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Abstract: Intrinsically disordered proteins and regions with their associated short linear motifs
play key roles in transcriptional regulation. The disordered MYC-interaction motif (MIM) mediates
interactions between MYC and MYB transcription factors in Arabidopsis thaliana that are critical for
constitutive and induced glucosinolate (GLS) biosynthesis. GLSs comprise a class of plant defense
compounds that evolved in the ancestor of the Brassicales order. We used a diverse set of search
strategies to discover additional occurrences of the MIM in other proteins and in other organisms
and evaluate the findings by means of structural predictions, interaction assays, and biophysical
experiments. Our search revealed numerous MIM instances spread throughout the angiosperm
lineage. Experiments verify that several of the newly discovered MIM-containing proteins interact
with MYC TFs. Only hits found within the same transcription factor family and having similar
characteristics could be validated, indicating that structural predictions and sequence similarity are
good indicators of whether the presence of a MIM mediates interaction. The experimentally validated
MIMs are found in organisms outside the Brassicales order, showing that MIM function is broader
than regulating GLS biosynthesis.

Keywords: MYB; bHLH; MYC; transcription factor; short linear motif (SLiM); intrinsically disordered
protein (IDP); protein interaction; interaction motif; plant defense metabolism; jasmonate signaling

1. Introduction

In plants, many transcription factors (TFs) function in a combinatorial manner, where
TF interactions serve to integrate internal and external cues to modulate gene expression
levels [1]. Interactions between proteins from the two most expanded plant TF families,
the MYB (v-myb avian myeloblastosis viral oncogene homolog) family and the bHLH
(basic helix-loop-helix) family, are common, and together they regulate a large variety
of biological processes [2,3]. Recently, we determined the binding site responsible for
interactions between eight Arabidopsis thaliana MYB TFs and their bHLH partners, MYC2,
MYC3, and MYC4 [4]. The binding site constitutes a short linear motif (SLiM) and coincides
with a sequence motif defining a subgroup of six MYB TFs (MYB28, MYB29, MYB76,
MYB34, MYB51, and MYB122) that require MYC-interaction for activity [4,5]. All members
of this subgroup are involved in regulating glucosinolate (GLS) biosynthesis [6,7], and have
homologs throughout the Brassicaceae [8]. Two additional MYB TFs in A. thaliana contain
the MYC-interaction motif (MIM), MYB47 and MYB95. Their biological functions are less
studied, although MYB47 was recently implicated in the regulation of seed longevity [9].
The MIM consists of the six residues [L/F]LN[K/R][V/L]A, with the core motif (residue
positions that are absolutely required) being xLNxxA. Mutations in these core residues
abolish the interaction [4].
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Plant MYB TFs contain a DNA-binding domain (DBD) composed of one (1R MYB),
two (R2R3 MYB), three (3R MYB) or four (4R MYB) MYB repeats, each comprising ~50–
55 residues that fold separately into a three-helix structure [10–12]. Most common are the
R2R3 MYB TFs, termed like this as the repeats are most similar to the second and third repeats
in vertebrate MYB TFs, which have three repeats [13]. Apart from their DBD, TFs (including
R2R3 MYB TFs) generally contain extensive intrinsically disordered regions (IDRs) [14–18]
that provide specific molecular functions modulating TF activity. For example, SLiMs within
IDRs facilitate interactions with SLiM-binding pockets in globular domains [19]. The MIM
is a SLiM located outside the DBD [4], and the short length combined with its presence in a
long disordered context increases the chance of ex nihilo evolution [20], i.e., the likelihood that
proteins from other families could evolve an analogous interaction motif.

The specialized metabolites GLSs evolved in the ancestor of Brassicales ~90 million
years ago [21,22]. They accomplish several specific functions, including defense against
microbial pathogens and animal herbivory [23–25], but also regulate root growth and devel-
opment [26–29]. Although they are constitutive defense compounds, GLSs can be induced
upon stimulation, especially through jasmonate (JA) signaling upon herbivore and pathogen
attack [6,30,31]. MYC2, MYC3, and MYC4 regulate JA-responsive genes, as JA signaling
relieves repression of MYC2, MYC3, and MYC4 [32–34]. The molecular function of the MIM
is to mediate interaction with MYC TFs and thereby link activity to JA signaling.

JA signaling has an established role in regulating plant defense and immunity [35].
In contrast to the evolutionarily young GLSs, the molecular components required for JA
biosynthesis, signaling, and perception, including homologs of MYC2, are much more
widespread in the plant lineage, being omnipresent in land plants [36,37]. Although the
eight known MIM-containing TFs from A. thaliana are all R2R3 MYB TFs, and the MYC-
interaction is essential for activating GLS biosynthesis [4], the direct role of the MIM is to
link TF activity to JA signaling through MYC-interaction. We therefore hypothesized that
MIMs could be present in proteins from other families, and in TFs that are not involved in
GLS regulation but instead regulate other JA-responsive genes.

Two central questions arise as to whether MIMs are present in non-GLS producing
organisms, and whether MIMs are present in proteins outside the R2R3 MYB TF family.
Answers to these questions will contribute to a far better understanding of how SLiM
interactions in TFs evolve and how they develop to link activity to pre-existing signaling
networks. Using bioinformatics approaches, we identified and validated MIM-containing
R2R3 MYB TFs throughout the angiosperms, including in non-GLS-containing plants.
We further identified putative MIMs in trihelix TFs, located in a protein region composi-
tionally dissimilar from the MIM-containing region of R2R3 MYB TFs. The trihelix TFs
did not interact with MYC4 in our assay, which we rationalize through sequence analysis
combined with biophysical experiments.

Together, our results show that the MIM is found in non-GLS producing organisms
spread throughout the angiosperms, implying that the MIM is involved in regulating other
biological processes besides GLS biosynthesis.

2. Results
2.1. Discovery of New MIMs

Initially, we wanted to investigate whether MIM-containing proteins exist outside the
Brassicales, as this would imply that the MIM is involved in other biological processes besides
regulation of GLS biosynthesis. We applied different search strategies and databases and
invested several types of sequence information as a query. One approach was to use the full-
length sequences of the eight AtMYB TFs with confirmed MIMs, and PHI-BLAST patterns
such as [LVFI]LN[KR][IFLV]A. Using different PHI-BLAST patterns allowed fine-tuning
the tolerance for variation at the different positions in the motif. As the full-length protein
sequence including the DBD was used as a query, this approach yielded significant hits only
in other proteins from the same family (the R2R3 MYB TF family). Yet, as a binding site that
provides a regulatory link to JA signaling, the MIM might be relevant in other protein families.



Int. J. Mol. Sci. 2021, 22, 447 3 of 18

Therefore, to circumvent this limitation, an additional approach was used, where an
alignment of the motif region only (from the eight MIM-containing AtMYB TFs) comprised
the query (Figure 1a). This way we did not limit the search to protein types similar to those
we already knew, but instead focused on the motif itself. The resulting query sequence is
short and has some degeneracy at non-core positions (only three residues in the xLNxxA
core motif were strictly required for interaction [4]). Further, not to disregard information
from the flanking regions [38], we performed a number of those searches, where the
alignment used as query included between 0 and 20 flanking residues on each side [39].
The use of iterative search tools, such as jackhmmer, that repeatedly adjusts the query
according to significant hits, further facilitated the discovery of more diverged candidates.

We initially performed taxonomy-restricted searches, excluding all sequences from
Brassicales, as the already known MIM-containing proteins from A. thaliana and their
homologs from other GLS-producing plants otherwise dominated the search results and
the readjustment of the hmm query in the iterative searches.

Outside angiosperms (flowering plants), we identified only a few significant hits. They
were sporadic and all contained repetitive units with similarities to the motif. Further,
these motif hits were present in unrelated proteins, in species where we could not find
homologs of MYC TFs. Two examples of this are (i) (UniProt IDs) A0A0L7LIE3 from
Operophtera brumata (winter moth), a putative α/β hydrolase, which had 16 hit-instances,
and (ii) I4N4U3 from the bacterium Pseudomonas sp. M47T1, an uncharacterized protein
with 6 hit-instances, showing 49% sequence identity to A0A1B4WVT0, a putative transferase.
Most likely, these were significant hits because they contained a higher number of instances
that aligned to the query but were disregarded because of the absence of MYC TFs in these
species.

Within angiosperms (still excluding Brassicales), we found numerous significant hits
to investigate further. Representative examples of our findings are shown in Figure 1 (see
Table 1 for more information on each hit). Most of the putative MIM-containing proteins
we identified were R2R3 MYB TFs. Within the Rosids, we could find MIM-containing
R2R3 MYB TFs in most, but not all, orders (e.g., not found in Myrtales). We also found few
R2R3 MYB TFs with a putative MIM in the Asterids, whereas other species with published
annotated genomes in this clade (e.g., Nicotiana benthamiana [40]), gave no hits. The failure
to identify putative MIM-containing proteins in certain organisms included in the databases
does not necessarily imply their absence in that organism, as genomic information may
be missing, genomes may be poorly annotated, or the instance simply fell below the
significance threshold. However, our findings suggest that putative MIM-containing R2R3
MYB TFs are widespread in the eudicots.

Table 1. Putative MIM-containing proteins outside the Brassicales, and AtMYB29 and AtASR3 (from Figure 1). Bold:
selected for further analysis.

# Taxonomic Order Species Protein Type UniProt/UniParc ID

1 Vitales Vitis vinifera R2R3 MYB D7SI94
2 1 Brassicales Arabidopsis thaliana R2R3 MYB Q9FLR1
3 1 Brassicales Arabidopsis thaliana Tri-helix MYB-like Q8VZ20
4 Malvales Theobroma cacao R2R3 MYB A0A061FYF1
5 Malvales Gossypium raimondii R2R3 MYB A0A0D2MLR5
6 Myrtales Eucalyptus grandis bHLH A0A059C313
7 Fagales Quercus suber R2R3 MYB UPI000CE19059 1

8 Rosales Morus notabilis R2R3 MYB W9QTW6
9 Rosales Trema orientalis R2R3 MYB A0A2P5F728
10 Cucurbitales Cucumis sativus Tri-helix MYB-like A0A0A0KDF5
11 Fabales Glycine max R2R3 MYB I1JWT0
12 Fabales Phaseolus vulgaris R2R3 MYB V7AMU5
13 Lamiales Handroanthus impetiginosus R2R3 MYB A0A2G9H705
14 Solanales Solanum pennellii Tri-helix MYB-like UPI0007346319 2

15 Ranunculales Macleaya cordata R2R3 MYB A0A200QES0
16 Poales Ananas comosus Tri-helix MYB-like UPI0009817C91 2

17 Poales Brachypodium distachyon 3R MYB I1HT97
1 Proteins from GLS-producing plant species; 2 UniParc ID.
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Figure 1. Examples of putative MYC-interaction motifs (MIMs) identified throughout the angiosperms. (a) Alignment
of MIM-containing MYB transcription factors (TFs) from A. thaliana, with numbering according to AtMYB29, and with
the MIM highlighted by a green box. (b) Phylogenetic tree showing the evolutionary relationship of orders with putative
MIM-containing proteins. The tree was built with the NCBI Taxonomy Common Tree tool (https://www.ncbi.nlm.nih.gov/
taxonomy) and is not to scale. (c) Domain organization and localization of each individual protein with a putative MIM.
Domain information was obtained from PROSITE [41]. The location of the putative motif is shown in green, and the core
motif residues (xLNxxA) in bold. Numbers (#) refer to each putative MIM-containing protein in Table 1.

https://www.ncbi.nlm.nih.gov/taxonomy
https://www.ncbi.nlm.nih.gov/taxonomy
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Basal eudicots are separated from the core eudicots by more than 100 million years
of evolution [42]. The Ranunculales order is the most basal clade in the basal eudicots,
hence the sister group to the remaining eudicots [43]. Within this order, we found a single
significant hit, in an R2R3 MYB TF of M. cordata (McR2R3MYB). Besides the R2R3 MYB
TFs, we identified hits in proteins belonging to a few other protein families. These were all
TFs, although we did not impose that limit by our search criteria.

First, in several species, we identified trihelix TFs with a putative MIM near their
C-terminal. Trihelix TFs have low sequence similarity to MYB TFs, and are usually not in-
cluded in the MYB family although their DBD bears structural resemblance [44]. While the
helices are longer in trihelix TF DBDs, they form a similar triple helix structure that interacts
with DNA in a sequence-specific manner [44]. As the searches resulting in putative MIM
hits amongst trihelix TFs had been restricted to exclude Brassicales, we used these se-
quences as queries to search for homologs in Brassicales. This resulted in the identification
of the A. thaliana trihelix TF ASR3 (UniProt ID Q8VZ20), with a putative MIM near the
C-terminus, like the trihelix TFs identified in other organisms.

Second, in Myrtales, an order that is evolutionarily rather close to the Brassicales,
we did not find putative MIM-containing R2R3 MYB TFs. However, we found a significant
hit within the bHLH DBD of a bHLH TF. In this case, we were not able to find a putative
MIM-containing homolog in A. thaliana by using the bHLH sequence to search back against
Brassicales. Members of the bHLH family have a DBD structurally dissimilar to the MYB
DBD, and bind DNA in a different manner [45]. As the confirmed MIMs are SLiMs [4]
that are accessible because of their location within IDRs, we did not further consider this
putative MIM as it was found within a conserved, highly structured domain.

Third, apart from trihelix TFs with putative MIMs, the only significant hit outside
the eudicots that we considered further was a 3R MYB TF in the Poales order. Like the
MIMs we found in R2R3 MYB TFs, the putative MIM in this 3R MYB TF is located outside
the DBD. Similar to the bHLH hit, we were not able to find Brassicales homologs of this
protein with a putative MIM.

Thus, although GLS biosynthesis is the main biological process known to be regulated
by the characterized MIM-containing proteins found in A. thaliana, we were able to locate
putative MIMs in proteins of many species that do not produce GLSs (Table 1). Further,
our approach enabled us to find a putative MIM in an additional A. thaliana protein,
belonging to a different protein family, namely the trihelix TF family.

Recently, tools dedicated to SLiM discovery have been developed, for instance, SLiM-
Search [46] and PSSMSearch [47]. They improve SLiM discovery by including attributes
such as sequence conservation of core positions versus the surroundings, structure propen-
sity and accessibility, sequence context, ontology, and known interaction data, directly
when filtering and ranking putative hits. They are so far limited to fewer target organisms,
which for Viridiplantae (phylogenetic group that contains all land plants and green algae)
means only A. thaliana and Physcomitrella patens. Our searches with these tools in A. thaliana
revealed no new hits with SLiMSearch, but numerous putative hits using PSSMSearch
(Supplemental Table S1). However, ASR3 was not detected, and neither were seven out of
the eight R2R3 MYB TFs used as a query, which are known to contain the motif and to inter-
act with MYC TFs. Of these, only MYB122 came above the disorder threshold. These tools
are, however, currently not suitable for addressing the main objective of this study, namely
whether MIM-containing proteins are present in non-GLS producing organisms, and thus
involved in other biological functions.

For the following analysis, we focused on the putative MIM-containing proteins
found outside Brassicales, and ASR3, as it has homologs with putative MIMs throughout
the angiosperms.

2.2. Putative MIMs in Different Protein Families Are Present in Dissimilar Sequence Contexts

The MIM is a SLiM [4], i.e., a short sequence constituting a binding motif within a
larger IDR. Thus, we may expect the newly discovered MIMs to be located within similar
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disordered regions. Although the core positions contribute most of the affinity and speci-
ficity of SLiM-mediated interactions [19], the flanking regions and general sequence context
might allow/disallow, or at least modulate, interaction [39]. A previous attempt to intro-
duce a functional MIM by changing a few residues in the IDR of AtMYB75 [4] indicated
that there are decisive attributes besides just the xLNxxA core motif. Therefore, we could
further hypothesize other MIM-containing regions to have similar chemical properties.
On the other hand, previous results have shown that non-core residues and certain general
properties of the motif flanking region (such as high positive charge), although conserved
amongst the proteins from A. thaliana, were not required for interaction [4]. We selected six
putative MIM-containing proteins for further analysis (named in Figure 1, bold in Table 1),
to simultaneously capture the different protein families and cover a broad evolutionary
distance. To assess chain properties, the proteins were first analyzed using several disor-
der predictors, and to visualize local compositional biases to detect disordered domains,
we used IDDomainSpotter [48]. This tool calculates the relative fraction of residues within
a sliding window, some residues yielding a positive contribution (+) and some a nega-
tive contribution (−) and hence allows comparison of structural and chemical properties
between proteins.

Three features distinguish the MIM region in the confirmed MIM proteins [4,48] as
shown here for MYB29 (Figure 2). First, the MIM coincides with local order (seen as a
dip in disorder profile) within a large IDR (the region N-terminal to the MIM has been
experimentally verified to be highly disordered and dynamic [48]). Second, the MIM region
has an overall positive net charge (+RK−DE) compared to surrounding regions. Third,
the MIM is flanked by regions with a compositional bias towards certain small, hydrophilic,
and disorder-promoting residues and few positively charged residues (+PST−RK). These fea-
tures were shared amongst all MIM regions in the newly discovered R2R3 MYB TFs (Figure 2
and Supplemental Figure S1).
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Figure 2. Disorder prediction and IDDomainSpotter profiles for putative MIM-containing proteins. Top panels show
sequence-specific disorder predictions using IUPred2 [49], DISOPRED3.1 [50], PONDR VSL2 [51,52], and ODiNPred [53].
Bottom panels show IDDomainSpotter profiles: Each curve shows the fraction of a different set of residues within sliding
windows of 15 residues [48]. Domain information was obtained from PROSITE [41]. The putative motif is shown by a green bar.

For the 3R MYB TF from Brachypodium distachyon, the MIM was also located within a
large IDR, although not associated with a local dip in disorder (Supplemental Figure S1).
For both 3R MYB and trihelix TFs, the MIM region was not characterized by the same
compositional biases (as per the IDDomainSpotter profiles) as the MIM in R2R3 MYB TFs.

Two observations on the trihelix TFs draw special attention. First, the annotation of
the trihelix domain by PROSITE does not cover the entire region suggested to be structured
by the disorder predictors. Different domain databases are not in agreement for this
class of trihelix TFs: for PROSITE [41] used in Figure 2, the DBD covers residues R38
to A104, while Pfam [54] indicates the residues L36 to N129 as belonging to the DBD.
However, only a single three-dimensional structure of this class of DBDs has yet been
determined [44], but its helices only cover parts of the alignment, leaving the conundrum
unresolved. Second, the putative MIMs in the trihelix TFs were predicted to be within a
more ordered region, although the different disorder predictors disagree, especially for
the trihelix TFs from Ananas comosus and Solanum pennellii (Figure 2 and Supplemental
Figure S1). The confirmed MIMs were predicted to be located within IDRs, and it is
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therefore possible that, similar to most SLiMs [19], accessibility and flexibility is required
for interaction, although this has yet to be confirmed by experiment.

To sum up, the discovered MIM-containing R2R3 MYB TFs share context characteris-
tics with the confirmed MIM proteins, whereas the other protein families differ. Therefore,
it is essential to validate our search by testing whether the newly identified putative MIMs
can mediate interactions with MYC TFs.

2.3. Only MIMs in R2R3 MYB TFs Mediate MYC-Interaction

We next performed interaction assays with each of the R2R3 MYB and trihelix TFs
shown in Figure 2 and Supplemental Figure S1, against MYC4 from A. thaliana (Supple-
mental Figure S2) or MYC3 and MYC4 (Figure 3, Supplemental Figure S2). Interaction was
tested using a chemically-inducible split-ubiquitin system [55], and as a negative control
we used AtMYB75, which does not have a MIM. All of the R2R3 MYB TFs tested interacted
with MYC4 (Figure 3 and Supplemental Figure S2). This shows that MIM-containing R2R3
MYB TFs are present in organisms as diverse as T. cacao, G. max and M. cordata.

Figure 3. Testing interaction between A. thaliana (At) MYC3 and MYC4 against AtMYB28, AtMYB29,
AtMYB75, AtMYB95, the MIM-containing trihelix MYB-like TF from A. thaliana (AtASR3), and MIM-
containing R2R3 MYB TF from Macleaya cordata (McMYB). Growth on SD-LW medium confirms
successful co-transformation with bait and prey construct and growth on SD-AHLW + Rapa medium
indicates that bait and prey proteins are expressed and present in the same cellular compartment. The SD-
AHLW-Rapa medium is selective for physical interaction of bait and prey protein. Rapa, rapamycin.

For physiological relevance, MIM-containing proteins must encounter interaction
partners in vivo. As the molecular constituents of JA signaling, including MYC2 homologs,
are conserved in land plants [36,37], the species where we identified putative MIMs should
also contain MYC TFs. Therefore, to extend our analysis to a physiologically relevant
MYC TF, we performed a BLAST search using AtMYC2, AtMYC3 or AtMYC4 protein
sequence as query against M. cordata protein sequences. All three queries result in the same
top candidate: (UniProt ID) A0A200PXR5 (>50% sequence identity to each AtMYC TF),
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here termed McMYC. We tested interaction between McMYC and McR2R3MYB and four
different MYB TFs from A. thaliana. In this split-ubiquitin system MYC2 is auto-activating as
a bait, enabling growth on selection media even when the prey plasmid is empty. McMYC,
like AtMYC2, resulted in auto-activation (Supplemental Figure S3), rendering us unable to
draw any conclusions on its possible interactions.

The trihelix TFs we found, although containing the core motif residues, did not
interact in our split ubiquitin assays (Figure 3, Supplemental Figure S2), possibly because
of different structural context. The growth on SD-AHLW + Rapa indicates that the fusion
proteins are capable of interacting, i.e., that they are expressed, correctly folded, and located
in the same subcellular compartment. Thus, our next question pertained to the structural
propensities of the motif region.

2.4. Similar Pattern but Different Amplitude of Helical Propensity in MYB29-MIM and
ASR3-MIM Peptides

As the trihelix TFs we discovered through our MIM search do not interact with MYC4
although the core positions are identical to those of the R2R3 MYB TFs, we asked whether a
difference in secondary structure between the MIMs in MYB29 and ASR3 could explain this
discrepancy. To answer this, synthetic peptides covering the MIM with flanking residues
(16 residues in total) for MYB29 and ASR3 (Figure 4g) were subjected to structural analysis.
Exploiting the natural abundance of 13C and 15N, we assigned the Cα chemical shifts of
MYB29-MIM and ASR3-MIM from two-dimensional nuclear magnetic resonance (NMR)
spectra (Figure 4a,c and Supplemental Table S2) and calculated the secondary chemical
shifts (SCS) based on sequence-corrected random coil chemical shifts [56,57], reporting
on structure propensities (Figure 4b,d). Both peptides formed transient helical structures
(SCS Cα > 0.1), with a slight dip around residues L190-N191 for MYB29 and L300-N301
for ASR3 (the LN residues in the core motif xLNxxA). ASR3-MIM was substantially more
helical (SCS Cα values reaching >0.75; ~25% helicity [58,59]) than MYB29-MIM (highest
SCS Cα value at 0.36; ~12%). Further, for ASR3-MIM, helical propensity was observed
throughout the entire length of the peptide, whereas for MYB29-MIM it was observed only
for residues S185-A195.

Figure 4. Structure elucidation of MYB29-MIM and ASR3-MIM. 13C-HSQC spectra of (a) MYB29-
MIM and (c) ASR3-MIM with assignments. SCS of (b) MYB29-MIM and (d) ASR3-MIM. (e) Far-UV
CD spectra and (f) HT voltage of MYB29-MIM and ASR3-MIM. (g) Sequence alignment of MYB29-
MIM and ASR3-MIM (core motif residues in bold).

Far-UV circular dichroism (CD) spectra revealed that both peptides exhibited a pro-
nounced negative band at 200 nm originating from disordered structures, but also some
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negative ellipticity around 220 nm, indicative of residual helicity. The magnitude of these
features supports a larger helix population in ASR3-MIM compared to MYB29-MIM.

Together, our results suggest that, although the core positions are conserved, and the
peptides share a transient helical nature, the difference in the magnitude of their helicity
and/or other dissimilar properties of their sequence context result in different interaction
profiles. To further investigate the differences between this region in trihelix and R2R3
MYB TFs, we next turned to investigate their broader evolutionary conservation.

2.5. Conservation of MIM and Its Context in R2R3 MYB and Trihelix TFs

SLiMs are often distinguished by relatively high conservation within otherwise rapidly
evolving protein regions [20]. Low conservation is considered typical of IDRs, although
that is not always the case [60–62]. Observation of the evolutionary conservation of SLiMs
and flanking regions thus sheds light on the probable importance of different sequence
characteristics, such as e.g., compositional biases or structural propensities.

To this end, we collected the sequences of R2R3 MYB and trihelix TF homologs that
were most similar to the MIM-containing proteins, originating from species spanning the
different orders of the angiosperms, also shown in Figure 1, aligned them, and colored the
alignment according to conservation (Figure 5).

The results reveal a pronounced difference between the motif regions of the trihelix
and R2R3 MYB TFs. The flanking regions surrounding the motifs are much more conserved
in the trihelix TFs than in the R2R3 MYB TFs. In fact, the putative motif in the trihelix TFs
does not stand out as more conserved than the region it is contained within, as expected
for a SLiM, and as it does for the R2R3 MYB TFs.

The difference in (i) secondary structure propensity of ASR3-MIM and MYB29-MIM
peptides (Figure 4), (ii) sequence characteristics of the MIM-region (Figure 2), (iii) conser-
vation of the MIM versus MIM region (Figure 5), and (iv) ability to interact with MYC3
and MYC4 (Figure 3), indicate that the trihelix TFs were false-positives in our search for
MIM-containing proteins. These differences highlight both the importance of validating
in silico findings and the power of sequence-based predictions and analyses of intrinsic
disorder, compositional biases, and evolutionary conservation.
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Figure 5. Alignments of (a) trihelix TFs and (b) R2R3 MYB TFs colored according to conservation, performed using
BoxShade (https://embnet.vital-it.ch/software/BOX_form.html). For each position where a consensus (>50%) could be
defined, residues identical to this consensus were colored black, while those similar were colored gray. A green border
and box highlight the putative motifs. Vv: Vitis vinifera, At: A. thaliana, Tc: Theobroma cacao, Coc: Corchorus capsularis, Gr:
Gossypium raimondii, Eug: Eucalyptus grandis, Jr: Juglans regia, Qs: Quercus suber, To: Trema orientale, Mn: Morus notabilis,
Cs: Cucumis sativus, Pv: Phaseolus vulgaris, Gm: Glycine max, Erg: Erythranthe guttata, Sp: Solanum pennellii, Cac: Capsicum
chinense, Mc: Macleaya cordata, Ta: Triticum aestivum, Zm: Zea mays, Bd: Brachypodium distachyon, Ac: Ananas comosus, Hv:
Hordeum vulgare, Hi: Handroanthus impetiginosus.

3. Discussion
3.1. SLiM-Hunting Challenges

SLiMs are defined as short (3–10 residue) segments in IDRs that mediate interac-
tions with SLiM-binding pockets [19]. SLiM-binding pockets often have several or many
interaction partners that constrain the shape and characteristics of the pocket, and are
consequently conserved over large evolutionary distances [20]. That only three or four
residues define the SLiM makes them challenging to identify [46], as sequence databases of
a certain size would by chance contain segments that match and give rise to false positives.
Statistical descriptors, such as the E value, help to assess the risk of such false positives and
to filter out irrelevant results. However, if the assumptions leading to the query are correct,
e.g., only very few positions and sequence characteristics are required for interaction,
this will likewise lead to filtering out relevant hits as false negatives. Still, predictions alone
cannot be used for SLiM identification.

https://embnet.vital-it.ch/software/BOX_form.html
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In the present work, we addressed these challenges by performing many searches
with different information in the query. Further, iterative searches concede, and to some
degree, make up for the possibility that different sequence properties may have arisen
along evolutionary paths leading to other MIM-containing proteins than those known in
advance. Finally, we proceeded to validate our hits by experiment.

Experimental validation is especially important for hits that either differ in the proper-
ties expected to allow interaction, such as accessibility or sequence composition, or when
the biological relevance is not obvious—for example, when the hit is present in a species
lacking the expected binding partner candidate or where the inferred biological function
is absent. In this work, we identified hits that could belong to both of those cases: trihe-
lix TFs have their putative MIM within a different sequence context, and all of the new
MIM-containing MYB TFs identified are present in species lacking GLSs.

The trihelix TFs we identified turned out to be false positives, highlighting the im-
portance of local structure and sequence composition in the MIM region, and thus the
power of sequence predictions when comparing proteins. When the sequence and structure
predictions of putative MIMs matched those of confirmed MIMs, we were able to validate
MYC interactions experimentally (Figure 3 and Supplemental Figure S2). That the MIM
is functional in several R2R3 MYB TFs outside Brassicales indicates that the biological
function of the MIM is broader than regulation of GLS biosynthesis.

Most of the hits found using PSSMSearch (Supplemental Table S1)—like the trihelix
TFs—have a different sequence composition in the motif flanking region (e.g., not an
overrepresentation of small hydrophilic or positive residues), and residues with different
properties than the experimentally validated MIMs at non-core positions, e.g., negatively
charged, bulky, structure-disruptive (Pro), or aromatic. Although the core residues (those
that by themselves disrupt interaction upon mutation), and a few other hypothesis-driven
sequence characteristics (e.g., positive charges) have been investigated [4], we are still
unaware of residues that are disallowed at certain positions. This information would
facilitate MIM discovery especially when using tools such as PSSMSearch. Still, these hits
were filtered by disorder (the default disorder cut-off that also filtered out ASR3 and seven
out of eight known MIM-containing R2R3 MYB TFs in A. thaliana). Whether any of the hits
found using PSSMSearch (Supplemental Table S1) can interact with MYC TFs is not known.

Although not indicated as a domain by either PROSITE and Pfam, the C-terminal
predicted-to-be-ordered region in ASR3 and the other identified trihelix TFs, is conserved
among trihelix TFs from the SH4 clade (which ASR3 belongs to) [63]. The structure has not
been determined experimentally, but it has been proposed to form a coiled-coil responsible
for homodimerization. ASR3 does homodimerize, a process that was blocked when residues
K255 to Q288 were deleted [64] (the putative MIM covers 299VLNKLA304). That the entire
region is conserved (Figure 5) and not involved in MYC interaction (Figure 3) suggests
that the presence of many instances matching the core motif was not because of selection
for MYC interaction, but instead because of other evolutionary constraints, possibly of
structural origin.

3.2. Biological Function of MIM-Containing R2R3 MYB TFs Not Involved in GLS Regulation

We identified and validated several MIM-containing TFs from species that do not
produce GLSs (Figure 1 and Table 1). Furthermore, two additional R2R3 MYB TFs from
A. thaliana, MYB95 and MYB47, contain a MIM. The MIMs present in TFs of non-GLS
producing plants (and MYB47 and MYB95) may be involved in regulating a more ancestral
biological process. Since JA has an established role in defense [35], and the MIM offers
a direct regulatory connection to JA signaling, this could, for example, be biosynthesis
of other defense compounds. However, JA also plays roles in regulation of e.g., abiotic
stress responses [65] and plant development, including reproductive organs [66]. MYB47 is
involved in seed longevity [9]. Whether interactions between MYB47 and MYC TFs are
involved in coordinating JA signaling into the regulation of seed longevity is unknown.
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MYC2 has been suggested to be a hub that interacts with countless other proteins to
fine-tune most JA responses [67]. None of these already known interaction partners were
identified by our search for new MIM instances, suggesting that they use other binding
sites to interact with MYC2.

3.3. Evolutionary History of the MIM

The short length of SLiMs increases their chances of evolving convergently, as they
may arise from only a few base substitutions within an IDR. Convergent evolutionary
events challenge the establishment of evolutionary relationships. We identified putative
MIMs in R2R3 MYB TFs of several species spread throughout the eudicot lineage (Figure 1).
Furthermore, through experiment, we validated that out of three tested newly discovered
MIM-containing R2R3 MYB TFs, all interacted with AtMYC4 (Figure 3). Confirmed MIM-
containing R2R3 MYB TFs thus belong to species as diverse as A. thaliana, T. cacao, G. max,
and M. cordata. If all the R2R3 MYB TFs we found (Figure 1 and Table 1) share evolutionary
origin, this would suggest that the MIM evolved before the split between basal and core
eudicots, which is over 100 million years ago [42]. An important question is therefore why
there are many species within the eudicots where we failed to identify MIM-containing
proteins, even though we explicitly searched in several model organisms (for instance,
Populus trichocarpa, Nicotiana benthamiana, and Solanum lycopersicum). A combination of the
following factors could explain this apparent discrepancy. (1) For many species, high quality
annotated genomes are unavailable. Thus, they may still be present but remain to be
annotated. (2) Our analysis may not have been exhaustive due to a too restrictive SLiM
definition. (3) The SLiM may in some species have diverged at core SLiM positions, making
them silent to our searches. (4) Some species could have lost putative MIMs or MIM-
containing proteins. (5) The numerous instances of MIM-containing proteins could reflect
a high possibility of convergence.

Several proteins confirmed to interact with MYC TFs have more than one putative
MIM. These include AtMYB34 (148SGSARLLNRVASKYAV163 and 192SPTSTLLNKMAATS-
VL207) and McR2R3MYB (222SSSARLLNKIATQAAT237 and 262LSSAQLLNKMATQPAA277).
Further, the R2R3 MYB TFs identified in Rosales each contain three putative MIMs (Figure 1).
Whether just one or more MIMs are functional remains to be experimentally evaluated,
but if more are functional this could further support that MIMs may evolve convergently,
and possibly in some cases appear in multiples to tune MYB-affinity [68,69].

If by chance a motif evolves ex nihilo, which enables a new, beneficial interaction,
the interaction may initially have binding characteristics (such as affinity and specificity)
that are far from optimal [19]. Subsequent mutations in the core motif and in surrounding
residues then fine-tune the interaction. We most frequently identified MIMs in R2R3
MYB TFs, which could suggest that these TFs have properties that facilitate the evolution
of a MIM, such as specific protein segments where it can readily evolve. Alternatively,
these TFs regulate pathways where the connection to JA signaling is beneficial. Further
work is needed to determine whether the many MIM instances in R2R3 MYB TFs are the
result of convergent evolution or a shared evolutionary origin.

3.4. Evolution of Regulation in Novel Biological Processes

Since the MIM defines a subgroup of MYB TFs that are all involved in GLS regulation in A.
thaliana, and they have homologs throughout Brassicaceae, it seems that once GLS biosynthesis
evolved, early species in this taxon or their ancestor implemented the MIM to regulate GLS
biosynthesis. As JA signaling is elevated by e.g., wounding and herbivore feeding [70],
this allowed induction by relevant environmental stimuli to control the biosynthesis of this
novel defense compound. JA signaling is much older than MIMs [36,37], and other MYB TFs
bypass MYC-interaction through direct interactions with JAZ proteins [71]. Thus, when first
evolved, the MIM was likely employed as a new way to connect to JA signaling. Further
study of the evolution of protein interactions such as these will reveal how organisms
employ already existing interaction motifs to regulate newly evolved biological processes.
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Ex nihilo evolution of SLiMs allows adding molecular function to previously non-
functional regions of proteins [20], providing a resource for evolutionary plasticity through
new regulatory connections. Disorder can be a driver of innovation and divergence in
protein function, and IDRs are capable of rapidly rewiring their interaction networks,
compared to structured protein domains [72]. R2R3 MYB TFs have extensive IDRs [14],
like TFs in general [15–18]. Thus, the ability of SLiMs to evolve convergently may have
been key for the development and expansion of combinatorial control of gene expression
as observed through cross-family TF interactions in plants [1]. Exuberated combinatorial
control of gene expression is essential for plants to conduct coordinated physiological
responses depending on complex environmental conditions.

4. Materials and Methods
4.1. Bioinformatics

Several tools were applied to search for MIM-containing proteins, including PHI-
BLAST (https://blast.ncbi.nlm.nih.gov/Blast.cgi) and jackhmmer (https://www.ebi.ac.
uk/Tools/hmmer/). The searches were performed against several different databases (non-
redundant protein sequences (nr), Reference Proteomes, Ensembl, and Ensembl Genomes),
to cover as many organisms as possible (the nr database includes all non-redundant
CDS translations of GenBank along with all RefSeq, UniProtKB/Swiss-Prot, PDB and
PRF proteins [73]).

Disorder prediction was performed using the following webservers: IUPred2 [49],
DISOPRED3.1 [50], PONDR VSL2 [51,52], and ODiNPred [53]. IDDomainSpotter [48] was
used for calculating local compositional biases.

4.2. Cloning

Coding sequences with SfiI overhangs were ordered as synthetic gene fragments from
Twist Bioscience (San Francisco, CA, USA), cloned into the pFRB (prey) or pFKBP12 (bait)
vector [55] by restriction digest and ligation, and verified by Sanger sequencing (Eurofins
Genomics, Ebersberg, Germany).

4.3. Split-Ubiquitin Assays

The NMY51 TOR1-1 ∆fpr1 yeast strain [55] was transformed according to DUAL-
hunter™ instructions (DualsystemsBiotech, Schlieren, Switzerland). Overnight cultures
(25 mL) in 2xYPAD were diluted to OD600 = 0.2 in 500 mL, incubated at 30 ◦C for 4–6 h with
shaking 200 rpm, and sedimented at 700 g for 5 min. The yeast cells were washed in 300 mL
MQ water, then 100 mL 0.1 M LiOAc, resuspended in 15 mL 0.1 M LiOAc with 15% (v/v)
glycerol, aliquoted and stored at −80 ◦C. Double transformation was performed by thaw-
ing the cells on ice (50 µL per transformation), mixing with transformation mix (240 µL
50% (v/v) PEG-3350, 35 µL 1 M LiOAc and 25 µL 2 mg/mL ssDNA per transformation)
and 200 ng each of the bait and prey plasmids, and transferred to a 42 ◦C water bath for
45 min. The cells were then chilled on ice, sedimented at 3000× g for 1 min, resuspended
in sterile water and plated on SC-LW plates.

Three individual colonies of each bait/prey combination were inoculated in liquid SD-
LW media and grown overnight at 30 ◦C with shaking 200 rpm. The cultures were adjusted
to OD600 = 0.05 and spotted on plates (SD-LW, SD-AHLW and SD-AHLW with 10 µg/mL
Rapamycin) in 10-fold dilution series (OD600 = 0.05, OD600 = 0.005, OD600 = 0.0005,
and OD600 = 0.00005). The plates were examined and pictures taken after 2 or 3 days
of growth at 30 ◦C.

4.4. CD and NMR Spectroscopy

Amidated and acetylated peptides MYB29-MIM (SSTSKLLNKVAARASS) and ASR3-
MIM (DSLVAVLNKLADAVAK) were synthesized by TAG Copenhagen A/S (Copen-
hagen, Denmark).

https://blast.ncbi.nlm.nih.gov/Blast.cgi
https://www.ebi.ac.uk/Tools/hmmer/
https://www.ebi.ac.uk/Tools/hmmer/
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For far-UV CD spectroscopy, the peptides were dissolved in 10 mM sodium phosphate
pH 7.0 and centrifuged at 15,000× g for 20 min. The peptide concentration was estimated
from absorbance at 214 nm [74] and the peptides were diluted to 60 µM with 10 mM
sodium phosphate pH 7.0, and pH corrected to 7.0. Far-UV CD spectra were recorded
from 260 nm to 190 nm at 20 ◦C on a Jasco J-815 CD spectropolarimeter with 2 s D.I.T.,
1 nm bandwidth, and 0.1 nm data pitch at 10 nm/min. 20 scans were accumulated. Buffer
spectra were recorded with identical settings and subtracted before analysis.

For NMR spectroscopy, ASR3-MIM was dissolved in 50 mM sodium phosphate
pH 7.0. MYB29-MIM was dissolved in a small amount of 25% (v/v) acetic acid, before
being diluted with 50 mM sodium phosphate, pH 7.0. The 1D 1H NMR spectrum of this
sample was identical to that of a similar sample of lower concentration MYB29-MIM that
failed to dissolve completely in 50 mM sodium phosphate pH 7.0. All NMR samples were
recorded in 600 µL total volume, supplemented with 5% (v/v) D2O, 125 µM 2,2-Dimethyl-2-
silapentane-5-sulfonate (DSS) and 0.02% (w/v) NaN3, and adjusted to pH 7.0. Final peptide
concentrations were approximately 1.8 mM for MYB29-MIM and 0.9 mM for ASR3-MIM,
as ASR3-MIM self-interacted at high concentrations. 1H-, 1H-1H TOCSY-, 1H-1H ROESY-,
13C-1H HSQC- and 15N-1H HSQC- spectra were recorded at 5 ◦C on a Bruker 800 MHz
spectrometer. For MYB29-MIM, the 1H-1H TOCSY- and 13C-1H HSQC- spectra were also
recorded at 25 ◦C to reveal the overlap between the lysine and arginine residues. Topspin
(Bruker, Billerica, MA, USA) was used for recording, transforming and referencing the
spectra. 1H chemical shifts were referenced directly to DSS at 0.00 ppm, and heteronuclei
referenced indirectly by relative gyromagnetic ratios. CcpNmr analysis software [75] was
used for manually assigning the spectra. Sequence-corrected random coil Cα shifts were
calculated with correction for temperature and pH [56,57].

Supplementary Materials: Supplementary Materials can be found at https://www.mdpi.com/1422
-0067/22/1/447/s1.
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