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Abstract
Phylogenetic networks are necessary to represent the tree of life expanded by edges to rep-

resent events such as horizontal gene transfers, hybridizations or gene flow. Not all species

follow the paradigm of vertical inheritance of their genetic material. While a great deal of

research has flourished into the inference of phylogenetic trees, statistical methods to infer

phylogenetic networks are still limited and under development. The main disadvantage of

existing methods is a lack of scalability. Here, we present a statistical method to infer phylo-

genetic networks from multi-locus genetic data in a pseudolikelihood framework. Our model

accounts for incomplete lineage sorting through the coalescent model, and for horizontal

inheritance of genes through reticulation nodes in the network. Computation of the pseudoli-

kelihood is fast and simple, and it avoids the burdensome calculation of the full likelihood

which can be intractable with many species. Moreover, estimation at the quartet-level has

the added computational benefit that it is easily parallelizable. Simulation studies comparing

our method to a full likelihood approach show that our pseudolikelihood approach is much

faster without compromising accuracy. We applied our method to reconstruct the evolution-

ary relationships among swordtails and platyfishes (Xiphophorus: Poeciliidae), which is

characterized by widespread hybridizations.

Author Summary

Phylogenetic networks display the evolutionary history of groups of individuals (species or
populations) including reticulation events such as hybridization, horizontal gene transfer
or migration. Here, we present a likelihood method to learn networks from molecular
sequences at multiple genes. Our model accounts for several biological processes: muta-
tions, incomplete lineage sorting of alleles in ancestral populations, and reticulations in
the network. The likelihood is decomposed into 4-taxon subsets to make the analyses scale
to many species and many genes. Our work makes it possible to learn large phylogenetic
networks from large data sets, with a statistical approach and a biologically relevant
model.
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Introduction
Evolutionary relationships are typically visualized in a tree, which implicitly assumes vertical
transfer of genetic material from ancestors to descendants. However, not all species follow this
paradigm. If genes can be horizontally transferred between some organisms, a tree is not a
good representation of their history. Such reticulate events include hybridization, horizontal
gene transfer or migration with gene flow, and require methods to infer phylogenetic networks.
While a great deal of research has flourished for the inference of phylogenetic trees from differ-
ent types of data, methods to infer phylogenetic networks are still limited and under
development.

There are mainly two kinds of phylogenetic networks: implicit and explicit. Implicit net-
works–also called split networks–describe the discrepancy in gene trees, or other sources of
data, and methods are well developed to reconstruct these networks [1–4]. These methods tend
to be fast. However, implicit networks lack biological interpretation as the internal nodes do
not represent ancestral species. Explicit networks, on the other hand, represent explicit reticu-
lation events and each node represents an ancestral species. Combinatorial methods to infer
explicit networks (which we call phylogenetic networks here) are fast but ignore gene tree error
and incomplete lineage sorting (ILS) as a possible source of gene tree discordance (e.g. [5]).
Model-based methods are most accurate but can be computationally challenging. They calcu-
late the likelihood of an observed gene tree given a species network taking into account both
reticulation and ILS [6–8]. Their scope was expanded in [9] to search for the most likely phylo-
genetic network based on multi-locus data (see also [10] for a different likelihood framework,
where sites instead of genes are treated as independent and ILS is ignored). The likelihood-
based method in [9], implemented in PhyloNet, provides a solid theoretical framework to esti-
mate the maximum likelihood phylogenetic network from a set of gene trees. It has several
advantages: it incorporates uncertainty on the gene trees estimated from sequence data,
accounts for a background level of gene tree discordance due to ILS, and controls the complex-
ity of the network with a cross validation step. However, its likelihood computation is heavy
and becomes intractable when increasing the number of taxa or the number of hybridizations,
making this method practical for small scenarios of up to about 10 species and 4 hybridizations
in the network.

Here, we provide a fast statistical method to estimate phylogenetic networks from multi-
locus data. We first present the theory for the pseudolikelihood of a network. We do so by
deriving the proportion of the genome that has each 4-taxon tree (quartet concordance factors)
as expected under the coalescent model extended by hybridization events, and we prove the
generic identifiability of the model. We then use the observed quartet concordance factors as
inferred from the multi-locus data to estimate the species network. Our method SNaQ (Species
Networks applying Quartets) is implemented in our open-source software package PhyloNet-
works in Julia and publicly available at https://github.com/crsl4.

Like PhyloNet, our method can incorporate uncertainty in estimated gene trees and gene
tree discordance due to ILS. Our pseudolikelihood has computational advantages. It is simpler
and more scalable to many species, compared to the full likelihood. It also scales to a large
number of loci because estimation of gene trees can be highly parallelized, then summarized by
only 3 tree frequencies on each 4-taxon subsets used as input in the pseudolikelihood. In simu-
lations, our method showed good performance and scaled to scenarios for which PhyloNet
could not run. We also used SNaQ to infer the evolutionary relationships between Xiphophorus
fishes, from 1,183 loci across 24 taxa. Our results were congruent with [11] and refined the
placement of some hybridizations found in that study. The analyses here presented show that
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SNaQ can enable scientists to incorporate organisms to the “tree of life” in parts that are more
net-like than tree-like, and thus, complete a broader picture of evolution.

Models

Phylogenetic networks
Intuitively, a phylogenetic network is a phylogenetic tree with added hybrid edges, causing
some nodes to have two parents (but see [12]). Phylogenetic networks can describe various bio-
logical processes causing gene flow from one population to another such as hybridization,
introgression, or horizontal gene transfer. Hybridization occurs when individuals from 2 genet-
ically distinct populations interbreed, resulting in a new separate population. Introgression, or
introgressive hybridization, is the integration of alleles from one population into another exist-
ing population, through hybridization and backcrossing. Genes are horizontally transferred
when acquired by a population through a process other than reproduction, from a possibly dis-
tantly related population. Although these three processes are biologically different, we do not
make the distinction when modeling them with a network. In other words, our model takes
into account all three biological scenarios, but those scenarios are not distinguishable in the
estimated phylogenetic network unless more biological information is provided.

Just like phylogenetic trees, networks can be rooted or unrooted. A rooted phylogenetic net-
work on taxon set X is a connected directed acyclic graph with vertices V = {r} [ VL [ VH [
VT, edges E = EH [ ET and a bijective leaf-labeling function f: VL ! X with the following char-
acteristics. The root r has indegree 0 and outdegree 2. Any leaf v 2 VL has indegree 1 and out-
degree 0. Any tree node v 2 VT has indegree 1 and outdegree 2. Any hybrid node v 2 VH has
indegree 2 and outdegree 1. A tree edge e 2 ET is an edge whose child is a tree node. A hybrid
edge e 2 EH is an edge whose child is a hybrid node. Unrooted phylogenetic networks are typi-
cally obtained by suppressing the root node and the direction of all edges. We also consider
semi-directed unrooted networks, where the root node is suppressed and we ignore the direc-
tion of all tree edges, but we maintain the direction of hybrid edges, thus keeping information
on which nodes are hybrids. The placement of the root is then constrained, because the direc-
tion of the two hybrid edges to a given hybrid node inform the direction of time at this node:
the third edge must be a tree edge directed away from the hybrid node and leading to all the
hybrid’s descendants. Therefore the root cannot be placed on any descendant of any hybrid
node, although it might be placed on some hybrid edges.

We further assume that the true network is of level-1[1], i.e. any given edge can be part of at
most one cycle. This means that there is no overlap between any two cycles (but see the Discus-
sion). Refer to [1] for other types of evolutionary networks. Throughout this work, we denote
by

• n the number of taxa,

• h the number of hybridization events and

• ki the number of nodes in the undirected cycle created by the ith hybrid node.

For example, in Fig 1 (center) n = 7, h = 2, k1 = 3 and k2 = 4. The main parameter of interest is
the topologyN of the semi-directed network. Like phylogenetic trees, this network can be
rooted by a known outgroup. The other parameters of interest are t, the vector of branch
lengths in coalescent units (see below), and a vector of inheritance probabilities γ, describing
the proportion of genes inherited by a hybrid node from one of its hybrid parent (see Fig 1).
Only identifiable branch lengths are considered in t. For example, with only one sequenced
individual per taxon, the lengths of external edges are not identifiable and are not estimated.
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Pseudolikelihood on a network. Pseudolikelihood has already been used to estimate phy-
logenetic trees under ILS [13], and here we extend the theory to networks. The pseudolikeli-
hood of a network is based on the likelihood formulas of its 4-taxon subnetworks. These
4-taxon likelihoods are not independent but fast to compute. A quartet is a 4-taxon unrooted
tree. For taxon set s = {a, b, c, d}, there are only three possible quartets, represented by the splits
q1 = ab|cd, q2 = ac|bd and q3 = ad|bc.

The concordance factor (CF) of a given quartet (or split) is the proportion of genes whose
true tree displays that quartet (or split) [14]. We use the term ‘CF’ as opposed to ‘probability’ to
emphasize that CFs measure genomic support. Probabilities (such as posterior probabilities or
bootstrap values) are most often thought to measure statistical uncertainty [15]. Intuitively,
splits between natural evolutionary groups of organisms are recovered by most or all genes,
and thus have high CFs. On the other hand, the presence of a hybrid would be captured by
intermediate CFs. For example, if a is a hybrid intermediate between b and c, the CFs of ab|cd
and ac|bd would be around 0.5 while the CF of ad|bc would be near 0.

The theoretical CFs (CFq1, CFq2, CFq3) expected under the coalescent model are already
known if the network is a species tree [16]. Interestingly, these CFs are independent of the root
placement in the species tree, and are given by (1 − 2/3e−t, 1/3e−t, 1/3e−t) if the unrooted species
tree is q1 = ab|cd with an internal edge of length t coalescent units. On a species network with
reticulations, the probabilities of rooted gene trees was fully derived in [8] and more efficiently
in [9]. But the probabilities of unrooted gene trees was not determined. We derive the quartet
probabilities in the next section. In particular, they do not depend on the root placement in the
network, which makes them simple and fast to compute.

To calculate the likelihood of a 4-taxon network from gene trees G ¼ fG1;G2; :::;Ggg at g
loci, we consider the number of gene trees X = (Xq1, Xq2, Xq3) that match each of the three quar-
tets. Assuming unlinked loci, X follows a multinomial distribution with probabilities (CFq1,
CFq2, CFq3), the quartet CFs expected under the coalescent on the 4-taxon network. With a
larger network on n� 4 taxa, we consider all 4-taxon subsets s and combine the likelihood of
each 4-taxon subnetworks to form the full network pseudolikelihood:

L ¼
Y

s2S
ðCFq1

ÞXq1 ðCFq2
ÞXq2 ðCFq3

ÞXq3 ð1Þ

Fig 1. Example of rooted and semi-directed phylogenetic networks with h = 2 hybridization events and n = 7 sampled taxa. Inheritance probabilities γ
represent the proportion of genes contributed by each parental population to a given hybrid node. Left: rooted network modelling several biological
processes. Taxon F is a hybrid between two non-sampled taxa Y and Z with γ2 � 0.50, and the lineage ancestral to taxa C and D has received genes
introgressed from a non-sampled taxon X, for which γ1 � 0.10. An alternative process at this event could be the horizontal transfer of only a handful of genes,
corresponding to a very small fraction γ1 � 0.001. Center: semi-directed network for the biological scenario just described. Although the root location is
unknown, its position is constrained by the direction of hybrid edges (directed by arrows). For example, C, G or E cannot be outgroups. Right: rooted network
obtained from the semi-directed network (center) by placing the root on the hybrid edge that leads to taxon F (labeled by 1 − γ2).

doi:10.1371/journal.pgen.1005896.g001
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where S is the collection of all 4-taxon sets and qi = qi(s) (i = 1, 2, 3) are the 3 quartet trees on s.
In Eq (1), the data are summarized in the X values, and the candidate network governs the CF
values, which we derive below.

Quartet CF for a 4-taxon network under ILS. For h = 1 hybridization, there are 5 differ-
ent semi-directed 4-taxon networks (up to tip re-labelling). We describe here the expected
quartet CFs (probabilities) for only one case and refer to S1 Text for the remaining cases.

Under the hybridization model described in [6, 8] and the network in Fig 2 (left), each gene
from taxon C has probability γ of having descended from the hybridization edge sister to D, and
probability 1 − γ of having descended from the original tree branch, sister to (AB). Therefore,
the expected CFs are weighted averages of CFs obtained on 2 species tree with ILS. Because the
quartet probabilities do not depend on the root placement in each species tree, they do not
depend on the root placement in the original network either. Fig 2 (top right) shows the corre-
sponding semi-directed network, and all rooted networks displaying it share the same quartet
CFs, obtained from the coalescent models on the 2 unrooted species trees shown in Fig 2 (bot-
tom right). These trees have the same topology but different branch lengths in this case. There-
fore we get that CFabjcd ¼ ð1� gÞð1� 2=3 e�t1Þ þ gð1� 2=3 e�t1�t2Þ and the other 2 quartets
occur with equal probabilities: CFacjbd ¼ CFadjbc ¼ ð1� gÞð1=3Þe�t1 þ gð1=3Þe�t1�t2 .

On other semi-directed networks, more than 2 underlying unrooted species trees are needed
if a hybrid node has more than one descendent taxon. In the network in Fig 3 for instance, the
hybrid node has two descendants, A and B. Given this network, the computation of the CF for
the major quartet AB|CD is as follows. First, A and B can coalesce along the branch of length t1
with probability 1� e�t1 . If they do not coalesce (with probability e�t1) then there are 3 options:
both originated from the minor hybrid edge (probability γ each); both originated from the
major hybrid edge (each with probability 1 − γ); or one (A or B) originated from the minor
hybrid edge but the other (B or A) from the major. Assuming that each lineage’s origin is

Fig 2. Rooted network (left) and its semi-directed version (top right).Quartet CFs expected under the network do not depend on the root placement, and
are weighted averages of quartet CFs expected under the unrooted trees (bottom right).

doi:10.1371/journal.pgen.1005896.g002
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independent of the other, we get CFABjCD ¼ 1� e�t1 þ e�t1ðð1� gÞ2ð1� 2=3e�t2�t3Þ þ 2gð1�
gÞð1� 2=3e�t2Þ þ g2ð1� 2=3e�t4�t2ÞÞ: Therefore, this CF is a weighted average of CFs from the
4 species trees shown in Fig 3 (see S1 Text for all other cases).

With more than 1 hybridization (h> 1) there are an infinite number of semi-directed
4-taxon networks, but we can still calculate the quartet CFs if we assume that the cycles created
by different reticulations do not share edges. We do so recursively on h, by reducing each net-
work to an equivalent network with h = 0 or 1 and transformed branch lengths. For example,
the network in Fig 2 leads to equal CFs of the 2 minor quartets ac|bd and ad|bc, so it is equivalent
to the unrooted species tree ab|cd with internal branch length t3 ¼ � log ðð1� gÞe�t1 þ ge�t1�t2Þ
to ensure 1=3 e�t3 ¼ CFacjbd given above. This new species tree and the original network have the

same expected quartet CFs. The assumption of a level-1 network guarantees non-overlapping
reticulation cycles, such that we can find an equivalent 4-taxon network with h = 0 or 1 and the
same expected quartet CFs. We then just apply the network formulas above. The transformed
branch lengths of the equivalent network are given in the S1 Text.

Detecting the presence of a hybridization. Identifiability is a basic requirement if one
seeks to learn about parameters from data. Here our parameters are the network topologyN ,
branch lengths t and inheritance values γ. We already know that quartet CFs do not depend on
the root placement, so the rooted network is not identifiable and we only consider semi-
directed networksN here. Our pseudolikelihood model would be identifiable if two different

combinations of parameters ðN ; t; gÞ and ðN 0
; t0; g0Þ yield different sets of quartet CFs. We

show here and below that some reticulations and some parameters are impossible (or hard) to

Fig 3. Example of a 4-taxon semi-directed network (left), with known direction of both hybrid edges but unspecified position of the root. The root
can be placed on the internal edges with length t2, t3, t4, or on the external edges to C or D. The quartet CFs on this network are weighted averages of CFs
under 4 trees with weights as shown (right).

doi:10.1371/journal.pgen.1005896.g003

Phylogenetic Networks with ILS from Quartets

PLOS Genetics | DOI:10.1371/journal.pgen.1005896 March 7, 2016 6 / 21



detect. This theory is used later to reduce the parameter space explored by our heuristic search,
to avoid network and parameter combinations that are not identifiable.

On n = 4 taxa, we already showed that the network in Fig 2 is equivalent to a tree with some
appropriate internal branch length. In fact, the same holds true for all 4-taxon networks with
k = 2 or 3 nodes in their reticulation cycle: these reticulations cannot be detected. If k = 4 i.e. if
the reticulation involves more distantly related taxa, then the presence of the hybridization can
be detected based on the quartet CFs. However, networks with the same unrooted topology are
unidentifiable from each other from only 4 taxa, like the 2 networks in Fig 4 if only D1 is sam-
pled (n = 4). They only differ in the placement of the hybrid node, which is therefore not iden-
tifiable, even if the unrooted network and the presence of the reticulation is.

In general, for networks with n� 4 taxa, we restrict our focus to the case whenN 0 is the net-
work topology obtained fromN by removing a single hybrid edge of interest. The assumption
of non-intersecting cycles allows us to study the detectability of this one hybrid edge given the
other hybridizations in the network (see S1 Text). Assuming that all ðn4Þ 4-taxon sets are used
in the pseudolikelihood, the networkN gives us 3ðn4Þ quartet CFs expected under the coales-
cent. The presence of the hybridization of interest can be detected if the quartet CFs from

ðN ; t; gÞ cannot all be equal to the quartet CFs from ðN 0
; t0; g0Þ simultaneously. We matched

both systems fromN andN 0 using Macaulay2 [17], and checked the values of (t, γ) and (t0, γ0)
when the two systems of CFs were equal (see S1 Text for full details). Apart from the obvious

case γ = 0 for the hybrid edge absent inN 0, we found thatN andN 0 were not distinguishable
when tb = 0 or tb =1 for some tree branches b, implying either a hard polytomy or a branch
with no ILS and a reduction of the problem to a 4-taxon network. We can ignore these cases
with the reasonable assumption

A1: t 2 ð0;1Þ for all tree branches and g 2 ð0; 1Þ:

A1 is not sufficient, however, to ensure that the presence of each hybridization inN can be
detected. Increasing taxon sampling helps detect a hybridization only if the added taxa increase

Fig 4. Networks with k = 4 nodes in the reticulation cycle and identical unrooted topologies. They differ in their hybrid position (left: good diamond,
right: bad diamond I). If D2 is not sampled (n = 4), only gið1� e�ti Þ for i = 1, 2 are identifiable and the 2 networks are not distinguishable from each other.

doi:10.1371/journal.pgen.1005896.g004
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the size of the reticulation cycle. Namely, if the cycle only involves k = 2 nodes (see Fig 5), then

N is not distinguishable fromN 0, regardless of n. For k = 3, some hybridizations are detectable
and some are not. If any two of the three subtrees defined by the hybridization cycle (Fig 5)
have only one taxon, then the hybridization is not detectable. It is, if instead at least two sub-
trees contain more than one taxon. In general, hybridizations with k� 4 can be detected if
n� 5. Here and below, we use the terms detectable or identifiable in their generic sense [18,
19], which simply means that some conditions on (t, γ) are required, like A1, but that all these
conditions are met except on a subset of measure zero.

We further determined if the direction of a given hybrid edge was identifiable (in addition
to its presence) when n = 5 and k = 4, in a case when the direction is not identifiable from 4
taxa. Fig 4 shows two networks that differ only in the placement of the hybrid node, but other-
wise have the same unrooted topology. We proved that they yield different sets of quartet prob-
abilities and therefore are distinguishable from each other, showing that the direction of the
hybridization becomes identifiable when n� 5.

Identifiability of branch lengths and heritabilities. We now turn to the case whenN 0 ¼
N to determine if t and γ are identifiable given a known network topology. Like before, we
used Macaulay2 to determine under which conditions two different combinations of parame-
ters (t, γ) and (t0, γ0) yield different sets of quartet probabilities for a fixed networkN (see S1
Text for details).

Just as before, the identifiability depends on the type of network (Fig 5). With only 4 taxa,
there are more parameters than equations (3 quartet CFs), so t and γ are not separately identifi-
able, so we focus first on the case with n� 5.

If n� 5, parameter identifiability is again easier if the reticulation involves more distantly
related taxa. If k� 5, all the parameters are identifiable. If k� 3, parameters are not identifi-
able. If k = 4, parameters are identifiable if either n0 � 2 (or n2, symmetrically), or if both n1
and n3 � 2 (see Fig 5). We call this a good diamond. Parameters are not all identifiable in the
remaining 2 cases, which we call bad diamonds I and II (see Fig 5). The bad diamond I already
lacked identifiability under a different model in [20].

Practical consequences. A naive search for the most likely network would get stuck alter-
nating between non-distinguishable networks or parameter sets. Hence we reduced the search-
able space to only consider networks whose reticulations involve enough nodes. Indeed, all

Fig 5. Networks with k nodes in a hybridization cycle: k = 2, 3, 4 and 5 from left to right.When k = 3, parameters are not identifiable. A good triangle
corresponds to n1, n2, n3� 2, in which case setting t12 = 0 makes the other parameters identifiable. When k = 4, parameters are not all identifiable for the bad
diamond I (n0 = n2 = n3 = 1 but n1� 2) and for the bad diamond II (n0 = n1 = n2 = 1 but n3 � 2).

doi:10.1371/journal.pgen.1005896.g005
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reticulations with k = 2 and most with k = 3 are either not detectable at all, or their parameters
are not all identifiable. For hybridizations with k = 3, we only kept those with ni� 2 for all
i = 0, 1, 2 (see Fig 5) and we enforced t12 = 0 to make the other 6 parameters identifiable. We
denote this case as a good triangle. For bad diamonds I (k = 4), we reparametrized the 3 non-
identifable values (γ, t1, t0) into 2 identifiable ones ðgð1� e�t0Þ; ð1� gÞð1� e�t1ÞÞ (see S1
Text). For bad diamonds II, we set t13 = 0 and kept the other 5 parameters (γ, t0, t1, t2, t3).

Network estimation procedure
The input for our method is a table of quartet CFs observed from multi-locus data (the X values
in Eq (1)), across many or all 4-taxon subsets from the n taxa of interest.

Pseudolikelihood optimization. The maximum pseudolikelihood (MPL) estimate is the
network, branch lengths t and γ heritabilities that maximize the pseudolikelihood Eq (1). This
MPL optimization was fully implemented in SNaQ (Species Networks applying Quartets) and
is part of our open source package PhyloNetworks in Julia [21]. The numerical optimization of
branch lengths and γ parameters for a fixed topology is performed with a derivative-free meth-
odology in the NLopt package for Julia. The heuristic optimization of the network topology
uses a strategy similar to that in [9]. Given a fixed maximum number of hybridizations (hm),
we search for the MPL network with at most hm hybridizations. Since the pseudolikelihood can
only improve when hybridizations are added, we expect the final network to have h = hm
exactly. A network is estimated for various values of hm, followed by a model selection proce-
dure to select the appropriate number of hybridizations (see below). For a given hm, the search
is initialized with a tree from a very fast quartet-based tree estimation method like ASTRAL
[22] or Quartet MaxCut [23, 24]. The length of each branch is initialized using the average

observed CF of the quartets that span that branch exactly, CF, transformed to coalescent units

by t ¼ � log ð1� 3=2CFÞ. The search then navigates the network space by altering the current
network using one of 5 proposals, chosen at random: 1) move the origin of an existing hybrid
edge, 2) move the target of an existing hybrid edge, 3) change the direction of an existing
hybrid edge, 4) perform a nearest-neighbor interchange move (NNI) on a tree edge, and 5) add
a hybridization if the current topology has h< hm. Any new proposed network is checked to
verify that it is a semi-directed level-1 network with h� hm and with at least one valid place-
ment for the root. More details on these moves are provided in S1 Text. Although the deletion
of a current hybridrization is not proposed (because the MPL network should have h = hm),
this deletion is still performed when suggested by the data, if the numerical optimization of
parameters returns a ĝ ¼ 0. In this case, the corresponding hybrid edge is removed and the
search attempds to add it back at random in the neighborhood of the original hybrid edge. If
this attempt fails for all neighbors, the hybridization is deleted entirely and the search contin-
ues from a network with 1 fewer hybridization. Similarly, if the numerical optimization returns
a branch of length t = 0, an NNI move is proposed immediately on that branch. The search
continues until the pseudolikelihood converges or until the number of consecutive failed pro-
posals reaches a limit.

In [25], Huber et al. proved that the space of unrooted level-1 networks is connected by
local subnetwork transfers, which generalize the NNI operations on trees and which are similar
to our moves 1, 2 and 4. Although we do not have a formal proof that the MPL network can be
reached from the starting tree using our proposals, the results in [25] suggest that it is the case.

Statistical uncertainty. There are two sources of uncertainty when we estimate CFs from
sequence data. Gene trees are not observed directly but estimated, and only a finite number of
genes can be sampled. Our preferred estimation of quartet CFs integrates over both sources of
noise using BUCKy [26, 27], to estimate true gene tree conflict and discard conflict due to gene
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tree error. BUCKy returns estimated genome-wide CFs and their 95% credibility intervals.
These CFs were shown to be most influenced by highly informative genes and least influenced
by genes with large tree uncertainty [15]. Very briefly, MrBayes [28] is run on each gene sepa-
rately and the full tree samples from all genes serve as input for BUCKy, which is run separately
on each 4-taxon set. BUCKy has a prior probability of (1 + α/3)/(1 + α) that 2 genes share the
same quartet tree. For example, choosing α = 1 amounts to assuming a prior concordance
probability of 0.667, compared to 0.333 if gene trees matched just by chance.

A faster way to estimate CFs from sequences would be to use maximum likelihood with
RAxML [29] (or maximum parsimony for faster estimation) on each gene separately, and then
to simply count the number of genes that display each quartet tree. To account for tree uncer-
tainty, one may drop any gene, for a given 4-taxon set, that does not have bootstrap support
above some threshold (like 70%) for one of the 3 quartets. This method would not account for
the uncertainty due to having a limited number of genes. With only 10 genes, for instance, the
estimated CFs would necessarily be of low precision, of the form i/10 in the best case when all
10 gene trees are strongly supported.

If some genes are missing some taxa, the quartet CFs obtained on a given 4-taxon set can
simply use the subset of genes that have sequences for the 4 taxa of interest. In most cases, a
large number of genes can be included for each given 4-taxon sets, even if none of the genes
have data across the full taxon set. Furthermore, the collection of 4-taxon sets with available CF
data does not need to be exhaustive, as the sum in Eq (1) simply involves the sampled 4-taxon
sets.

To measure uncertainty in the network, one may re-do the network analysis on bootstrap
data sets. If we estimated credibility intervals for CFs with BUCKy, then 100 credible sets of
quartet CFs can be obtained by sampling each CF from its posterior distribution, approximated
by its credibility interval. If CFs were obtained using RAxML and observed quartet frequencies
in gene trees, then bootstrap sets of quartet CFs could be obtained by sampling one bootstrap
tree from each gene. To summarize the networks estimated from these bootstrap sets, we first
calculated the support for edges being in the major tree: the tree obtained by suppressing the
minor hybrid edge (with γ< 0.5) at each reticulation. We then summarized the support for the
placement of each minor hybrid edge on that tree, considering 2 edges as equivalent if they are
of the same type (hybrid or tree edges) and define the same clusters [9].

Uncertainty in the number of hybridizations h is more difficult to capture (see Discussion).
We used here a slope heuristic to find where the network score changes from a sharp to a slow
linear decrease as h increases. We also looked to see if the bootstrap support for successive
reticulations dropped at the same h value.

Results

Simulated data
We carried out simulations to compare the speed and accuracy of SNaQ and PhyloNet. Given
that PhyloNet uses the rooted and full gene trees, SNaQ can only be expected to perform as
accurately as PhyloNet at best. Our simulations show that a pseudolikelihood approach does
not compromise too much accuracy, but greatly improves speed.

We simulated g gene trees with ms [30] under four different networks: (n, h) = (6, 1), (6, 2),
(10, 1) and (15, 3), with γ values set to 0.2 or 0.3 on each minor hybrid edge (see S1 Text) These
network topologies were chosen at random by simulating a tree with n taxa under the coales-
cent, then choosing two edges at random for the origin and target of each hybridization and
rejecting networks of level>1. On 6 taxa all reticulations were hard to reconstruct with k = 4,
including a bad diamond I in the case h = 2. On 10 and 15 taxa, both networks also had a
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diamond, of the bad type II for n = 10. We varied the number of genes between 10 and 3000.
All analyses were run on 2.7–3.5 GHz processors.

We first used the true simulated gene trees for inference. The rooted gene trees served as
input for PhyloNet and the unrooted quartet CFs as observed in the g gene trees served as
input for SNaQ. The semi-directed network returned by SNaQ was rooted by the outgroup spe-
cies, when compatible with the estimated hybrid edges. Next, we used Seq-Gen [31] to simulate
sequences of length 500 under HKY, κ = 2, A, C, G and T frequencies of 0.300414, 0.191363,
0.196748, 0.311475 and population mutation rate θ = 0.036, as in [9]. Gene trees were esti-
mated with MrBayes [28] using 106 generations sampled every 200, 25% burnin and an HKY
model. The consensus trees (one per gene) served as input for PhyloNet. The posterior tree
samples were then used in BUCKy [26, 27] for each 4-taxon set, to estimate quartet CFs and
use them as input for SNaQ. For this pipeline, we used the tools implemened by [32] and avail-
able at https://github.com/nstenz/TICR. This procedure was replicated 30 times. The accuracy
of each method was measured as the proportion of times that the estimated network matched
the true network. To compare rooted networks we used the distance in [33], which is a metric
on reduced networks (including level-1 networks) and is implemented in PhyloNet. We used it
to detect equality between rooted networks, but not to measure how “close” networks were,
because this distance is very sensitive to small differences such as a change in the direction of a
hybrid edge.

Fig 6 summarizes the accuracy and speed of SNaQ and PhyloNet. On 10 or 15 taxa Phyl-
oNet was too slow to run (a single replicate with 10 taxa and 300 loci required over 400 hours),
so we cannot provide a comparison of accuracy on these 2 larger networks.

For networks with h = 2 or more, the accuracy of SNaQ decreased. So, for each semi-
directed network estimated by SNaQ, we determined if its unrooted topology matched that of
the true network. Fig 7 shows that in the vast majority of cases when the directed network was
incorrectly estimated, its unrooted topology was still correctly inferred from true gene trees
and for n = 6 with estimated gene trees. For n� 10, the inferred direction of hybrid edges
degraded when gene trees were estimated. In most replicates on 10 taxa, this was because the
bad diamond II near the root in the true network had a wrong estimated placement of the
hybrid node.

To detemine which features in the network were correctly estimated, we extracted the major
tree from each network, that is, the tree obtained by keeping the major hybrid edge and sup-
pressing the minor hybrid edge at each hybrid node. We then compared the true major tree
(from the true network) to the estimated major tree using the Robinson-Foulds distance (see
Fig 8). The major tree was correctly estimated from 300 or more genes in all scenarios, except
when n = 6, h = 2 and 300 genes (1 replicate out of 30) and 1000 genes (1 replicate out of 30).
In both cases, the true major tree was displayed in the estimated network but the major hybrid
edge was estimated as a minor edge with γ< 0.5. Therefore, the network’s “backbone”, i.e. the
major vertical inheritance pattern, can still be estimated accurately even when the full network
and hybrid edges are not (Fig 7).

Among cases when the major tree was correctly estimated, we determined the detection
accuracy of each true hybridization event. To do so, we compared each estimated hybridization
with the true hybridization of interest. In each network (true and estimated), we removed the
other hybridizations by suppressing their minor hybrid edges and used the known outgroup to
root both networks. We then calculated the hardwired cluster distance between the two result-
ing networks to determine if the estimated hybridization event matched the true hybridization
of interest: connecting the same donor edge to the same recipient edge in the major tree (Fig
9). For n = 6, the hybridizations forming a good diamond were recovered with high accuracy
from 100 genes, but the hybridization forming a bad diamond I (case h = 2) was very hard to
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recover, needing more than 1000 genes for an accurate inference of the hybrid edges’ direction.
Still, the unrooted cycle was correctly estimated from 100 genes or more. For n = 10 and n = 15
taxa, the hybridization creating a cycle of k = 4 nodes was also very hard to detect with its cor-
rect direction, although its undirected cycle was accurately recovered from a few hundred
genes. Hybridizations were recovered more accurately as their cycles spanned more nodes,
with a high recovery rate for the hybridizations with k = 6 and k = 7 from 100 genes or more.

Xiphophorus fishes evolution
We re-analyzed transcriptome data from [11] to reconstruct the evolutionary history of 24
swordtails and platyfishes (Xiphophorus: Poeciliidae). Based on high CFs of splits in conflict
with their species tree followed by a series of ABBA-BABA tests [35], [11] concluded that
hybridization or gene flow was widespread in the history of these tropical fishes. We re-ana-
lyzed their first set of 1183 transcripts. BUCKy was performed on each of the 10,626 4-taxon
sets. The resulting quartet CFs were used in SNaQ, using hm = 0 to 5 and 10 runs each. The net-
work with h = 0 and the major tree in the network with h = 1 were identical to the total

Fig 6. Performance (average computing time per replicate) of SNaQ and PhyloNet. in simulations using
true gene trees on networks with n = 6, 10 or 15 taxa and h = 1, 2 or 3. Each replicate consisted of 10
independent runs with full optimization of branch lengths and inheritance probabilities for each run. Pie charts
display accuracy (black: probability of recovering the true network). With n = 10 and 300 or more loci, or with
n = 15, PhyloNet was too slow to run.

doi:10.1371/journal.pgen.1005896.g006
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evidence tree in [11], with X. xiphidium placed within the grade of southern platyfishes (SP),
making the northern platyfishes (NP) paraphyletic (see S1 Text). With h� 2 the major tree
was almost identical but with NP monophyletic (Fig 10) because X. xiphidium was found sister
to the rest of the NP species, but involved in a reticulation (see below). With h� 3, a reticula-
tion within the southern swordtails (SS) was found consistently (γ = 0.43), but with a direction
in conflict with SS being an outgroup clade. Its cycle had only k = 5 nodes, 4 of them leading to
a single taxon (see S1 Text) so we suspect an error in the inferred hybrid node and gene flow
direction. The extra 2 reticulations found with h = 4 and 5 had low γ values (in [0.006–0.16]).

The network scores (negative log-pseudolikelihood) decreased sharply from h = 0 to h = 2
then slightly and somewhat linearly (see S1 Text), suggesting that h = 2 best fits the fish data
using a slope heuristic [45, 46]. The network estimated with h = 2 (Fig 10) found X. xiphidium
involved in an ancient reticulation, contributing a proportion γ = 0.17 of genes to the lineage
ancestral to northern swordtails (NS). This reticulation might explain the placement of X.

Fig 7. Accuracy of SNaQ in simulations using true gene trees or sequence alignments. Even when the semi-directed topology was not recovered, the
unrooted topology was estimated correctly for most replicates using 30 loci or more and h� 2.

doi:10.1371/journal.pgen.1005896.g007

Phylogenetic Networks with ILS from Quartets

PLOS Genetics | DOI:10.1371/journal.pgen.1005896 March 7, 2016 13 / 21



xiphidium closer to the root in [11], from tree-based methods that do not account for potential
gene flow. The second hybridization (γ = 0.20) was found from the population ancestral to X.
multilineatus and X. nigrensis into X. nezahuacoyotl, and relates to a high CF found by [11] for
a clade uniting X. nezahuacoyotl and the nigrensis group.

Bootstrap data sets were simulated by sampling each quartet CF from a uniform distribution
on its 95% credibility interval (conservatively) then normalizing the sampled CFs across the 3
quartets on each 4-taxon set. For each bootstrap data set we estimated a network using 3 runs,
and h = 3 (instead of 2) because the third inferred reticulation had a high γ (see S1 Text) and to
assess the ability of the bootstrap procedure to identify the best h value. If the bootstrap was
consistent with the slope heuristic, we expected high bootstrap support for the placement of
the first 2 reticulations and lower support for the third. As expected, this third reticulation and
network topology within the SS clade was variable among bootstrap networks (see S1 Text),
suggesting uncertainty in the major tree within this clade (Fig 10). The rest of the tree was
highly supported, as was the placement of the reticulation involving X. xiphidium. The reticula-
tion involving X. nezahuacoyotl had split support for its donor lineage, with 75% support for a
more ancestral lineage (Fig 10).

Discussion
Many methods are being developped to understand organisms whose evolution behaves more
net-like rather than tree-like. There is evidence of reticulation at all levels in the tree of life:
deep among early prokaryotic and eukaryotic groups, to shallow among recently diverged

Fig 8. Accuracy of SNaQ to recover the major tree in the species network, from sequence alignments.
The major tree is obtained by suppressing all minor hybrid edges (γ < 0.5) to capture the major vertical
inheritance pattern. Accuracy is measured as half the Robinson-Foulds distance between the true and
estimated tree, i.e. the number of incorrect edges in the estimated tree. A lot fewer genes are needed to
accurately estimate the major vertical pattern, compared to the horizontal pattern.

doi:10.1371/journal.pgen.1005896.g008
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species (e.g. [36–38]) or even among populations of the same species. Our new and fast statisti-
cal method to infer phylogenetic networks from multi-locus data could be used at these various
levels in the tree of life.

Network model and assumptions
Network inference is theoretically and computationally challenging. Split networks can be esti-
mated rapidly, yet lack an evolutionary model and biological interpretability. [39] proposed a
very fast distance-based approach to reconstruct topological ancestral recombination graphs
(tARGs) from a long alignment, but the biological interpretability of tARGs is still limited. The
evolution model in [8] uses an explicit network and satisfyingly accounts for various processes:
reticulation events, deep coalescences, and substitutions. Yet a full likelihood estimation of
large network (as in [9]) seems beyond computational reach. Our pseudolikelihood method
offers an alternative, allowing the estimation of bigger and more complex networks while
maintaining biological interpretability and a flexible evolutionary model.

Fig 9. Accuracy of SNaQ to recover each hybridization. proportion of times each reticulation was correctly inferred (connecting the correct donor edge to
the correct recipient edge in the major tree), among sequence alignments in which the major tree was recovered. Minor hybrid edges are numbered and
colored as in S1 Text. For reticulations creating a cycle of k = 4 nodes, we also calculated the proportion of times that this undirected (or “unrooted”) cycle was
correctly inferred, even though the identity and direction of hybrid edges in this cycle might be incorrect (empty symbols). The proportion of times that all
hybridizations were correctly inferred (black lines) was low when a single hybridization with k = 4 was hard to recover (bad diamond I in case n = 6, h = 2, and
bad diamond II in case n = 10).

doi:10.1371/journal.pgen.1005896.g009
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We assumed a level-1 network throughout, where each hybrid node is part of a single cycle.
This assumption is quite restrictive, but [40] showed that sequence data and gene trees on pres-
ent-day species do not contain enough information to reconstruct complex networks, even
from many loci. Therefore, some assumption has to be made to limit the network complexity.
Extending our method to networks with intersecting cycles will need further work to restrict
the search to candidate networks that are distinguishable from each other. Indeed, [40] show
that different level-2 networks can have the exact same likelihood, and hence pseudolikelihood.
So no method based on gene trees can ever decide which of these level-2 networks is true.
Under a model without ILS, using full gene trees and branch length in substitutions per sites
comparable across genes, [40] showed that level-1 networks are distinguishable but level-2 net-
works are not necessarily. Extending our approach to higher level networks, with or without
ILS, will require extensive theory to work around this lack of identifiability.

Our approach allows for multiple individuals per species. All alleles from the same species
simply need to be treated as a known and fixed polytomy in the network. Future work could
include this and other topology constraints on the network, to reduce the computational bur-
den when there are known phylogenetic relationships.

Branch lengths
We allow hybrid edge lengths to be 0, but we do not constrain them to be 0 (unlike in [6, 8])
even though each gene flow event has to occur between contemporary populations. If one
parental population went extinct or has no sampled descendants, the hybrid edge from this
parent has a positive length in the observable network. A second reason is that a long branch
can fit a population bottleneck, as might be expected in the formation of a new hybrid species.
Not constraining hybrid branch lengths to 0 has a computational burden, however. Future

Fig 10. Xiphophorus reticulate evolution estimated with SNaQ. from 1183 genes, h = 2, rooted with the southern swordtails outgroup clade (SS). NS:
northern swordtails, SP: southern platyfishes, NP: northern platyfishes. Black edges: major tree (including hybrid edges with γ > 0.5). Colored solid arrows:
minor hybrid edges, annotated by their estimated γ. Black numbers: bootstrap support for edges in the major tree, if different from 100%. Colored numbers:
bootstrap support for the placement of minor hybrid edges. One reticulation had 75% support for a different donor lineage (dotted arrow) than inferred from
the original data.

doi:10.1371/journal.pgen.1005896.g010
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implementations might enforce this constraint, when taxon sampling is thorough and extinc-
tion of parental populations can be ruled out.

By considering quartet topologies only, we ignored branch lengths in gene trees. This choice
frees us from various assumptions. Using gene tree branch lengths, which are in substitutions
per site, would require some assumption on gene rates to make branch lengths comparable
across trees, and a molecular clock on gene trees. Other assumptions would also be needed on
population sizes, shared or not across lineages. The recent approach in [41] should scale well to
many taxa, but makes these strong assumptions because it requires accurate distances obtained
from branch lengths in gene trees. On the contrary, our approach should be robust to rate vari-
ation across genes and across lineages, and does not require any assumption on population
sizes.

Identifiability of the topology
Yu et al. [8] already noted a lack of identifiability from rooted gene trees for reticulations with
k = 3 from only 4 taxa (including the outgroup). We found a similar lack of identifiability from
unrooted quartets if n< 5. In practice, some reticulations are hard to detect even with 5 or
more taxa, if some branches are long with no ILS (close to violating A1). However, in these
cases the unrooted topology of the network can still be recovered, even if the direction of gene
flow and the placement of the hybrid node is not. Therefore, heuristic strategies that keep the
unrooted network unchanged, or that just slightly modify it, may improve the search for the
best network.

More tools are needed to study unrooted and semi-directed phylogenetic networks. For
instance, no distance measure has been developed for such networks, that we know of. Dis-
tances between rooted networks would also be needed, that would be less sensitive to small
changes in the unrooted or semi-directed topologies than the distance proposed in [33]. New
notions of edge equivalence would also be needed on unrooted and semi-directed networks. It
would help summarize a bootstrap sample of networks for instance, with no need for an
outgroup.

We propose here a tree-based but informative summary by extracting the major tree from
each network, obtained by dropping any minor hybrid edge (with inheritance γ< 0.5). Because
this tree summarizes the major vertical inheritance pattern at each node, it can be considered
an estimate of the species tree. We found that recovering the underlying species tree can be
much easier (requiring fewer genes) than recovering the horizontal signal. Even if the species
tree is the main purpose of a study, [34] showed that species-tree methods can be inconsistent
in recovering the vertical signal if there is gene flow, so using a network can be beneficial to
avoid the possible inconsistency of tree-based coalescent methods.

Missing data
All data analyzed here had full taxon sampling from each gene, and we were able to use all
4-taxon sets. Future work could assess the impact of missing data (gene sequences, or 4-taxon
sets) on the method’s accuracy. Missing 4-taxon sets will be necessary for large networks,
because the number of 4-taxon sets grows very rapidly with the number of taxa (*n4/24).
With many taxa, one may randomly select a collection of 4-taxon sets and/or choose them spe-
cifically. SNaQ calculates the number of quartets involving each taxon and provides informa-
tion about under-represented taxa, if any. With many individuals per species, one may greatly
reduce the collection of 4-taxon sets to be analyzed by randomly sampling from those contain-
ing at most one individual per species. If the assignment of individuals to species is correct, any
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4-taxon set containing 2 individuals from the same species would be non-informative about
the species-level relationships. This strategy is used in [42] to infer species trees under ILS.

0.1 Uncertainty in the number of hybridizations
Model selection is necessary to estimate the number of hybridizations h, because the pseudoli-
kelihood is bound to improve as h increases, like the likelihood or parsimony score in [43]. We
used here the log pseudolikelihood profile with h. A sharp improvement is expected until h
reaches the best value and a slower, linear improvement thereafter. Such data-driven slope heu-
ristics can indeed be used with contrast functions (like pseudolikelihoods) for model selection
in regression frameworks [45, 46].

Information criteria have already been used to select h (e.g. [44]), but these criteria are inap-
propriate if the full likelihood is replaced by a pseudolikelihood. Theory is missing to compare
the pseudolikelihoods of different networks, because of the possible correlation between quar-
tets from different 4-taxon sets. It can be shown, however, that quartets from two 4-taxon sets
s1 and s2 are independent if s1 and s2 overlap by at most one taxon and if the true 4-taxon sub-
networks share no internal edges. Future work could exploit this partial independence to con-
struct hypothesis tests.

Cross validation has been proposed by [9], and was shown to have good performance. In
our framework, the cross-valication error could be measured from the difference between the
quartet CFs observed in the validation subset and the quartet CFs expected from the network
estimated on the training set. Because K-fold cross-validation requires partitioning the loci into
K subsets and re-estimating a network K times at each h value, this approach can be computa-
tionally heavy.

Finally, [32] proposed a goodness-of-fit test, also based on quartet CFs, to determine if a
tree with ILS fits the observed data or if a network is needed instead. This test could be
extended to networks, to decide if a given h provides an adequate fit. One advantage to this
approach is that testing the adequacy of a given h does not require to estimate a larger network
with h + 1 hybridizations, whereas other approaches above would require estimation of both
networks in order to decide that the simpler network is sufficient.

Pseudolikelihood with rooted triples
After submission, we learned about similar work using subnetworks and a pseudolikelihood
approach [47], which scales to many taxa. In [47], the pseudolikelihood is based on rooted tri-
ples whereas we use unrooted quartets. There are fewer triples, so the method in [47] is poten-
tially faster. However, fewer triples means less information. For example, the networksC1 and
C2 shown in Fig. 2 of [47], which are not distinguishable from triplets, are in fact distinguish-
able from quartets (see S1 Text). Our thorough study of the network identifiability allowed us
to implement a search that avoids jumping between networks that are not distinguishable,
which facilitates convergence. The downside of our approach is the assumption of a level-1 net-
work. Instead, [47] do not assume any restriction on the network. Finally, our method does not
require rooted gene trees as input, which we view as a major advantage because rooting errors
are avoided.

Supporting Information
S1 Text. Supporting information file that contains formal definitions, proofs of network
identifiability results, more details on the heuristic network search, on the simulation
study and on the fish network analysis.
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