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Administration of a selective retinoic acid
receptor-γ agonist improves neuromuscular
strength in a rodent model of volumetric
muscle loss
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Abstract

Purpose: Volumetric muscle loss is a uniquely challenging pathology that results in irrecoverable functional deficits.
Furthermore, a breakthrough drug or bioactive factor has yet to be established that adequately improves repair of
these severe skeletal muscle injuries. This study sought to assess the ability of an orally administered selective
retinoic acid receptor-γ agonist, palovarotene, to improve recovery of neuromuscular strength in a rat model of
volumetric muscle loss.

Methods: An irrecoverable, full thickness defect was created in the tibialis anterior muscle of Lewis rats and animals
were survived for 4 weeks. Functional recovery of the tibialis anterior muscle was assessed in vivo via neural
stimulation and determination of peak isometric torque. Histological staining was performed to qualitatively assess
fibrous scarring of the defect site.

Results: Treatment with the selective retinoic acid receptor-γ agonist, palovarotene, resulted in a 38% improvement
of peak isometric torque in volumetric muscle loss affected limbs after 4 weeks of healing compared to untreated
controls. Additionally, preliminary histological assessment suggests that oral administration of palovarotene reduced
fibrous scarring at the defect site.

Conclusions: These results highlight the potential role of selective retinoic acid receptor-γ agonists in the design of
regenerative medicine platforms to maximize skeletal muscle healing. Additional studies are needed to further
elucidate cellular responses, optimize therapeutic delivery, and characterize synergistic potential with adjunct
therapies.

Keywords: Volumetric muscle loss, Muscle function, Palovarotene, RAR agonist

© The Author(s). 2021 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if
changes were made. The images or other third party material in this article are included in the article's Creative Commons
licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons
licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

* Correspondence: michael.e.whitely2.ctr@mail.mil
1Orthopaedic Trauma Department, United States Army Institute of Surgical
Research, 3698 Chambers Pass, Building 3611, JBSA Fort Sam Houston, San
Antonio, TX 78234, USA
Full list of author information is available at the end of the article

Journal of
Experimental Orthopaedics

Whitely et al. Journal of Experimental Orthopaedics            (2021) 8:58 
https://doi.org/10.1186/s40634-021-00378-3

http://crossmark.crossref.org/dialog/?doi=10.1186/s40634-021-00378-3&domain=pdf
http://orcid.org/0000-0002-3655-0464
http://creativecommons.org/licenses/by/4.0/
mailto:michael.e.whitely2.ctr@mail.mil


Introduction
Skeletal muscle possesses a robust capacity to recover
from injury, stemming from a population of resident
progenitor cells who ultimately activate and fuse to re-
pair damaged myofibers [10, 24, 50]. In cases of volu-
metric muscle loss (VML), however, wherein extensive
portions of muscle tissue are lost, this healing cycle
breaks down. The loss of progenitor cells and native
extracellular matrix combine with an unrelenting im-
mune response that promotes formation of nonfunc-
tional fibrous tissue and severely inhibits de novo fiber
regeneration [22, 32, 33]. To date, the clinical standard
of care remains surgical placement of muscle flaps
followed by extensive rehabilitation [8]. Promising
experimental platforms, such as minced muscle graft
transplantation, improve muscle function and fiber re-
generation, but have been unable to fully mitigate the
pathological response and suffer from finite availability
[1]. Tissue engineering aims to overcome limited avail-
ability by combining more readily available biomaterial
scaffolds, most often in the form of decellularized or
polymeric matrices, with specific cell populations and
bioactive cues to generate readily available tissue grafts
[45]. The engineered grafts are then combined with
rehabilitation regimens to introduce proper mechanical
stimuli to the regenerating environment [13, 38, 39, 47].
The conversion of mechanical stimuli to biochemical
and biomechanical signals via a series of mechanotrans-
duction pathways is vital to directing satellite cell activa-
tion, muscle fiber hypertrophy, and extracellular matrix
structure [16, 23, 34]. In contrast to other targets of tis-
sue engineering, however, a breakthrough drug or bio-
active factor has yet to be established that adequately
promotes repair and regeneration of severe VML injur-
ies. Therefore, development of a drug-based treatment
that can be used in combination with current tissue en-
gineering and regenerative rehabilitation programs to
improve regenerative capacity and facilitate functional
recovery would be invaluable.
Retinoic acid is vital to numerous developmental pro-

cesses including skeletogenesis and myogenesis [30, 41].
Selective agonists of nuclear retinoic acid receptor-γ
(RARγ) have emerged as a potential potent tool for
treatment of skeletal disorders including hereditary mul-
tiple osteochondromas and fibrodysplasia ossificans pro-
gressiva, the latter being a debilitating condition
involving pathological formation of bone in soft tissue
sites [5, 18, 26, 43]. The mechanisms that provide the
foundation for drug efficacy in these conditions includ-
ing suppression of chondrocyte proliferation and matrix
production have further extended to the proposed treat-
ment of primary bone sarcomas, including chondrosar-
coma, where these suppressive properties may aid in
halting tumor growth and improving efficacy of

chemotherapies [42]. Recently, it was observed that
RARγ agonists may provide additional benefit to muscle
regeneration and reduce the deposition of fibrous and
adipose tissues in muscle defects [11]. From this, we hy-
pothesized that the anti-fibrotic and pro-myogenic influ-
ences provided by these drugs may aid in altering the
pathological environment observed in VML injuries,
allowing for increased functional recovery and repair.
This study was designed to determine the ability of the
selective RARγ agonist, palovarotene (R667), to facilitate
recovery of neuromuscular strength in vivo using a
clinically relevant model of VML and further highlight
its future potential in skeletal muscle repair.

Methods
Animals
Research was conducted in compliance with the Animal
Welfare Act, the implementing Animal Welfare regula-
tions, and the principles of the Guide for the Care and
Use of Laboratory Animals, National Research Council.
The facility’s Institutional Animal Care and Use
Committee approved all research conducted in this
study. The facility where this research was conducted is
fully accredited by the AAALAC. Male Lewis rats (350–
450 g; ~ 11 weeks of age) received pre-surgical adminis-
tration of buprenorphine-SR (1.2 mg/kg; s.c., ~ 30 min
prior) for pain management and were observed post-
surgery for signs of distress and abnormal changes in
mobility. Animals were euthanized under anesthesia
after 4 weeks with a lethal dose of pentobarbital (Fatal
Plus) and tissues harvested, Table 1.

VML model
A full thickness defect was created in the tibialis anterior
(TA) muscle as previously reported [20, 21]. Briefly, an
incision was made along the lateral aspect of the TA
muscle under isoflurane anesthesia. Following blunt dis-
section of the skin and fascia, a metal plate was inserted
between the TA muscle and the underlying extensor
digitorum longus (EDL) muscle. The defect was created
in the middle third of the TA using a 6 mm biopsy
punch against the plate. The SHAM control group did
not receive biopsy. Fascia and skin were closed with
absorbable suture and skin clips.

R667 administration
R667 (palovarotene, CAS410528–02-8) was administered
(300 uL) at a concentration of 1 mg/kg via oral gavage
three times per week beginning 1 week after surgery and
was continued though the duration of the study. R667
solutions were prepared in dimethyl sulfoxide and mixed
with corn oil at a ratio of 30:70 DMSO:corn oil. Vehicle
control animals received an R667-absent solution of
DMSO and corn oil. Treatment regimen was determined
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by scaling the effective dose range of 1.2–4.0 mg/kg
established in previous preclinical mouse models of
heterotopic ossification according to FDA issued guid-
ance for industry [5, 11, 15, 43]. According to this guid-
ance, 1.2–4.0 mg/kg palovarotene in mouse is roughly
equivalent to 0.1–0.33 mg/kg in human and 0.5–2.0 mg/
kg in rat.

In vivo neuromuscular strength assessment
Muscle Function was assessed using a dual-mode lever
system (Aurora Scientific, Inc.; Aurora, Canada: Mod.
305b) [7, 21]. Anesthetized animals were placed in a
supine position with knee and ankle joints fixed at right
angles. The foot was fastened to a pedal coupled to a
servomotor-controlled force-displacement transducer
and needle electrodes inserted percutaneously around
the peroneal nerve. Optimal voltage (3–9 V) was identi-
fied using a series of tetanic contractions (5–10 contrac-
tions, 150 Hz, 0.1 ms pulse width, 400 ms train). The
distal tendon of the EDL muscle was severed to isolate
force production. Force to torque conversion was per-
formed using a standardized 3mm moment arm,
followed by normalization to body weight [21].

Histological analysis
A section of the defect region was collected and fixed in
buffered formalin. Specimens were embedded in

paraffin, sectioned into 4-μm slices, and stained using
standard protocols for Masson’s Trichrome. Images were
acquired using Axio Scan.Z1 microscope and ZEN
imaging software (Carl Zeiss Microscopy; Jena,
Germany).

Data analysis
Data is reported as the mean ± SEM. Statistical analysis
was conducted using GraphPad Prism 7.01 (GraphPad
Software Inc., La Jolla, CA). Statistical significance is
defined as p < 0.05 using student t-test or one-way
ANOVA with Tukey post-hoc tests for multiple compar-
isons where appropriate.

Results
In vivo neuromuscular strength assessment
Functional recovery of the tibialis anterior muscle was
assessed in vivo via neural stimulation and determin-
ation of peak isometric torque 4 weeks after injury. VML
affected limbs with No Repair exhibited maximum iso-
metric torque production of 2.41 ± 0.32 Nmm/kg body
weight and were significantly reduced compared to
SHAM (p = 0.006), Fig. 1A. The 46% torque deficit in
comparison to SHAM illustrates the lack of functional
recovery that is a defining characteristic of VML injuries,
Fig. 1B. In contrast, treatment with R667 increased
torque production to 3.33 ± 0.39 Nmm/kg body weight

Table 1 Gross anatomy and muscle weights

Experimental Group Sample Size Defect Weight [mg] Endpoint Body Weight [g] TA Weight [mg] EDL Weight [mg]

Sham 6 – 367.2 ± 4.6 597.9 ± 18.9 163.1 ± 1.9

No Repair 6 71.5 ± 9.2 372.5 ± 9.3 566.9 ± 25.1 163.4 ± 9.6

R667 6 71.1 ± 10.5 355.8 ± 5.8 506.6 ± 42.4 170.4 ± 11.2

Fig. 1 Oral administration of R667 improves neuromuscular function 4 weeks after volumetric muscle loss. Peak isometric torque normalized to
body weight (A) and percent functional deficit relative to SHAM control (B) demonstrate improved functional capacity in the R667 treatment
group relative to the No Repair group. *Indicates significant difference between SHAM and No Repair with p < 0.05. Values are presented
as Mean ± SEM
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and lowered the functional deficit compared to SHAM
to 26%. This change in functional deficit for R667 treat-
ment compared to No Repair, however, did not reach
statistical significance (p = 0.099), Fig. 1B.

Histological analysis
Histological staining was performed with Masson’s
Trichrome to qualitatively assess the level of fibrous
tissue deposition into the defect site following injury.
As expected, excessive fibrotic scarring was observed
following VML injury with the No Repair group con-
sisting of sparsely populated myofibers surrounded by
elevated amounts of extracellular matrix deposition,
Fig. 2A & B. In contrast, a qualitative reduction in fi-
brous scarring was observed at the site of VML in
R667 treated animals, Fig. 2C.

Discussion
The primary aim of this study was to assess the abil-
ity of a selective RARγ agonist to improve neuro-
muscular strength in an irrecoverable, rat model of
volumetric muscle loss that mimics the persistent
functional deficits that present clinically. The results
presented here are highly encouraging as they sug-
gest that pharmacological activation of RARs may be
a facile and promising method to improve functional
recovery and repair of severe skeletal muscle injuries.
RARγ agonist treatment benefits have previously
demonstrated the ability to translate from preclinical
models to patient use with phase 3 clinical investiga-
tion of fibrodysplasia ossificans progressive
(NCT03312634) and phase 2 investigation of

multiple osteochondromas (NCT03442985) currently
ongoing [37]. A generally favorable safety profile has
been observed with treatment strategies similar to
those used here, with daily, 5 mg doses being well
tolerated for greater than a year, and 20 mg doses
routinely administered in response to disease flare
ups [37, 44, 46] Side effects are consistent with gen-
eral retinoid use with the most reported being mu-
cocutaneous effects of the skin, eye, and gut.
Adverse effects on skeletal growth in younger popu-
lations are being actively monitored, however, and
future risk-benefit assessments will likely be needed
in these populations [31, 37]. Of note, the level of
functional recovery observed here is similar to that
achieved with the tissue engineering-based strategy
of minced muscle graft repair [7, 25]. It is hypothe-
sized that combination of RARγ agonists with such
cell- and/or scaffold-based systems may be a method
to further improve their regenerative capacity and
elevate muscle healing beyond current thresholds.
Although the precise mechanism by which R667 fa-
cilitates restoration of muscle function is not fully
elucidated in this study, key pro-myogenic and anti-
fibrotic characteristics of retinoid signaling may pro-
vide insight and potential avenues for future
exploration.
Retinoids exert transcriptional control through

binding of nuclear retinoic acid receptors (α, β, and
γ isoforms), followed by complexing with retinoid X
receptors [12, 14]. These complexes bind to retinoid
response elements of target genes and interact with
a host of repression and activation factors to control

Fig. 2 Histological analysis of tibialis anterior muscle 4 weeks post-injury. Masson’s Trichrome staining of SHAM (A), VML injured No Repair (B), and
VML injured R667 treated (C) TA muscles. Muscle, fibrous, and adipose tissues are stained red, blue, and white, respectively. Scale bars are 1 mm
for whole mount images and 50 μm for regions of interest
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expression patterns. In the absence of retinoid bind-
ing, unliganded complexes facilitate transcriptional
repression in association with co-repressors such as
nuclear receptor co-repressors 1 and 2. Co-repressor
activity has been shown to influence muscle mass,
oxidative metabolism, and exercise capacity in rodent
models [48]. In a study highlighting the importance
of γ isoform-specific RAR action in skeletal muscle
repair, Di Rocco et al. identified dynamic temporal
profiles in retinoid signaling following injury and
observed that RARγ-null mice experienced marked
delays in healing [11]. Furthermore, histological
characterization of a cautery induced muscle defect
revealed that orally administered R667 improved new
myofiber formation and reduced the deposition of fi-
brous and adipose tissue inside the defect. This miti-
gation of pathological fibrosis has profound
implications in muscle healing has been attributed to
a reduction in Smad phosphorylation/canonical BMP
signaling and increased activity of antichondrogenic
Wnt/β-catenin pathways [36, 43, 49].
The persistent functional deficits that accompany exces-

sive fibrous tissue deposition in VML injury have been ex-
tensively reported [2, 9, 22]. Of note, however, is that a
reduction in fibrous tissue deposition alone, without a
simultaneous improvement in fiber repair and regener-
ation, is detrimental to muscle function as it removes a
potential conduit for force transmission across the defect
[19]. This suggests that improved myofiber regeneration is
likely occurring in conjunction with a reduction of fibrous
scarring in R667 treated animals. In support, the refer-
enced pathways influenced by retinoid signaling hold sig-
nificant and complex roles in directing muscle progenitor
activity. Wnt/β-catenin signaling, for example, has been
implicated in promotion of satellite cell self-renewal, as
well as in actively driving myogenic differentiation [4, 28,
35, 40]. Furthermore, the modulation of canonical BMP
and adipogenic signaling in response to increased retinoid
activity could potentially be removing significant barriers
to myogenesis that present after injury [3, 17].
A noted limitation of the presented work is the ab-

sence of quantitative histological assessment of fibrous
tissue deposition at the VML site. Future studies will
need to evaluate collagen deposition and organization,
progenitor cell activity, and myofiber regeneration to
provide a better mechanistic understanding of improve-
ments in functional recovery. It should also be noted
that this work focused on recovery of muscle function in
young rats. Multiple studies have reported on the dele-
terious effects of age on satellite cell activity and demon-
strated the reduced response of aged rats to regenerative
therapies for VML repair [6, 27, 29]. Additional study
will be needed to identify age related effects on RARγ
agonist-induced muscle healing.

Conclusions
This study serves as an additional data point to suggest
that selective RARγ agonists may hold promise in the
treatment of severe skeletal muscle injury and warrant
further investigation. Here, we demonstrate that oral
administration of R667 was able to increase neuromus-
cular strength in a rat model of volumetric muscle loss.
Additional studies are needed to further elucidate
RARγ-induced cellular responses and characterize syner-
gistic potential with adjunct therapies. Ultimately, this
drug may prove a useful tool in the design of novel
treatment paradigms to maximize healing of skeletal
muscle.
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