,70,78,91

External national or regional database26,37,42,48,50,54,60,73,85,99,103,105

Nursing data22,41,52,59,73,75

Healthcare staff self-reported data31,33,92

Patient reported outcomes data25,51,103

Feedback display

What element(s) were presented with the feedback?

Graphical elements21,22,24–28,31,33,37,40,42,43,48,50,51,53–57,59,60,67,69,72–75,77–81,84–

86,89,91,93,94,96,101–103,107

Benchmarking21,22,24,25,27,28,31–33,37,39,40,42,43,48,50–57,59,60,63,65,67,69,73–75,77–81,84–86,89,91–

93,95–97,99–101,103–105,107

Patient lists21,22,24,26,28,35,39–41,48,52,54,55,57,60,62,63,65,67,69–72,74,75,78–81,84,91,92,96–98,101--

105,107

Detailed patient-level data22,24,26,28,35,39,40,48,55,57,63,65,67,69,70,72,75,77–79,91,92,97,102

Individual Performance levels22,25,27,31,32,35,37,40,42,43,48,50,51,53,54,56,59–61,63,65,67,69,72–

74,77,79,84–86,89,91–97,99,100,103,104,107

Individual practice performance levels (primary care)26,57,71,78,80,81,101,104

Qualitative data (free text communication)24,52,72,91

Prioritization (color coding or sorting functions)21,26,27,35,39,41,43,48,53–

55,57,60,65,69,70,72,74,75,77–81,85,86,91,92,95,100–103,107

Co-interventions

What other interventions were present alongside the sys-

tem?

Action plans24,25,27,32,33,35,42,43,54–56,62,72,73,75,79,84,91,99,101

Financial reward or alignment25,28,32,56,57,74,77,79,81,84,103,104

Clinical education28,32,33,37,52,53,65,80,81,86,91,92,99,100,105

Peer discussion25,27,37,40,43,48,59,65,80,81,86,91,103

External change agent43,59,71,77,93

Clinical decision support, reminders, or alerts26,32,53,57,71,72,75,79,80,84,91,95,97,102,104

Patient education21,65,92

Organisational context

What were the conditions and setting characteristics sur-

rounding the system?

Leadership support21,24,25,27,33,35,39,40,43,50–55,57,59,65,73–75,77,80,81,85,86,93–95,100,103,105

Intraorganizational networks21,24,25,27,28,33,39–41,43,50,53,55,57,59,65,70,73–

75,77,78,81,86,94,100,102,103,105

Extraorganizational networks37,39,40,42,43,50,53–55,57,60,65,75,79,81,85,86,99,101,103–105

Limited reporting of organizational support22,26,31,48,56,61–63,67,71,72,84,89,92,96–98,101,107

Champions51,55,65,74,75,77,86,105

Feedback delivered to a group25,27,33,37,40,43,59,62,74,80,100

Workflow fit considered21,25,28,32,55,56,69,74,80,81,84,92,103,104

Limited reporting of implementation process26,33,37,40,41,50,51,56,57,61,62,67,70–

72,74,78,85,92,95,96,98,99,102,104,107

Note: A descriptive summary of the differing features and characteristics of e-A&F systems based on clinical performance feedback intervention theory.
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low usage and high dropout.23,37,38,42,50,61,73,99,108 For instance, the

“Web-based Tailored Educational Intervention Data System” only

produced yearly feedback for users once, with only 55% of enrolled

participants using the system and a large dropout and null effect by

the end.99 This was despite more than 80% of users rating the inter-

vention “very helpful” in several domains including that the feed-

back was useful to evaluate their practice.23 Similarly, a web-based

benchmarking tool for heart failure and pneumonia provided annual

retrospective data and received >50% dropout rate by the end of

the study, failing to detect any differences in care performance.37,38

Feedback specific to user roles enabled actionability

e-A&F systems were designed for a wide range of users that fell into

2 main roles. The majority were “frontline” users responsible for de-

livering care (eg, doctors, nurses, pharmacists), with others being

“managerial” users (eg, managers, leadership, or organizational

roles). To be directly actionable, feedback needed to be specific to

user roles: feedback to “frontline” users mainly required patient

lists, whereas for feedback to “managerial” users, the priority was

highlighting the specifics for individual performance. Many success-

ful systems presented specific feedback on both patient lists and indi-

vidual or practice performance levels,24,27–30,35,36,48,60,68,69,74,77–

80,84,88,90,91,96,97,103,107 with various using functions such as color

coding and sorting , 21,26,27,35,36,41,48,49,55,57,58,60,66,68–70,74–80,83,90–

92,102,107 to enhance prioritization of actions to be taken.

Patient lists to “frontline” users generally highlighted gaps in rec-

ommended care, supported by team or practice level performance

feedback (particularly for primary care).26,55,57,58,66,71,81–83,104

These electronic patient lists, were seen as more efficient than stan-

dard care, with the e-A&F system reporting superior effects to alerts

within the electronic medical record.57,71,80,104 Many studies with-

out user-specific feedback including lack of patient

lists,23,37,38,42,53,85,89,93,99,108 or individual performance

data,40,61,62,70 did not demonstrate significant improvements to pa-

tient outcomes. Several of these studies reported specificity of the

data (both on an individual practitioner level and a patient level) to

be a barrier to actionability and usage.37,38,54,85 For example,

Filardo et al37,38,109 described a benchmarking and case review tool,

which combined education initiatives with feedback on aggregate

Figure 2. Summary of key findings on how computerized audit and feedback systems impact patient care and outcomes. It presents key findings, supported by in-

tervention-context-mechanism-outcome (ICMO) configurations along with supporting references and GRADE-CERQual assessments.16,19 Three key intervention

factors were identified that enhanced actionability and were more likely to result in clinical improvements, including the availability of timely data for feedback,

feedback functions specific to user roles, and action plans embedded within systems. For a more comprehensive list of ICMOs see Supplementary File S5, with

further descriptions and explanations of mechanism constructs in Supplementary File S6. Constructs taken from clinical performance feedback intervention the-

ory are in italics.5
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measures, rather than highlighting individual performances.37,38,109

This resulted in no significant effects on patient care, with only 26%

completing the full intervention.37,38

Nevertheless, within a strong organizational context, individual

clinician performance feedback (even without patient lists) given to

“managerial” users or senior staff, particularly from leadership or

management, was also effective.27,33,39,44,59,73,74,86,87,95,100 Al-

though this entailed an extra step to deliver feedback to frontline

care staff and often required good interdisciplinary collaboration,

the process appeared to increase motivation and accountabil-

ity.27,39,59,86,87,95,100 This process influenced individual users to take

ownership of the feedback, including the responsibility to directly

address the care gaps highlighted and prevented the assumption that

someone else would.27,39,54,73,74,86,87,95,100 For example, Dixon-

Woods et al27 described how the leadership team closely scrutinized

the data and set up meetings that effectively targeted individuals

who were underperforming in one area or another. With a strong

“improvement culture” led by the leadership team, staff viewed their

own feedback critically and over time, enabled downstream

improvements even without prompts from the leadership team.27 In

contrast, Crits-Christoph et al25 designed a system to collect perfor-

mance ratings of therapeutic alliance, treatment satisfaction, and

drug and alcohol use. To protect clinician employment and confi-

dentiality, individual clinicians and patients could not be identified

and so users struggled to act on the feedback.25 Despite monthly

meetings, leadership support, and financial incentives, no significant

improvements in clinical outcomes measures were noted.25

Action plans were more effective when embedded within the system

The e-A&F systems that incorporated action plans as part of their

multi-faceted interventions appeared to produce better

results.24,33,35,36,44,55,56,62,66,73,75,76,79,84,91 For example, Feldstein

et al35,36 designed a dashboard that showed not only color-coded

graphs of clinical performance compared with guidelines but also

had a list of prompts for how to achieve recommended targets for

individual patients (eg, prompts to conduct a screening test or

adjusting a medication dose). This resulted in significant improve-

ments in care scores for several chronic disease areas, with users feel-

ing “empowered” to proactively manage wider patient needs,

particularly for broader clinical roles.35 Similarly, a website reported

percentages of patients meeting BP targets primary care professio-

nals, and importantly included suggested actions designed to be sim-

ple and achievable.56 This allowed direct actions to address gaps in

performance and resulted in significant increases in the use of

guideline-recommended medications for blood pressure.56

Conversely, when users were asked to come up with their own ac-

tion plan either as part of meetings or as part of wider quality improve-

ment activity groups, it reduced actionability, and at times resulted in

unrealistic action plans and unattainable goals.23,25,32,34,42,43,45–

47,54,72,99,101,108 In a medication safety system targeting patients with

acute kidney injury, pharmacists input their own recommendations for

doctors, rather than doctors being able to direct action changes in

medication.72 This resulted in a time delay before the action plan could

be implemented and no improvements in adverse drug reactions or

time taken to stop nephrotoxic medications.72

DISCUSSION

This review summarized 88 studies of e-A&F systems, demonstrat-

ing their wide range of settings, applications, and characteristics.

Despite automated audit and advantages in analysis compared with

manual methods, it was insufficient for e-A&F systems to just feed-

back more data, or solely present measurements and targets for per-

formance. When compared with generic A&F best practices, there

was an increased expectation for e-A&F systems to present more

precise and nuanced feedback, to make it easy to act on or present

viable next steps to improve patient care. Established effective com-

ponents of wider A&F interventions include timely feedback, indi-

vidualized feedback and action planning.1,5 Yet, even some recent e-

A&F systems lacked these, with extensive inconsistencies between

different systems. Our review highlights more nuanced requirements

for e-A&F, including the availability of immediate or ‘near real-

time’ data for feedback; feedback functions that were specific to

user roles (including “patient lists” for frontline users and

“individual performance feedback” for senior or managerial users);

and embedding action plans within systems. A key consideration for

successful e-A&F was enabling feedback to be actionable, yet under-

lying contexts of organizations, resources, and user characteristics

deeply affected the uptake of e-A&F systems, considerably influenc-

ing their effects in several studies.

Comparison with existing literature
Our review builds on wider evidence regarding A&F, revealing im-

portant findings for computerized interventions.1,3,4 In particular, e-

A&F systems offer opportunities to enhance the positive effects of 3

known generic A&F best practices, including timeliness, specificity,

and action-planning.1,3,4,6,10 Our findings present a more explicit

understanding of these, recommending the provision of real-time

data, feedback functions tailored to user roles (particularly patient

lists to frontline users and individual performance data to manage-

rial roles), along with embedded action plans. With an increasing

uptake of e-A&F, wider A&F best practices could be extended to

take these into account.1,5,6 Our review utilized a list of 18 best

practices, focusing on more objective features to aid clarity, but this

was only one way of classifying e-A&F system components. Though

there is considerable overlap, others have proposed slightly different

classifications.4,6,10,110 Our approach was guided by the reporting

within papers, and explicitly considered organizational factors and

cointerventions, though omitted more complex and subjective char-

acteristics that were less evidently reported, such as trust or iden-

tity.1,5,6,10

Two systematic reviews on e-A&F systems have been performed

previously in 2015 and 2017. Dowding et al (2015) included 11

studies on dashboards, highlighting that contextual factors were key

to the usage of e-A&F systems and hence the effect on outcomes.

Tuti et al7 examined 7 RCTs, but noted highly heterogeneous effect

sizes. Our review builds on these findings, adopting broader inclu-

sion criteria to examine a wider range of studies in a narrative syn-

thesis to identify characteristics of e-A&F systems more likely to

result in care improvements. Consistent with findings from these 2

previous reviews, several contextual factors within included “best

practices” appeared to be beneficial in encouraging the uptake of

systems and positive outcomes. In particular, leadership support and

intraorganizational networks appeared to support user role-specific

feedback, strengthening motivation and accountability to act on

feedback data.

Implications for practice
This review compliments wider literature in advocating an “action

over measurement” approach.111,112 With limited time and resour-
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ces in healthcare, actionability within e-A&F systems appears im-

portant to enable tangible changes in care, rather than simply chas-

ing targets or measuring performance.113 Important features

highlighted by this review to enable actionability include the avail-

ability of real-time data, feedback specific to user roles, and embed-

ded action plans. However, even some recent systems lacked basic

features recommended by best practice, such as timely feedback

and action planning. With e-A&F systems increasing in their poten-

tial functions and complexity, it suggests a need for codesign with

relevant stakeholders to increase usability, participation, and sus-

tainability that takes into account theorized “best practices.”114,115

Otherwise, with increasing complexity, computerized tools are

more likely to result in nonadoption and abandonment.116,117 En-

hancing functionality of e-A&F systems alone would be futile if

computerized tools failed in their uptake, implementation, or sus-

tainability.

Strengths and limitations
This is the largest review of studies focusing on e-A&F to date. It

incorporated CP-FIT and applied realist principles in exploring a

wide range of literature, from RCTs to qualitative studies to gener-

ate a rich insight into the current state of e-A&F systems. Our syn-

thesis considered all studies regardless of methodological quality

but was guided by our quality appraisal and GRADE-CERQual as-

sessment in the confidence of findings. Applying CP-FIT allowed a

greater depth of analysis based on theoretical findings for wider

A&F and a framework of hypothesized “best practices.” However,

use of CP-FIT may at the same time have limited novel themes, as

findings may have been biased to preformed constructs. Through

CP-FIT, we aimed to extend existing knowledge frameworks on

wider A&F through application to e-A&F systems. Though we

attempted to focus on findings specific to e-A&F, it was not always

possible to ascertain whether features for success or failure were

specific to just e-A&F or inherent to A&F interventions more gen-

erally.

As with other literature syntheses, our results are limited to the

reporting and transparency of the authors within original studies.

Though we propose and prioritize key mechanisms for success, our

review was not designed to quantify casual effects or relative effect

sizes. There is a degree of uncertainty in our highlighted mechanisms

having a significant casual effect on process and outcomes and it is

possible that underreported features may have greater effects on pa-

tient care. Our review likely identified studies with a predisposition

towards recruiting participants from organizations with better

resources and infrastructures, particularly in information technol-

ogy, and hence our findings may be less applicable to low resource

settings. We also restricted our search to published articles within

medical databases and Google scholar to focus on systems for

healthcare, but searching of further technology focused databases

(eg, IEEE Xplore and ACM Digital Library) may have yielded fur-

ther studies. Iterative interpretation of data is a core component of

realist synthesis, but this has obvious implications for the replication

of findings from the review, as others may have interpreted the evi-

dence differently.

CONCLUSIONS

e-A&F systems continue to be developed for a wide range of clinical

applications. Yet, it remains that several systems still lack basic fea-

tures recommended by best practice, such as timely feedback and ac-

tion planning. e-A&F systems should consistently incorporate best

practices that enhance actionability by using real-time data, feeding

back in ways that are specific to user roles, and providing embedded

action plans. Future research needs to address inconsistencies in e-

A&F system features, to ensure development incorporates features

recommended by best practice, which can increase actionability of

feedback and may improve outcomes.
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