
RESEARCH ARTICLE

Urban population size and road traffic

collisions in Europe

Carmen Cabrera-ArnauID*, Steven R. Bishop

Department of Mathematics, University College London, London, United Kingdom

* c.cabrera-arnau@ucl.ac.uk

Abstract

Millions of road traffic collisions take place every year, leading to significant knock-on

effects. Many of these traffic collisions take place in urban areas, where traffic levels can be

elevated. Yet, little is known about the extent to which urban population size impacts road

traffic collision rates. Here, we use urban scaling models to analyse geographic and road

traffic collision data from over 300 European urban areas in order to study this issue. Our

results show that there is no significant change in the number of road traffic collisions per

person for urban areas of different sizes. However, we find individual urban locations with

traffic collision rates which are remarkably high. These findings have the potential to inform

policies for the allocation of resources to prevent road traffic collisions across the different

cities.

Introduction

At a worldwide level, approximately every 24 seconds someone dies as a consequence of a road

traffic collision [1]. For people aged 5 to 55, road traffic collisions are among the ten most com-

mon causes of death [2]. Besides the enormous emotional burden that each of these deaths

leaves behind, they also lead to significant financial losses. For example, in Great Britain it is

estimated that the average cost of in the year 2019 is above £100k ($140k), although for fatal

traffic collisions, this figure could be as high as £2.2M ($3M) [3]. Much like wealth, road traffic

collisions are not uniformly distributed across regions. At a global scale, road traffic collision

death rates in low- and middle-income countries are about twice as large as in high-income

countries (21.5 and 19.5 vs 10.9 per 100,000 population) [1]. At a national scale, road traffic

collision fatality rates are higher in rural areas, but most traffic collisions actually take place in

urban areas [4, 5].

Concurrently, the world is undergoing a rapid urbanisation process: it is estimated that by

2050, more than two thirds of the global population will live in urban areas, with the figure

reaching 74% in Europe as of 2018 [6]. Given that most road traffic collisions take place in

urban areas and the population size of these urban areas is likely to increase due to urbanisa-

tion, the following question arises: do road traffic collision rates increase with the population

size of the urban area where they take place? As shown in [7], traffic congestion increases in

urban areas of larger population size and more traffic congestion leads to more opportunities
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for collision. Additionally, traffic congestion can increase stress levels in drivers [8, 9], and this

can also lead to a greater risk of collision [10, 11]. Due to these factors, an affirmative answer

to the question above could be postulated. However, previous research on the issue of whether

traffic congestion has an impact on road traffic collision rates has reached conclusions that

might seem counterintuitive. For example, Shefer demonstrates, in a hypothetical situation,

that a reduction in the level of congestion could inadvertently cause an increase in road fatali-

ties [12]. However, Shefer only considers fatal collisions. Other works consider the total num-

ber of traffic collisions and reach different results. For instance, the authors in [13] analyse all

the traffic collisions recorded by Shanghai Expressway Surveillance System in a three-year

period and find that traffic exposure, congestion and merging behaviors all increase the risk of

collisions on urban expressways. They also find that the risk factors are different in congested

and non-congested flows. Despite the wealth of works on the topic, our current understanding

of how traffic congestion affects collision risks is still limited. As it has been reported in the

review by Retallack and Ostendorf [14], the dominant result in the literature is a positive linear

relation between traffic collision rates and levels of congestion/traffic volume. But Retallack

and Ostendrof also mention some works that analyse finer temporal resolution traffic data and

show a U-shaped relationship.

Our aim here is to analyse the direct impact of urban population size on the incidence of

road traffic collisions. We base our analysis on data from England and Wales, France, Ger-

many and Spain. In order to achieve our aim, we firstly need to determine the population and

number of road traffic collisions corresponding to the urban areas under consideration. How-

ever, there is no single way of establishing the boundaries of urban areas [15, 16] and different

criteria are often chosen according to the type of analysis to be performed. Similar to the

approach taken in [16], a classification based on commuting flows is used in this paper. Based

on these classification criteria, cities and towns that have traditionally been considered as dif-

ferent entities, may be classified as the same urban area.

Methods

In this work we present the results from processing geographic and road traffic collision

microdata from England and Wales, mainland France, Germany and mainland Spain. England

and Wales are two countries but, for ease of notation, we will refer to them as only one entity

denoted by E&W. Similarly, mainland France, Germany and mainland Spain will be simply

referred to as the countries France, Germany and Spain.

Distribution of urban population sizes

In the Results section, we discuss the behaviour of road traffic collision rates in two types of

urban areas from each of the four countries of interest: the largest urban areas and the rest of

smaller urban areas. Hence, we consider it is necessary to give here a brief overview about the

patterns displayed by the distribution of population sizes corresponding to the urban areas in

E&W, France, Germany and Spain.

Urban population sizes have been found to follow heavy-tailed distributions, such as a

power-law distribution [17–19] or a lognormal [20]. However, in practice, the population size

of the largest urban area in a country is often larger than predicted by the underlying heavy-

tailed distribution. These extremely large urban areas then become meaningful outliers and

are sometimes referred to as dragon-kings, a term coined by Lahèrre and Sornette in [21].

Additionally, they have a special socioeconomic status forged by amplifying mechanisms for

their own growth.
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London and Paris would be examples of urban areas displaying dragon-king features. Their

size is several times larger than the next largest urban area in their respective country and they

are also primary nodes in the global socioeconomic network. Germany and Spain, however,

are countries which have experienced a higher degree of territorial divide throughout history

and where different cities have been appointed as the capitals at different periods in time. As a

result, these countries have more than one urban area with an unexpectedly large population

size and with a central role in the socioeconomic landscape of the country. In Germany, there

are actually many urban areas that fulfil these characteristics, in particular, the ‘Big Five’ met-

ropolitan regions (Berlin, Hamburg, the Rhine-Ruhr metropolitan region, Frankfurt and

Munich); in Spain, Madrid and Barcelona.

Population and number of road traffic collisions in the urban areas

The urban areas used here are the functional urban areas (FUAs) established by Eurostat [22],

which are based on commuting flows [23]. The data corresponding to E&W, France and Ger-

many is from 2018 and, in the case of Spain, from 2015.

The data corresponding to the small geographical hierarchies of each country is aggregated

into urban areas and analysed further to produce the figures in the forthcoming sections. In

the case of France, Germany and Spain, both population and road traffic collision data is col-

lected by the local administrative unit (LAU). LAUs have different names in different coun-

tries: communes in France, gemeinden in Germany and municipios in Spain. In E&W, data is

available for lower level geographic hierarchies known as Lower Layer Super Output Areas

(LSOAs), designed specifically to improve the reporting of small area statistics. However,

urban areas may extend over several of these small geographic hierarchies. For example, the

urban area corresponding to Greater London would comprise 6,908 LSOAs while the urban

area corresponding to Madrid would comprise 182 municipios.
Information related to population [24–27] as well as the shapefiles for the LSOAs [28], the

LAUs and the FUAs [22] are publicly available for download. In the case of E&W, France and

Spain, we downloaded data bases where each entry is a recorded road traffic collision [29–31].

For each traffic collision, the LSOA or LAU where it took place is specified. In the case of Ger-

many, we used a data base where the traffic collisions are already aggregated by the LAU [32].

It is possible to make country-to-country comparisons of patterns that emerge as a result of

considering a country’s urban system as a whole. However, a word of caution needs to be said

about the comparability of population data corresponding to urban areas from different coun-

tries. The population in an urban area is computed as the sum of populations corresponding

to the small geographical hierarchies that lie within the boundary of the urban area. However,

these geographical hierarchies are country-dependent and, except in the case of the LSOAs in

E&W, are also subject to historical agreements.

Similarly, for all the countries under consideration, the number of traffic collisions in an

urban area is obtained as the sum of the number of traffic collisions in each small geographical

hierarchy that lies within the urban area’s boundary. But definitions as to what constitutes a

traffic collision may also vary. For example, the traffic collisions recorded in France are those

that required some form of medical treatment [30], whereas in E&W, all reported traffic colli-

sions incurring personal injury, but not necessarily requiring medical care, are included in the

national data base [33]. Furthermore, every country has different levels of under-reporting of

data, especially when it comes to non-fatal traffic collisions. Data related to hospitalisation as a

result of a traffic collision, surveys (e.g. National Transport Survey in Great Britain) and insur-

ance compensation claims all indicate a higher number of casualties than are reported [33].

Hence, 300 traffic collisions per 100,000 people in an urban area from E&W does not quite
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mean the same as in a French, German or Spanish urban area. It is for this reason that in Figs

1 and 2, the colour key is based on the percentage difference between the number of traffic col-

lisions per person in a given urban area and the corresponding country’s average number of

traffic collisions per person in the urban areas under consideration.

We include as Supplementary Information the data sets that, upon processing of the raw

data, have been used to generate Figs 1 and 2.

Urban scaling models

Since Smeed’s 1949 pioneering work regarding statistical aspects of road traffic collisions [34],

the precision and availability of both geographic and road safety data have improved consider-

ably, enabling many other authors to expand the field [35–42]. Additionally, the more recent

introduction of scaling models in the context of urban science [43] offers a new avenue for

modelling road traffic collisions and understanding their behaviour. Urban scaling models are

based on the hypothesis that a quantifiable property Y varies with city population size X
according to

YðXÞ ¼ aXb ð1Þ

with scaling parameters α and β. According to the value of the scaling exponent β, the scaling

model can display three types of behaviour. If 0< β< 1, Y is said to grow sublinearly with X.

Sublinear behaviour implies that the value of Y per person decreases with city population size.

If β = 1, the scaling is linear and the values of Y per person are constant across city population

sizes. If β> 1, Y scales superlinearly. When that is the case, the values of Y per person increase

with city population size. Scaling models have been applied widely (see e.g. [44, 45]), in partic-

ular, we have previously used urban scaling models to describe the relationship between the

number of traffic collisions of different degrees of severity and the population size correspond-

ing to the set of ‘built-up’ areas (defined by a land-use classification criterion) from England

and Wales [5]. In this paper, we extend the analysis to data from France, Germany and Spain

as well as England and Wales.

An advantage of using urban scaling models is that they allow us to summarise the relative

performance of cities across a vast range of population sizes under the same mathematical

model. However, certain urban areas (frequently the largest ones in a region) are unique in

that they play central roles in economic productivity of firms and workers [46], are especially

prolific in certain industry sectors or have an extraordinary cultural output [47]. For this rea-

son, it has been questioned [16] whether these urban areas, sometimes referred to as dragon-

kings, should be analysed alongside the rest or whether on the contrary, they should be consid-

ered as a separate category. Here, we opt to include these urban areas in the analysis. Following

the results in [48], we use a negative binomial regression for parameter estimation since it

places less weight on larger urban areas, hence making the parameter estimation procedure

more robust with respect to observations associated with large urban areas. Further, we test

the performance of the negative binomial regression against a Poisson regression through the

Akaike Infromation Criterion (AIC). For each country, we obtain that the former method

yields a lower value of AIC, indicating that the negative binomial regression is a model of

higher quality than the Poisson regression for the data sets of interest.

Is the scaling behaviour significantly different from linear?

If the scaling behaviour was non-linear, the value of the estimated scaling exponent would

have to be significantly different from 1. In order to test for significance, we perform a Monte

Carlo simulation. Let us assume the null hypothesis that the data corresponding to country A
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Fig 1. Map representation of the number of road traffic collisions per person in urban areas from England and Wales, France, Germany and

Spain.

https://doi.org/10.1371/journal.pone.0256485.g001
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comes from a scaling model with parameter β0 = 1. We also estimate the parameters of the

original sample, which we denote as âA and b̂A. In each iteration i of our simulation, we follow

the steps below:

• We keep the populations of the urban areas from country A the same as in the original

sample.

• Then, we generate random values for Y distributed according to a negative binomial distri-

bution with mean m ¼ âAXb̂0 and variance σ2 = μ + μ2.

Fig 2. Urban scaling models corresponding to England and Wales, France, Germany and Spain.

https://doi.org/10.1371/journal.pone.0256485.g002
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• Finally, we estimate the value of the scaling exponent b̂ i
A corresponding to the sample gener-

ated in the ith iteration and store it.

Once we have completed the simulation process, we will have an estimated value of the scal-

ing exponent for each iteration. Then we compute the p-value as the proportion of stored val-

ues which satisfy jb̂i
A � b0j > jb̂A � b0j. If the p-value is smaller than a chosen significance

threshold of 0.05, our null hypothesis can be rejected.

Applying 2,000 iterations of this method to the four countries under consideration, we

obtain the following p-values: pE&W = 0.93, pFR = 0.55, pDE = 0.61 and also pES = 0.81 for E&W,

France, Germany and Spain respectively, which are all above the chosen level of significance.

Results

Geographical distribution of road traffic collisions in urban areas

In Fig 1, we have plotted the population and number of traffic collisions per person corre-

sponding to the urban areas from E&W, France, Germany and Spain. We have opted for a

map layout, as this helps with visualisation and understanding.

Largest urban areas. We observe in Fig 1 that the largest urban areas in E&W and France

(London and Paris) stand out in terms of their large population size and high number of traffic

collisions per person. This is not the case for the German and Spanish counterparts, Berlin and

Madrid. In Germany, the urban areas are more evenly spread across the whole range of popu-

lation sizes, and so is the number of road traffic collisions. In Spain, there are two urban areas,

instead of just one, that stand out for their population size: Madrid and Barcelona. The num-

ber of road traffic collisions is also relatively high. The fact that the four countries display dif-

ferent patterns is perhaps not so surprising, considering that their urban areas have been

subject to unique historical developments. More details regarding this observation are pro-

vided in the Discussion and conclusions section.

Other urban areas. The number of road traffic collisions in smaller urban areas displays a

high variability in all the countries. As a consequence, we cannot discern, a priori, whether

urban population size plays a role in determining the number of road traffic collisions for

these urban areas. The fact that there is such degree of variability is an indication that there

might be variables other than urban population size which affect road traffic collision rates.

For example, in E&W, Sheffield and Stevenage have similar road traffic collision rates of

approximately 175 per 100,000 people, however, the functional urban area corresponding to

Sheffield has a population size of 1.3 million, whereas the one corresponding to Stevenage has

a population of just above 100,000 people. Similarly, Bremen and Willemshaven in Germany

have a road traffic collision rate of around 500 per 100,000 people, but their population sizes

are also very different: Bremen’s functional urban area has a population size of 1.4 million,

whereas Willemshaven has a population size just below 175,000.

Scaling of traffic collisions in urban areas

After inspecting individual cities in the previous section, a natural question arises as to whether

the population size of a city has an effect on the number of traffic collisions per person. To

answer this question, we firstly propose the scaling hypothesis, which assumes that the number

of road traffic collisions Y in a given urban area is determined by its population size X accord-

ing to an urban scaling model of the form Y = αXβ. The two parameters associated with this

model, α and β, can be estimated from the data. If the parameter β, known as scaling exponent,

is found to be significantly larger than 1, then this gives an indication that the number of road

traffic collisions per person in an urban area increases with population size. In order to
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estimate the scaling exponent, we take into account the considerations from [49] and [48],

where the authors emphasise the need to account for the statistical properties of the data.

Here, we do this by using a generalised linear model for regression. Details about this

approach, the computation of confidence intervals for the parameters and more background

about urban scaling models are provided in the Methods section.

Fig 2 shows the data related to the urban areas in the four countries of interest as well as the

scaling model that provides the best fit to the data, with 95% confidence intervals obtained by

bootstrapping. In E&W and Germany, the estimated scaling exponent b̂ has been calculated to

be slightly below 1, while in France and Spain, it is slightly above 1. However, in the methods

section we show that β is not significantly different from one (p> 0.05) in all four countries,

hence indicating that, for the definitions of urban areas and road traffic collisions used here,

there are no significant effects of urban population size on road traffic collisions.

In Fig 2, the high variability in road traffic collision rates for urban areas of a given popula-

tion size is perhaps even more evident. This is an indicator that, quite possibly, there are more

variables influencing road traffic collision rates apart from urban population size. If this is the

case, urban scaling models should be replaced for other models that incorporate these addi-

tional variables.

Discussion and conclusions

We conclude that urban population size has no significant effect on the number of road traffic

collisions in urban areas from four European countries. This conclusion is based on the results

obtained through the application of urban scaling models, which uncover patterns that emerge

at a country-wide level.

These findings are in contrast with our results in [5], where we applied urban scaling mod-

els to describe the relation between the number of road traffic collisions and the population of

built-up areas from E&W (defined according to a land-use criterion). On that occasion, we

found that the number of road traffic collisions scales superlinearly with urban population

size. The discrepancies between the results are due to the fact that we considered different

urban areas and a different regression method for the estimation of parameters.

We should point out here that the behaviour of large cities, sometimes called dragon-kings,

is difficult to model due to their unique characteristics [16, 18]. Therefore, following results in

[48], we chose a generalised linear model for the estimation of the scaling model parameters

that accounts for the dragon-kings’ unpredictability. This is reflected through the fact that our

choice of generalised linear model assumes wider probability distributions for the number of

traffic collisions as the population size of the urban areas increases.

Turning the attention to individual urban areas, we observe cases where the road traffic col-

lision rate is remarkably higher than the national average for a given population size. This ten-

dency could be the result of the fact that other variables (volumes of traffic; traffic congestion;

proximity to a port) may be playing a key role in determining the number of collisions, but

they are not analysed in the paper.

In particular, we highlight two types of behaviour displayed by individual urban areas: that

corresponding to the largest urban areas in a country and that corresponding to the rest of

smaller urban areas. Firstly, we find that the top largest urban areas in E&W and France, Lon-

don and Paris respectively, display high collision rates with respect to each country’s average.

Both E&W and France are countries that, despite their different levels of centralisation [50],

have remained relatively unified in recent history. This has allowed their capital cities to forge

their pivotal role, not only at a national level, but also as global cities [51]. Here, we find that

both urban areas corresponding to the capital cities are also special when it comes to their
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number of road traffic collisions per person. In contrast, Germany and Spain have either only

been unified recently or have experienced surges of internal divide [52]. As a consequence,

they display several urban areas that compete somewhat for the leadership. In Germany, the

‘Big Five’ metropolitan regions (Berlin, Hamburg, the Rhine-Ruhr metropolitan region,

Frankfurt and Munich) are all prominent in terms of investment and market development. In

Spain, there are two main urban areas with a central socioeconomic role: Madrid and Barce-

lona. Analogously, the incidence of road traffic collisions is more spread across all of these

urban areas instead of concentrating in just one as it was the case for E&W and France.

Secondly, the number of road traffic collisions in smaller urban areas displays high variabil-

ity in all the countries. This effect could be attributed to the different volumes of traffic found

in different locations, since traffic flow [53] and, arguably, traffic congestion [5], have been

shown to be positively correlated with traffic collision rate. For example, in E&W, our results

recognise Hull and Lincoln as traffic collision hotspots, which have also been ranked among

the top ten cities with the highest levels of traffic congestion in the UK [54]. We also detect a

remarkable concentration of urban areas with an above-average incidence of road traffic colli-

sions per person on the South East of England, including London’s satellite urban areas and

other coastal urban areas. Like Hull, some of these locations are near to large ports. Ports are

freight-generating points and hence, attract heavy goods vehicles from other places. Depend-

ing on how accommodating the surrounding infrastructure is, ports can therefore limit the

urban space, while at the same time, increasing traffic flow [55] and leading to more road traf-

fic collisions. Other urban areas that have a sea or river port are La Rochelle, Loirent and Mar-

seille in France; Bremen, Hamburg and Regensburg (Danube port) in Germany and Aviles,

Cadiz, Gijon and Seville (Guadalquivir port) in Spain. The number of road traffic collisions in

all of these locations is above the country’s average.

Our results show how road traffic collisions are spread across the different urban areas of

four countries and therefore, can help determine the top-priority regions to be targeted by pol-

icies for the alleviation of disruption caused by road traffic collisions. Particularly, our findings

should be considered when countries apply any levelling-up strategies to improve aspects of

certain regions that are yet to reach the overall national standard.

It remains as future work to improve our understanding of the causes that lead to the

unusually elevated number of traffic collisions in certain urban areas. This can be done by

studying, for example, the traffic flow levels in these urban areas or their particular demo-

graphic composition, since it has been shown that certain demographic groups have an

increased risk of being involved in road traffic collisions [56]. Other directions for future

research include an analysis based on choices of urban areas other than the Eurostat functional

urban areas or restricted to only a type of traffic collision, e.g. fatal traffic collisions.

This leads us to mention some major limitations that we have encountered when perform-

ing this research. While Eurostat attempts to unify the urban areas for different countries, the

definitions are still county-dependent, since they are based on the particular geographical hier-

archies established by each country. Hence, the comparability between the results correspond-

ing to the countries analysed here is compromised. Furthermore, the definitions provided by

Eurostat are obviously limited to European countries. In this context, we remark the need to

standardise road safety data definitions and collection procedures so that more low-income

countries, which tend to be the most affected by road traffic collisions, can be included in the

body of research, in line with the central, tranformative promise of the 2030 Agenda for Sus-

tainable Development and its Sustainable Development Goals (SDGs) [57] to ‘Leave No One

behind’.
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March 2021). Available from: https://www.insee.fr/fr/statistiques/4989761.

26. Statistisches Bundesamt A. Regional statistics; (accessed March 2021). Available from: https://www.

destatis.de/EN/Themes/Countries-Regions/Regional-Statistics/_node.html.

27. Instituto Nacional de Estadı́stica. Cifras oficiales de población de los municipios españoles; (accessed

March 2021). Available from: https://www.ine.es/dynt3/inebase/es/index.htm?padre=517&capsel=525.

28. Office for National Statistics B. Lower Layer Super Output Area (LSOA) boundaries; (accessed March

2021). Available from: https://data.gov.uk/dataset/fa883558-22fb-4a1a-8529-cffdee47d500/lower-

layer-super-output-area-lsoa-boundaries.

29. Department for Transport A. Road Safety Data; (accessed March 2021). Available from: https://data.

gov.uk/dataset/cb7ae6f0-4be6-4935-9277-47e5ce24a11f/road-safety-data.

PLOS ONE Urban population size and road traffic collisions in Europe

PLOS ONE | https://doi.org/10.1371/journal.pone.0256485 August 27, 2021 11 / 13

https://doi.org/10.1098/rsos.191739
https://doi.org/10.1038/srep05561
http://www.ncbi.nlm.nih.gov/pubmed/24990624
https://doi.org/10.1080/001401397188198
https://doi.org/10.1080/001401397188198
https://doi.org/10.1016/j.trf.2010.11.008
https://doi.org/10.1080/00140139608964497
https://doi.org/10.1146/annurev.publhealth.27.021405.102117
https://doi.org/10.1146/annurev.publhealth.27.021405.102117
https://doi.org/10.1016/0001-4575(94)90041-8
https://doi.org/10.1016/j.aap.2015.12.011
https://doi.org/10.1016/j.aap.2015.12.011
https://doi.org/10.3390/ijerph16183400
https://doi.org/10.3390/ijerph16183400
http://www.ncbi.nlm.nih.gov/pubmed/31540246
https://doi.org/10.1068/b3805ed
https://doi.org/10.1098/rsif.2014.0745
https://doi.org/10.1098/rsif.2014.0745
https://doi.org/10.1162/003355399556133
https://doi.org/10.1257/aer.99.4.1672
https://doi.org/10.1257/0002828043052303
https://doi.org/10.1257/0002828043052303
https://ec.europa.eu/eurostat/web/gisco/overview
https://ec.europa.eu/eurostat/en/web/products-manuals-and-guidelines/-/ks-gq-17-006
https://ec.europa.eu/eurostat/en/web/products-manuals-and-guidelines/-/ks-gq-17-006
https://www.ons.gov.uk/peoplepopulationandcommunity/populationandmigration/populationestimates/datasets/lowersuperoutputareamidyearpopulationestimates
https://www.ons.gov.uk/peoplepopulationandcommunity/populationandmigration/populationestimates/datasets/lowersuperoutputareamidyearpopulationestimates
https://www.ons.gov.uk/peoplepopulationandcommunity/populationandmigration/populationestimates/datasets/lowersuperoutputareamidyearpopulationestimates
https://www.insee.fr/fr/statistiques/4989761
https://www.destatis.de/EN/Themes/Countries-Regions/Regional-Statistics/_node.html
https://www.destatis.de/EN/Themes/Countries-Regions/Regional-Statistics/_node.html
https://www.ine.es/dynt3/inebase/es/index.htm?padre=517&capsel=525
https://data.gov.uk/dataset/fa883558-22fb-4a1a-8529-cffdee47d500/lower-layer-super-output-area-lsoa-boundaries
https://data.gov.uk/dataset/fa883558-22fb-4a1a-8529-cffdee47d500/lower-layer-super-output-area-lsoa-boundaries
https://data.gov.uk/dataset/cb7ae6f0-4be6-4935-9277-47e5ce24a11f/road-safety-data
https://data.gov.uk/dataset/cb7ae6f0-4be6-4935-9277-47e5ce24a11f/road-safety-data
https://doi.org/10.1371/journal.pone.0256485


30. Observatoire National Interministériel de la Sécurité Routière. Base de données accidents corporels de

la circulation; (accessed March 2021). Available from: https://www.data.gouv.fr/en/datasets/base-de-

donnees-accidents-corporels-de-la-circulation/.
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spatial analysis of the media spotlight. Computers, Environment and Urban Systems. 2019; 75:254–

263. https://doi.org/10.1016/j.compenvurbsys.2019.02.004

46. Puga D. The magnitude and causes of agglomeration economies. Journal of Regional Science. 2010;

50(1):203–219. https://doi.org/10.1111/j.1467-9787.2009.00657.x

47. Scott AJ. The cultural economy of cities. International Journal of Urban and Regional Research. 1997;

21(2):323–339. https://doi.org/10.1111/1468-2427.00075

48. Cabrera-Arnau C, Bishop SR. The effect of dragon-kings on the estimation of scaling law parameters.

Scientific Reports. 2020; 10(1). https://doi.org/10.1038/s41598-020-77232-6 PMID: 33214623

49. Leitão JC, Miotto JM, Gerlach M, Altmann EG. Is this scaling nonlinear? Royal Society Open Science.

2016; 3(7):150649. https://doi.org/10.1098/rsos.150649

50. Hooghe L, Marks G, Schakel AH. The rise of regional authority. 1st ed. Taylor & Francis; 2010.

51. Kearney. Global Cities Report 2020; (accessed March 2021). Available from: https://www.kearney.

com/global-cities/2020.

52. Kaasa A, Vadi M, Varblane U. Regional cultural differences within European countries: evidence from

multi-country surveys. Management International Review. 2014; 54(6). https://doi.org/10.1007/s11575-

014-0223-6

53. Wang C, Quddus MA, Ison SG. The effect of traffic and road characteristics on road safety: A review

and future research direction. Safety Science. 2013; 57:264–275. https://doi.org/10.1016/j.ssci.2013.

02.012

PLOS ONE Urban population size and road traffic collisions in Europe

PLOS ONE | https://doi.org/10.1371/journal.pone.0256485 August 27, 2021 12 / 13

https://www.data.gouv.fr/en/datasets/base-de-donnees-accidents-corporels-de-la-circulation/
https://www.data.gouv.fr/en/datasets/base-de-donnees-accidents-corporels-de-la-circulation/
https://sedeapl.dgt.gob.es/WEB_IEST_CONSULTA/inicio.faces
https://www.regionalstatistik.de/genesis/online/
https://www.regionalstatistik.de/genesis/online/
https://www.gov.uk/government/publications/road-accidents-and-safety-statistics-guidance#history
https://www.gov.uk/government/publications/road-accidents-and-safety-statistics-guidance#history
https://doi.org/10.2307/2984177
https://doi.org/10.1056/NEJM198705283162206
https://doi.org/10.1056/NEJM198705283162206
https://doi.org/10.2307/622525
https://doi.org/10.1016/0001-4575(91)90055-A
http://www.ncbi.nlm.nih.gov/pubmed/1741891
https://doi.org/10.1016/j.aap.2007.05.004
https://doi.org/10.1016/j.aap.2008.12.014
https://doi.org/10.1007/s40534-016-0095-5
https://doi.org/10.1371/journal.pone.0201890
https://doi.org/10.1371/journal.pone.0201890
https://doi.org/10.1073/pnas.0610172104
https://doi.org/10.1073/pnas.0610172104
https://doi.org/10.1371/journal.pone.0013541
https://doi.org/10.1371/journal.pone.0013541
https://doi.org/10.1016/j.compenvurbsys.2019.02.004
https://doi.org/10.1111/j.1467-9787.2009.00657.x
https://doi.org/10.1111/1468-2427.00075
https://doi.org/10.1038/s41598-020-77232-6
http://www.ncbi.nlm.nih.gov/pubmed/33214623
https://doi.org/10.1098/rsos.150649
https://www.kearney.com/global-cities/2020
https://www.kearney.com/global-cities/2020
https://doi.org/10.1007/s11575-014-0223-6
https://doi.org/10.1007/s11575-014-0223-6
https://doi.org/10.1016/j.ssci.2013.02.012
https://doi.org/10.1016/j.ssci.2013.02.012
https://doi.org/10.1371/journal.pone.0256485


54. INRIX. Global Traffic Scorecard 2020; (accessed March 2021). Available from: https://inrix.com/

scorecard.

55. Browne M, Woexenius J, Dablanc L, Cherrett T, Morganti E. The 22nd Annual Conference of The Char-

tered Institute of Logistics and Transport, Logistics Research Network;.

56. Petridou E, Moustaki M. Human factors in the causation of road traffic crashes. European Journal of

Epidemiology. 2000; 616(9). https://doi.org/10.1023/A:1007649804201 PMID: 11297224

57. United Nations Sustainable Development Group. Leave No One Behind; (accessed March 2021). Avail-

able from: https://unsdg.un.org/2030-agenda/universal-values/leave-no-one-behind.

PLOS ONE Urban population size and road traffic collisions in Europe

PLOS ONE | https://doi.org/10.1371/journal.pone.0256485 August 27, 2021 13 / 13

https://inrix.com/scorecard
https://inrix.com/scorecard
https://doi.org/10.1023/A:1007649804201
http://www.ncbi.nlm.nih.gov/pubmed/11297224
https://unsdg.un.org/2030-agenda/universal-values/leave-no-one-behind
https://doi.org/10.1371/journal.pone.0256485

