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Background: Stroke is one of the most frequent causes of death and disability

worldwide. It is accompanied by the impaired motor function of the upper extremities

in over 69% of patients up to hemiplegia in the following 5 years in 56% of cases. This

condition often is characterized by chronic poststroke pain, difficult to manage, further

worsening quality of life. Poststroke pain occurs within 3–6 months. Robot-assisted

neurorehabilitation using the Automatic Recovery Arm Motility Integrated System

(ARAMIS) has proven efficacy in motor function recovery exploiting the movements and

the strength of the unaffected arm. The rationale of the ROBOCOP (ROBOtic Care of

Poststroke pain) randomized trial is the assessment of the impact of robot-assisted

functional and motor recovery on the prevention of poststroke pain.

Methods: A total of 118 patients with hemiplegic arms due to stroke will be enrolled and

randomly allocated with a 1:1 ratio to ARAMIS or conventional neurorehabilitation group.

After a baseline screening at hospital discharge, ARAMIS or conventional rehabilitation

will be performed for 8 weeks. The primary endpoint is the prevention of the development

of poststroke pain and the secondary endpoints are prevention of spasticity and efficacy

in clinical motor rehabilitation. The primary outcome measures consist in the visual

analog scale and the doleur neuropatique 4 and the secondary outcome measures

include: the Modified Ashworth Scale, the Resistance to Passive movement Scale; the

Upper Extremity Subscale of the Fugl–Meyer Motor Assessment; the Action Research

Arm Test; the Barthel Index for activities of daily living; and the magnetic resonance

imaging (MRI) recovery-related parameters. After baseline, both primary and secondary

outcome measures will be performed in the following time points: 1 month after stroke

(t1, half of the rehabilitation); 2 months after stroke (t2, after rehabilitation); and 3

months (t3) and 6 months (t4) after stroke, critical for poststroke pain development.
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Discussion: This is the first clinical trial investigating the efficacy of robot-assisted

neurorehabilitation using ARAMIS on poststroke pain prevention. This study could

remarkably improve the quality of life of stroke survivors.

Keywords: robot-assisted neurorehabilitation, ARAMIS, stroke recovery, motor rehabilitation, post-stroke pain

INTRODUCTION

Background and Rationale
Stroke represents one of the most serious causes of death and
disability-adjusted life-years lost (1) destined to keep increasing
due to global aging. One of the most common long-term
disabilities occurring in over 69% of cerebrovascular lesions
consists of impaired motor function of the upper extremities
up to hemiplegia in the following 5 years in 56% of cases
(2, 3). Stroke is complicated by the occurrence of poststroke
pain usually within 6 months from the acute event (4), with
poststroke pain syndromes reported in up to 30%−40% of stroke
outliving patients (5), chronic in 11–55% of patients (6). The
latter include pain caused by different pathophysiology in which
nociceptive and neuropathic features can coexist ranging from
pain secondary to spasticity, shoulder pain, complex regional
pain syndrome (CRPS), and headache, in 1 out of 10 stroke
sufferers, that is, migraine-like in 31.3% cases (7), to central
poststroke pain (8). Shoulder pain is the most frequent affecting
some 30–40% of stroke survivors (6). Lenticulocapsular strokes
can cause hemiparesis with consequent shoulder pain (9). The
development of poststroke pain correlates to the severity of stroke
and paresis is associated with a 3.1-fold higher risk for stroke-
related pain (10). Unfortunately, often patients suffering from
pain after stroke do not find relief in current analgesic treatment
because it is not supported by clinical trials, as a consequence,
guidelines are lacking (9). In fact, the systematic review and
meta-analysis of literature has highlighted that very few clinical
trials assess the efficacy of opioids, the most potent analgesics on
poststroke pain, the number of patients is very small and these
studies have not been designed specifically for this condition, thus
usually not evaluating the correlation between rehabilitation,
pain, and physical functioning after stroke (11). Actually, stroke
survivors do not even benefit from clinical trials on the novel
preventative treatment of migraine, e.g., the anticalcitonin gene-
related peptide monoclonal antibody eptinezumab that can
provide rapid and longer-lasting action (12). This is often due
to the lack of use of pain scales for an objective pain assessment
validated in specific populations, e.g., patients affected by stroke,
and this problem becomes even more worrying for patients with
aphasia and noncommunicative and in the pandemic emergency
(13–16). Robot-assisted neurorehabilitation for patients with
stroke having the Integrated Robotic System for Stroke (IRSS)
prototype Automatic Recovery Arm Motility Integrated System
(ARAMIS) has provided a significant improvement of motor
recovery (17). It consists of two computer-controlled, symmetric,
and interacting exoskeletons that impress to the paretic arm
the same strength and movement of the healthy arm and it
has been validated in stroke survivors. The rationale for the

use of ARAMIS in poststroke neurorehabilitation of the paretic
upper limb relies on the possible prevention of aberrant early
plasticity. According to our working hypothesis, ARAMIS might
improve plasticity in agreement with the concept underlying the
Reinforcement-Induced Movement Therapy (18), avoiding the
occurrence of spasticity and hypotonia.

Objectives
In agreement with the Initiative on Methods, Measurement,
and Pain Assessment in Clinical Trials (IMMPACT)
recommendations that support the importance of physical
functioning as the core outcome for pain (19) this randomized
controlled clinical trial (Calabria Region Ethics Committee
protocol N.244 of 09/21/2021) will be the pilot forming the
rational basis for the assessment of the efficacy in the use of
ARAMIS to prevent chronic poststroke pain development.
In fact, according to our working hypothesis, proprioceptive
inputs with high-intensive bilateral movement training of
the hemiplegic arm can prevent chronic poststroke pain
development within the 3–6 months following stroke.

Trial Design
This randomized single-center trial will recruit subacute
hemiplegic patients of any age with hemiparesis of the arm
after stroke. The trial is designed as a prospective, exploratory,
and interventional study without drugs. The study does not
request the use of drugs. This study protocol follows the
Standard Protocol Items: Recommendations for Interventional
Trials (SPIRIT) Checklist (20).

METHODS

This trial has been approved by the Calabria Region
Ethics Committee (protocol N.244 of 09/21/2021) and the
ClinicalTrials.gov ID has been requested. According to the D.lgs
196/2003, the Helsinki agreements and subsequent amendments,
the Good Clinical Practice and current legislation, the Guidelines
for the treatment of personal data in clinical trials of 24 July 2008,
and in accordance with European data protection legislation,
each participant or his/her legal representative will be required
to sign a consent form as acceptance of all aspects of the study
contained in the patient information sheet and as a consequent
expression of his willingness to participate in the study. The
information sheet will be duly illustrated to the subjects or legal
representatives by the study staff and the same staff will ensure
that the consent form is properly signed and dated by all the
parties involved before any procedure foreseen by the protocol is
carried out.
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Study Setting
The study will be carried out at the Sant’ Anna Institute
of Crotone (Calabria, Italy), which is specialized in
motor and cognitive treatment and rehabilitation of
neurological diseases.

Eligibility Criteria
Consecutive patients, admitted to Sant’ Anna Institute
with the diagnosis of stroke after hospital discharge
will be enrolled, accordingly with the following
inclusion criteria:

- First-ever stroke within 24–72 h from diagnosis confirmed
through functional MRI scan, regardless of the side, location,
and extension of the lesion;

- Stroke-related hemiplegic patients of any age at hospital
discharge within 48–72 h after stroke with fMRI scan of the
area affected;

- Severe upper limb impairment, according to the Upper
Extremity Subscale of the Fugl–Meyer Motor Assessment
[FMA-UE (0-35) (21)];

- Absence of hemiplegic upper limb-related baseline pain
based on the visual analog scale (VAS), the bedside active
examination with a numerical rating and, also, the douleur
neuropathique en 4 questions (DN4) for the evaluation of
neuropathic prestroke pain.

Exclusion criteria will be:

- Bilateral impairment;
- Presence of aphasia;
- Presence of cognitive impairment, as assessed using the

cognitive assessment scale for patients with stroke (22), to
avoid interference of aphasia or hemispatial neglect that
may occur with the commonly used Mini-Mental State
Examination (23) and Montreal Cognitive Assessment (24);

- Stroke diagnosis without the occurrence of hemiparesis of the
upper limb;

- Previous rehabilitation.

Due to the lack of specific observational tools for poststroke
pain in noncommunicative patients, this pilot study will not
include patients affected by aphasia and cognitive impairment.
The informed consent will be obtained by healthcare operators
and patients will be informed about the study and they will be
provided with a consent form. No additional consent provisions
for biological specimens will be needed since the latter will not
be collected.

Description of the Intervention
ARAMIS is composed of two computer-controlled, symmetric,
and interacting exoskeletons able to compensate for the
inadequate strength and accuracy of residual motor function of
the paretic arm movements (25) (Figure 1). Through motion
capture of the movements of the unaffected arm, the patient
can replicate the movements of the healthy arm with the paretic
arm in a synchronous, asynchronous, or active-assisted manner
(25). Patients in the intervention group will receive only robot-
aided and not conventional rehabilitation for a 60 min-session.

The robot-assisted neurorehabilitation using ARAMIS and the
conventional rehabilitation consists of 60-min sessions every
day for 8 weeks (17, 25). In particular, in the first section
of neurorehabilitation (1–4 weeks), all the subjects will be
subjected to perform a series of asynchronous exercises according
to which the paretic limb repeats each exercise 20 times for
a total of 200 repetitions per session. During synchronous
exercises, the exoskeleton hosting the paretic limb allows the
replication of the sample movements of the parallel exoskeleton
hosting the unaffected arm in real time. In the asynchronous
exercises, the sample movements have been generated previously
by the unaffected arm of the patient or by the arm of the
therapist. The basic exercises consist in forearm pronation-
supination, elbow flexion-extension, shoulder elevation (30◦,
60◦, and 90◦) and abduction-adduction (30◦, 60◦, and 80◦),
and circle movement on the frontal axis of the shoulder and
its flexion-extension. On the other side, the functional exercise
includes: shoulder elevation 90◦ + forearm pronation-supination
and elbow flexion-extension and the contrary (elbow flexion-
extension + forearm pronation-supination); shoulder elevation
90◦ + two elbow intermediate flexion-extension + forearm
intermediate pronation-supination. In the following section (5–
8 weeks), the asynchronous exercises are reduced to 100 per
session and the number of synchronous exercises is increased
to keep constant the total number (200/session). The control
group will receive conventional rehabilitation. The latter consists
of passive mobilization, neuromotor facilitation of shoulder, arm,
forearm, and hand muscles and adoption of postures inhibiting
pathological synergies in the first 4 weeks. In the following 4
weeks apart from a passive mobilization, neuromotor facilitation,
and posture adopting, also the following exercises will be
performed: coordination proximal-distal and of ocular-cephalic
movements; “reach to indicate”; hand preconfiguration; “reach,
touch, and manipulate”; grasping; exercises for manipulative
skills, for the adaptation of the hand to the object without
visual feedback and the sensitivity, together with biofeedback
and electrostimulation cardiovascular conditioning in the sitting
posture, conditioning in the upright posture and exercises for the
trunk control.

In case of discontinuation of the treatment, the patient will
be excluded from the study. The treatment will be performed by
healthcare operators preventing lack of adherence.

Outcomes
The effect of robot-assisted rehabilitation using ARAMIS on
the prevention of the development of poststroke pain is
the primary endpoint of the ROBOCOP study. The primary
outcome measures consist in the assessment of pain through
the VAS, including a bedside active examination and probing
of somatosensory functions to test touch, temperature, and pain
sensations (26). The development of neuropathic components of
poststroke pain will be assessed using the DN4. The secondary
endpoints include spasticity, tightly linked to pain and developed
by up to 40% of patients with hemiparetic stroke, and clinical
motor rehabilitation. Spasticity will be assessed using the
Modified Ashworth Scale (MAS) (27) and the Resistance to
Passive movement Scale (REPAS), based on the Ashworth scale
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FIGURE 1 | Integrated Robotic System for Stroke (IRSS) prototype Automatic Recovery Arm Motility Integrated System (ARAMIS) [reproduced with permission from

Pignolo et al. (25)].

(28), for major joint movements in upper and lower limbs.
Clinical motor rehabilitation will be measured according to
the Standardizing Measurement in Arm Rehabilitation Trials
[SMART] toolbox of the recommended core set of outcome
measures for rehabilitation after stroke (29, 30). The latter
includes FMA-UE, the Action Research Arm Test, and the
activities of daily living/stroke-specific outcomes of the Barthel
Index. The clinical motor rehabilitation will also be characterized
through structural and functional MRI scan. In particular,
structural MRI is intended to evaluate infarct and injury volume
(31) and functional MRI to assess the activation volume in
the stroke ipsilateral hemisphere during movement of paretic
limb, which is related to the extent of behavioral recovery (32).
The connection strength between the ipsilesional primary motor
cortex and the contralateral regions will be examined (33).

Participant Timeline
Patients will be randomly allocated to the intervention or control
group in a 1:1 allocation ratio. The enrollment will last up
to the achievement of the sample size. The most important
time points for the assessment of pain development are 3 and
6 months poststroke, with the addition of measurement time
points in the subacute phase (29, 34). In fact, differences in motor
activity of paretic limbs 24–36 h after symptoms onset, and also
at 3 and 6 months (35, 36) have been demonstrated. Therefore,
the assessment of the primary and secondary outcomes will be
conducted at the following time points: baseline measurement
at Sant’Anna Institute admission (24–72 h since stroke event)
(t0); 1 month after stroke (t1), i.e., at half of the rehabilitation
period; 2 months after stroke (t2), i.e., after the completion of
neurorehabilitation with ARAMIS in the intervention group and
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TABLE 1 | Schedule of enrollment, interventions and assessments according to

Standard Protocol Items: Recommendations for Interventional Trials (SPIRIT).

Study period

Enrolment Allocation Post-allocation

Timepoint –t1 0 t1 t2 t3 t4

Enrolment

Eligibility screen X

Informed consent X

Physical examination X

Allocation X

Interventions

ARAMIS X X

Conventional

neurorehabilitation

X X

Assessments

Primary endpoint

variables

X

Secondary endpoint

variables

X

Assessment of

activation volume

X X

FAI X X

of conventional rehabilitation in the nonintervention group; 3
months (t3) and 6 months (t4) after stroke, since the latter
are critical for rehabilitation and pain development. Routine
clinical and neurophysiological assessments will be performed
before and at the end of the treatment. Loss of tolerance to the
procedure up to discontinuation will be recorded on a specific
form. The schedule of enrollment, interventions, and assessments
is reported in Table 1.

Sample Size
The calculation of the sample power is based on literature data
(25, 36–40) to obtain 25% of improvement in the primary
endpoint using G∗Power 3.1.9.7 (41). The formula for calculating
the sample size is given, for two arms of the same size, as
it follows:

n = [(Zα/2 + Zβ )
2
× (2(σ )2)]/(µ1− µ2)2

where,
n= sample size required in each group;
Zα/2 = 1.96, according to 5% level of significance;
Zβ = 0.84 for 80% power;
σ = standard deviation;
µ1 –µ2= primary outcomemeasures significant difference=

6.34 with ARAMIS and 5.4 with conventional rehabilitation (25);
d = 0.3.
Therefore, considering a 95% confidence level and a study

power of 80% (42), the result will be n= 53 per arm.
Adjusted sample size n1 to account for potential drop-out

rates is n1 = n/(1–d), where d= 10% (43), thus n1 = 118 patients
will be recruited, 59 per each arm.

Recruitment, Allocation, Concealment, and
Blinding
The recruitment will occur at the study setting (Sant’
Anna Institute) to reach the target sample size. Patients
will be randomly allocated to in a 1:1 allocation ratio to
ARAMIS or conventional neurorehabilitation group. Different
researchers/operators will independently recruit patients,
generate the allocation sequence, and assign participants to
interventions and no member of the trial will have access to the
codes up to the end. Both males and females will be enrolled
due to differences in baseline pain perception (44) and to
sex-treatment interactions (45). Therefore, no blocking will
occur but minimization will be performed for sex-difference
in pain perception, handled to ensure that any individual who
might introduce bias is not involved (46). The codes of allocation
will be generated using Random Number selection Microsoft
Office Excel 2010 (Microsoft, Milan, Italy). Blinding of data
managers and biostatisticians after assignment to interventions
and also about the nature of the interventions will be ensured
(47). Accordingly, who will be in charge of preparing the
randomization list will be someone other than the data managers
and biostatisticians (47). The allocation will never be revealed
up to the end of the trial. Double data entry will be performed
by two independent operators for security and data quality. To
guarantee the protection of confidentiality, only the responsible
secretariat of the clinical center will collect and maintain the
personal information of patients. Not having a trial sponsor,
auditing will be independent.

Statistical Analysis
The statistical analysis plan follows the Consolidated Standards
of Reporting Trials (CONSORT) evidence-based reporting
guideline to ensure research transparency, specifically to trials
of nonpharmacologic treatments (NPTs), as rehabilitation (48).
The primary (pain) and secondary (spasticity and rehabilitation
parameters) outcome measures, collected at prespecified time
point t3 and t4 vs. t0, will be expressed as mean and standard
error and assessed for statistically significant differences using
independent t-test for data normally distributed or Mann–
Whitney U test for skewed data. Based on the CONSORT
NPT item 12b, the evaluation of the outcome measures over
time will be carried out through a linear mixed model. The
correlation between pain (VAS measure) and recovery (FMA-
UE), assessed at t0, t1, t2, t3, and t4, will be performed through
the Pearson product-moment correlation coefficient (r). In
agreement with the CONSORT NPT item 12a, the clustering
of data will be performed by blinded care providers of the
center. Statistical analysis will be performed using SPSS statistics
software (Chicago, IL, USA). Values of p< 0.05 will be considered
statistically significant.

DISCUSSION

Cerebrovascular accidents are often accompanied by motor
disability and chronic pain. Poststroke pain consists of complex
syndromes including both nociceptive musculoskeletal and
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neuropathic features (49). Due to its characteristics, poststroke
pain is often underdiagnosed and unrelieved (50). The best
management option for chronic pain consists of its prevention.
To this aim, this is the first clinical trial to study the
use of an IRSS in subacute neurorehabilitation after stroke.
In particular, ARAMIS has provided more efficacy than
conventional poststroke neurorehabilitation when applied for 7–
8 weeks in the improvement of motor function and activities
of daily living (17, 25, 51, 52). When the lesion is high after
lateral medullary infarction, known as Wallenberg’s syndrome,
or in the ventroposterior part of the thalamus, central poststroke
pain ensues (6). In the event hemiparesis occurs, the healthy
arm may offset the effect of spasticity and locomotion (52, 53).
Within this frame, ARAMIS may prevent central pain, and,
concurrently, may drive correct re-organization in hemiplegic
patients capturing the motions and the strength of the unaffected
upper limb. In fact, ARAMIS consists of two exoskeletons with
6 degrees of freedom driven by two engines and controlling
the shoulder joints to compensate for the inadequate motility
and strength of the paretic arm (51). Robot-assisted motor
rehabilitation and myoelectrical stimulation are demonstrated to
provide reduction of the upper limb impairment (38, 39, 54–56)
and pain improvement (40, 57, 58). Also, actigraphic measure
systems can predict acute phase stroke prognosis (59), supporting
the role of technological progress in stroke. Furthermore, the
use of these devices can help the familiarization of poststroke
survivors with the latter technology (60). However, a decrease in
upper limb impairment does not always correlate to practical and
daily functional improvement and this translational aspect needs
to be studied for effective neurorehabilitation (61). In fact, the
widemulticenter trial for the evaluation of robot-assisted training
for the upper limb after stroke (RATULS) has demonstrated
that robotic neurorehabilitation does not significantly improve
the upper limb function (62). Pain intensity has been positively
correlated with time since stroke and negatively with motor

function (44), supporting the need to examine the role of
robot-assisted rehabilitation in pain processing and to clear the
mechanisms necessary for effective functional gain. The latter
is a top ten priority for stroke survivors (63). Therefore, the
role of ARAMIS-assisted neurorehabilitation in the prevention
of poststroke pain occurring 3–6 months after stroke deserves
investigation. The efficacy of robot-assisted neurorehabilitation
in the prevention of chronic poststroke pain could pose
the basis for a remarkable improvement of stroke sufferers’
quality of life. Moreover, a better and deeper understanding
of robot-related motor learning is needed (55) and, although
the stage is a predictor for better rehabilitation outcomes,
IRSS neurorehabilitation, without significant differences among
the several devices existing (64), has proven promising results
also in chronic stroke survivors (65). In this already fragile
population, robot-assisted rehabilitation may also reduce the use
of analgesics known to be endowed with serious side effects.
In fact, fragile populations are often subjected to limited and
inappropriate pain treatment (66–68). The next step will consist
in investigating the effect of this neurorehabilitation procedure
on the use of analgesics, both synthetic and of natural origin,
as the essential oil of bergamot endowed with analgesic (69)
and flumazenil insensitive anxiolytic-like (70) properties and
which has been engineered allowing double-blind clinical trials
(71, 72).
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