

Review

2019; 10(6): 1417-1433. doi: 10.7150/jca.28406

Genetic Polymorphisms of DNA Repair Pathways in Sporadic Colorectal Carcinogenesis

Jingwei Liu, Bowen Zheng, Ying Li, Yuan Yuan $^{\bowtie}$, Chengzhong Xing $^{\bowtie}$

Tumor Etiology and Screening Department of Cancer Institute and General Surgery, the First Hospital of China Medical University, and Key Laboratory of Cancer Etiology and Prevention (China Medical University), Liaoning Provincial Education Department, Shenyang 110001, China

Corresponding authors: Prof. Chengzhong Xing, Tumor Etiology and Screening Department of Cancer Institute and General Surgery, the First Affiliated Hospital of China Medical University, 155# North Nanjing Street, Heping District, Shenyang City, 110001, Liaoning Province, China. E-mail: xcz1966@126.com and Prof. Yuan Yuan, Tumor Etiology and Screening Department of Cancer Institute and General Surgery, the First Affiliated Hospital of China Medical University, 155# North Nanjing Street, Heping District, Shenyang City, 110001, Liaoning Province, China. E-mail: xcz1966@126.com University, 155# North Nanjing Street, Heping District, Shenyang City, 110001, Liaoning Province, China. E-mail: xcz1966@126.com University, 155# North Nanjing Street, Heping District, Shenyang City, 110001, Liaoning Province, China. E-mail: xcz1966@126.com University, 155# North Nanjing Street, Heping District, Shenyang City, 110001, Liaoning Province, China. E-mail: xcz1966@126.com University, 155# North Nanjing Street, Heping District, Shenyang City, 110001, Liaoning Province, China. E-mail: xcz1966@126.com University, 155# North Nanjing Street, Heping District, Shenyang City, 110001, Liaoning Province, China. E-mail: yuanyuan@cmu.edu.cn

© Ivyspring International Publisher. This is an open access article distributed under the terms of the Creative Commons Attribution (CC BY-NC) license (https://creativecommons.org/licenses/by-nc/4.0/). See http://ivyspring.com/terms for full terms and conditions.

Received: 2018.07.09; Accepted: 2019.01.12; Published: 2019.02.23

Abstract

DNA repair systems play a critical role in maintaining the integrity and stability of the genome, which mainly include base excision repair (BER), nucleotide excision repair (NER), mismatch repair (MMR) and double-strand break repair (DSBR). The polymorphisms in different DNA repair genes that are mainly represented by single-nucleotide polymorphisms (SNPs) can potentially modulate the individual DNA repair capacity and therefore exert an impact on individual genetic susceptibility to cancer. Sporadic colorectal cancer arises from the colorectum without known contribution from germline causes or significant family history of cancer or inflammatory bowel disease. In recent years, emerging studies have investigated the association between polymorphisms of DNA repair system genes and sporadic CRC. Here, we review recent insights into the polymorphisms of DNA repair pathway genes, not only individual gene polymorphism but also gene-gene and gene-environment interactions, in sporadic colorectal carcinogenesis.

Key words: DNA repair, polymorphism, colorectal cancer, carcinogenesis

Introduction

DNA repair is an orchestrated system of defenses evolved to protect the genomic integrity and involved in the process preventing carcinogenesis. DNA repair systems play a critical role in maintaining the integrity and stability of the genome, which mainly include base excision repair (BER), nucleotide excision repair (NER), mismatch repair (MMR) and double-strand break repair (DSBR)[1]. Interindividual differences in DNA repair capacities are important determinants of susceptibility to cancer. Cellular DNA is constantly under damage from endogenous and exogenous stimuli, leading to a dynamic cellular balance between damage and repair[2]. Defects in human DNA repair system would increase the instability of genome, and unrepaired DNA damage may thereby enhance genetic susceptibility to cancer and give rise to carcinogenesis. The polymorphisms in different DNA repair genes that are mainly

represented by single-nucleotide polymorphisms (SNPs) can potentially modulate the individual DNA repair capacity and therefore exert an impact on individual genetic susceptibility to cancer.

Colorectal cancer (CRC) is the third most common cancer in men and the second in women worldwide[3]. Among them, Sporadic colorectal cancer is the overwhelming majority, which arises from the colorectum without known contribution from germline causes or significant family history of cancer or inflammatory bowel disease[4]. In recent years, emerging studies have investigated the association between polymorphisms of DNA repair system genes and sporadic CRC. Here, we review recent insights into the polymorphisms of DNA repair pathway genes in sporadic colorectal carcinogenesis by searching different combinations of "DNA repair", "polymorphism/variant" and "colorectal cancer/ colon cancer/rectal cancer" from Pubmed and web of science.

BER pathway gene polymorphisms and sporadic CRC susceptibility

Base excision repair (BER) corrects small base errors which do not significantly alter the DNA helix structure. These damages mainly arise from oxidation, deamination and alkylation[5]. Upon DNA base damage, BER is initiated and four core steps are involved in this process: (1) damaged DNA base removal; (2) incision of the subsequent abasic site; (3) DNA ends processing; (4) ligation of the remaining nick in the DNA backbone[6]. From the beginning of the third step, BER diverges into two sub-pathways of short-patch(only one defective base) and long-patch (more than one defective base) according to the number of defective bases, and each sub-pathway requires unique functional proteins[7]. OGG1 and MYH are involved in the first step of BER while APE1 and PARP1 participate in the incision of abasic site[8, 9]. Short-patch sub-pathway contains pol^β, LIG3 and XRCC1 while FEN1, PCNA and LIG1 contribute to the long-patch sub-pathway[10].

Recognition related BER polymorphisms

OGG1

The *OGG1* gene located at chromosome 3p26.2, consisting of seven exons and encodes a glycosylase including 345 amino acids. OGG1 protein repairs 8-hydroxyguanine (8-oxoG), a frequently mutagenic lesion among base modification[11].

As the most common OGG1 polymorphism, the rs1052133 polymorphism results in an amino acid substitution from serine to cysteine in codon 326 at exon 7 [12]. The GG genotype of rs1052133 polymorphism was first linked to increased CRC risk by Moreno, V. et al.'s study in Spanish population[13]. Subsequently, Canbay, E. et al. revealed in Turkish people that G allele was associated with higher risk of CRC compared with C allele[12]. And CG genotype was found to increase susceptibility to CRC according to Przybylowska, K. et al. in Polish population[14]. However, several investigations did not demonstrate similar significance[15-23]. Additionally, one research in Taiwanese found that the CG genotype of rs1052133 polymorphism was related with increased CRC risk but no significant association was demonstrated for 11657A/G polymorphism[24]. It is worth noting that significant interaction was observed between rs1052133 polymorphism and smoking: smokers with variant homozygous GG genotype showed an increased risk of CRC[25].

MYH

MYH, also known as *MUTYH,* is mapped to chromosome 1p34.1 and encodes a glycosylase. This glycosylase initiates the BER pathway by catalyzing the removal of adenine bases of DNA which is inappropriately paired with guanine, cytosine, or 8-oxo-7,8-dihydroguanine[6].

Altogether three studies detected the role of MYH polymorphisms in colorectal carcinogenesis. Tao, H. et al. investigated four MYH SNPs of IVS1+ 11C>T(rs2275602), IVS6+35G>A(rs3219487), IVS10-2 A>G and 972G>C(rs3219489) for an association with altered CRC risk in Japanese [26]. They suggested that (CT+TT) genotype carriers of rs2275602 polymorphism demonstrated increased risk of CRC compared with individuals carrying CC genotype, while no significant relation was identified in the other three polymorphisms. Kasahara, M. et al. found in Japanese that dominant genetic model of rs3219489 polymorphism was associated with increased CRC risk[20]. Similar significant association was subsequently detected by Przybylowska, K. et al. in a research based on Polish population[14].

Incision related BER polymorphisms

APE I

APE1 consists of five exons and four introns spanning 2.21 kb on chromosome 14q11.2 and encodes a protein of 317 amino acids. APE1 deletes abasic sites formed by OGG1 as well as MUTYH and assembles DNA polymerase β and DNA ligase III in BER[27].

Zhang, S. H. et al. found significant interaction of rs1760944 polymorphism with BMI: a protective effect of the T/G genotype was revealed on the development of CRC among subjects with a BMI < 25 kg/m^2 , although no significant association was detected between this polymorphism and CRC risk[15]. For APE1 rs2307486 polymorphism in exon 3, carriers of AG genotype demonstrated increased risk of CRC compared with GG genotype in Polish[28]. In addition, several investigations have reported significant association between APE1 rs1130409 G/T polymorphism and altered risk of CRC: four studies found that G allele was the risk allele[12, 15, 20, 29] while Jelonek, K. suggested that T allele significantly increased CRC risk in Polish population[30]. Another study indicated that GG genotype carriers of rs1130409 polymorphism demonstrated significantly lower APE1 mRNA expression than TT genotype carriers, which might be an evidence for the risk role of G allele[31]. Two teams found on significant relation of rs1130409 polymorphism with CRC risk in Chinese[32] and Czech[25], respectively. Ching-Y. et

al. studied two *APE1* polymorphisms (Asp148Glu and T-656G) in Taiwanese but no significant result was found[24].

PARP I

PARP1 gene is mapped to chromosome 1q41q42, encoding a chromatin-associated poly (ADPribosyl) transferase which can detect single-strand breaks and contribute to BER through its interaction with the XRCC1[33].

One study in Singapore Chinese revealed a positive association between the *PARP1* codon 940 Lys/Arg genotype and CRC risk[22]. However, no significant relation was found between Val762Ala polymorphism and CRC risk in this study. Another study by Li, Y. et al. suggested that AlaAla genotype of Val762Ala polymorphism significantly increased CRC risk in both homozygous and recessive model in Chinese [32]. For rs8679 polymorphism in 3'UTR region, Alhadheq, A. M. et al. showed no significant association between the polymorphism and risk of CRC in Saudis population[34].

End processing related BER polymorphisms

POLB

POLB (DNA polymerase beta) gene is located at chromosome 8p11.2, which has 16 exons and 15 introns. Pol β is the major DNA polymerase implicated in the initiation of both short-patch and long-patch BER[35].

Only one *POLB* SNP, rs3136797 (P242R) polymorphism, has been reported. Moreno, V. et al. investigated 28 SNPs of 15 DNA repair genes including *POLB* and indicated that *POLB* P242R polymorphism was significantly associated with a reduced risk of CRC[13]. However, the minor allele is very rare and only a few heterozygous individuals were observed, which still required future investigations to confirm.

FEN I

FEN1 (flap structure-specific endonuclease 1), mapped to chromosome 11q12, is essential in efficient 5' flap removal during long-patch base excision repair and the maturation of Okazaki fragments in DNA replication[36].

Until now, only one study by Liu L. et al. detected -69G>A and 4150G>T polymorphisms of *FEN1* in cancers of digestive tract including hepatocellular carcinoma, esophageal cancer, gastric cancer and colorectal cancer (126 cases) in Chinese population[37]. However, the results suggested no significant relation of these two variants with CRC risk.

Ligation related BER polymorphisms

XRCCI

XRCC1 gene, located at chromosome 19q13.2, has 17 exons and 16 introns. The protein encoded by this gene works as a scaffolding protein and interacts with PARP1, OGG1 and APE1 to facilitate the processes of BER[15].

A number of studies have suggested that rs1799782 C/T in exon 6 of XRCC1 gene could increase CRC risk: Nissar, S. et al.[38] and Li, Y. et al.[32] found CT genotype was related with increased CRC risk in Kashmiri and Chinese population, respectively; The TT genotype was also found to increase CRC risk by two studies[38, 39]. In addition, rs1799782 polymorphism demonstrated significant interaction with smoking: (CT+TT) genotype smokers had 1.6 folds increased risk of CRC[22]. For XRCC1 IVS2-216G>A polymorphism, only one research by Berndt, S. I. et al. revealed that AA genotype was the protective genotype[29]. Although four studies have investigated XRCC1 rs25489 A/G polymorphism of exon 9 in Japanese[40], American[18], Norwegian[41] and Korean[42], no significant association was indicated. In addition, significant interaction was observed between GG genotype of rs25489 polymorphism and alcohol drinking to increase the risk of Another most frequently studied CRC [40]. polymorphism was 25487 A/G, which is located at exon 10 and changes amino acid from Arg to Gln. Many studies have found significant relation between this polymorphism and increased CRC risk in AG vs. GG model[42-45] and AA vs. GG model[14, 30, 40, 44-46]. But other two studies observed that AG genotype[47] and AA genotype[48] of rs25487 polymorphism can decrease the risk of CRC. Some other researches failed to find significant relation between rs25487 and CRC risk in multiple population[15, 18-20, 22, 25, 32, 41, 49-56]. It is worth noting that three studies have found significant interactions rs25487 polymorphism of with smoking[15] and drinking[46, 54]: A allele carriers of rs25487 showed interaction with alcohol intake to decrease risk of CRC but AG genotype of rs25487 interacts with smoking to increase the CRC risk.

NER pathway gene polymorphisms and sporadic CRC susceptibility

As an essential and versatile system, NER monitors and repairs several types of DNA damage which involves UV-induced cyclobutane pyrimidine dimers, DNA crosslinks and bulky adducts[57]. Transcription coupled NER (TC-NER) and global genome NER (GG-NER) are two NER sub-pathways while the only difference between them is the way of DNA damage recognition[58]. NER consists of four steps: damage recognition, damage demarcation and unwinding, damage incision and new strand ligation. Each step requires indispensable functional proteins, and over 30 factors participate in this precise process[59]. XPA and XPC participate in the first step of NER while XPD together with RPA2 and GTF2H1 play an important role in the damage demarcation and unwinding. Damage incision mainly involves three core proteins of ERCC1, XPF and XPG[60].

DNA damage recognition related NER polymorphisms

XPA

XPA, located at 9q22.33, contains 10 exons and encodes a zinc finger protein which participates in DNA damage recognition of NER. Interacting with DNA and a number of NER proteins, XPA assembles the NER incision complex to the domain where DNA damage occurs[61].

Table	1. Significant	t association	of BER	pathway	gene	oolymor	phisms	with s	sporadic	CRC s	uscep	otibility	1.

Variables	Location	Author	Year	Population	Case	Control	Genotypes	OR(95%CI)	Interaction
XRCC1	19q13.2			•				· · · ·	
rs1799782	Exon 6	Dai, Q.	2015	Chinese	438	438	CT vs. CC	1.19(0.90-1.57)	N.A.
							TT vs. CC	1.43(1.20-2.24)	N.A.
		Nissar, S.	2015	Kashmiri	100	100	CT vs. CC	2.01(1.03-3.94)	N.A.
							TT vs. CC	5.2(1.42-19.5)	
		Li, Y.	2013	Chinese	451	631	CT vs. CC	1.45(1.11-1.89)	N.A.
		,					TT vs. CC	1.48(0.91-2.39)	
							(CT+TT) vs. CC	1.45(1.12-1.88)	
		Stern, M. C.	2007	Chinese	310	1176	CT vs. CC	0.9(0.7-1.2)	Interaction with smoking
							TT vs. CC	0.8(0.5-1.3)	U U
rs1001581	Intron 2	Berndt, S. I.	2007	American	767	773	AA vs. GG	0.74(0.55-0.99)	None with smoking, alcohol
								· · · ·	C C
rs25489	Exon 9	Yin, G.	2012	Japanese	685	778	AG vs. GG	0.88(0.66-1.17)	Interaction with alcohol drinking
							AA vs. GG	3.07(0.80-11.79)	, i i i i i i i i i i i i i i i i i i i
rs25487	Exon 10	Zhang, S. H.	2014	Chinese	247	300	AG vs. GG	0.74 (0.52-1.07)	Interaction with smoking
		0					AA vs. GG	1.06 (0.58-1.93)	U U
		Poomphakwaen	2014	Thai	230	230	AG vs. GG	1.28(0.86-1.90)	Interaction with smoking and drinking
		1					AA vs. GG	4.96(1.90-12.95)	5 5
		Przybylowska	2013	Polish	182	245	AG vs. GG	1.31(0.81-2.20)	N.A.
		5.5					AA vs. GG	2.03(1.23-3.97)	
		Procopciuc	2013	Romanian	150	162	AG vs. GG	1.75(1.09-2.82)	N.A.
		1					AA vs. GG	3.49(1.55-8.02)	
		Yin, G.	2012	Japanese	685	778	AG vs. GG	1.13(0.91-1.41)	None with alcohol drinking
		,		5 1			AA vs. GG	1.57(1.01-2.42)	0
		Zhao, Y.	2012	Chinese	485	970	AG vs. GG	1.33(1.02-1.68)	N.A.
		,					AA vs. GG	2.47(1.63-3.50)	
		Wang, I.	2010	Indian	302	291	AG vs. GG	1.41(0.99-2.03)	Interaction with drinking
		0, 1					AA vs. GG	1.20(0.71-2.03)	0
		Ielonek, K.	2010	Polish	113	153	A allele vs. G allele	1.51(1.07-2.15)	N.A.
		Stern, M. C.	2005	American	753	799	AG vs. GG	1.1(0.9-1.3)	N.A.
							AA vs. GG	0.7(0.5-1.0)	
		Hong, Y. C	2005	Korean	209	209	AG vs GG	2.18(1.23-3.88)	NA
		110116/ 11 01	2000	Horean	207	_0,	AA vs GG	1.03(0.31-3.67)	
							(AG+AA) vs GG	2.00(1.15-3.47)	
		Krupa, R	2004	Polish	51	100	AG vs GG	0.73(0.55-0.95)	NA
		Riupu, R.	2001	1 OHSIT	01	100	AA vs GG	1 13(0 85-2 34)	1 4.2 1.
		Abdel-Rahman	2000	Egyptian	48	48	AG vs GG	3.92(1.40-11.20)	NA
		i iouci iumini	2000	26) p uur	10	10	AA vs GG	4 20(0 63-34 90)	
OGG1	3p26.2							1.20(0.00 0 1.90)	
rs1052133	Exon 7	Zhang S H	2014	Chinese	247	300	CG vs. CC	0.86(0.53-1.40)	None with smoking alcohol or BMI
101002100	Exon	Zitung, 0. 11.	2011	cimicse	217	500	GG vs CC	0.91(0.56-1.50)	None whit shioking, aconor or bini
		Przybylowska	2013	Polish	182	245	CG vs CC	1 83(1 21-2 70)	N A
		112909100384	2015	1 011311	102	240	CG vs. CC	1.03(1.21-2.70) 1.04(0.23-4.81)	1 1.7 1.
		Canbay F	2011	Turkish	79	247	G allele vs. C allele	2.77(1.40-5.48)	N A
		Pardini B	2011	Czech	532	532	CG vs. CC	0.91(0.70-1.18)	Interaction with smoking
		i urunu, D.	2000	CZCCII	552	552	GG vs. CC	1 43(0 79_2 50)	incraction with shoking
							(CG+GG) vs. CC	$0.96(0.75 \pm 2.57)$	
		Morene V	2004	Snanish	377	329	GG ve CC	2 31 (1 05-5 00)	N A
		Hanson R	2000	Norwogian	166	397	CG vs. CC	0.56(0.32.0.07)	N A
		i ialiscit, K.	2005	1 NOI WEGIdII	100	391	CG vs. CC	0.50(0.32 - 0.97) 0.57(0.17, 1.82)	1 1, 2 1,
		Ching Vii Lai	2016	Taiwanaaa	777	736	CG vs. CC	1 51 (1 11 2 0E)	
		Chung-ru Lai	2016	raiwanese	121	130	CG vs. CC	1.31 (1.11-2.05)	
							GG VS. UL	1.23 (0.90-1.69)	

Journal of Cancer 2019, Vol. 10

Valuation Fail reputation (24) Construction (CGF-GG) vs. CC Description (24) Instruction (CGF-GG) vs. CC Description (24) AFE1 14q11.2 Stang, 5, H. 2014 Chinese 247 300 GT vs. TT 0.94(0.64-1.38) None with smoking, alcohol or BMI S130409 Exon 5 Zhang, 5, H. 2013 Chinese 451 631 GT vs. TT 1.10(0.83-1.49) N.A. Grows, TT 1.13(0.71-6.6) Canbay, E. 2011 Tarkish 79 247 GG vs. TT 1.33(1.94-1.69) N.A. Kasahara, M. 2008 Jonarican 767 773 GT vs. TT 1.33(1.94-1.69) None with smoking, alcohol rs2307486 Exon 3 Kabzinski, J. 2015 Poils 150 150 150 A vs. GG 1.27(1.91-1.69) No.A. rs2307486 Exon 3 Kabzinski, J. 2015 Chinese 247 300 Gf vs. TT 0.73(0.51-1.10) Interaction with BMI rs2307486 Exon 21 Stern, M. C. 2007 Chinese	Variablas	Location	Author	Vaar	Donulation	Casa	Control	Canatymas		Interaction
APE1 14112 Understand Understand Understand Understand Understand None with smoking, alcohol or BMI rs120409 Exon 5 Zhang, S. H. 2014 Chinese 247 300 GT vs. TT 0.40(0.64-1.38) None with smoking, alcohol or BMI rs120409 Li, Y. 2013 Chinese 451 631 GT vs. TT 1.10(0.774-166) NA rs120409 Canhay, E. 2011 Turkish 79 247 Galde vs. Galded 340(76-67) NA rs2207486 Exon 3 Kabarhar, M. 2007 America 77 73 GT vs. TT 1.31(0.74-67) NA rs2207486 Exon 3 Kabrinski, J. 2015 Polish 150 AG vs. GG 207(13-235) Na rs136400 Foon 4 San 17 Li, Y. 2013 Chinese 247 300 Gr vs. TT 0.75(0.51-1.10) Interaction with BMI rs2204786 Fxon 17 Fxon 17 San 17 0.78(0.51-1.10) NA San 17 NA San 17 NA San 17 NA San 17 San 17	variables	Location	Author	rear	ropulation	Case	Control	(CC+CC) va CC	1 28 (1 02 1 95)	Interaction
ATH Inqlif2 Function Constant Constant <thconstant< th=""> Constant Const</thconstant<>	A DE1	14~11 0						(CG+GG) VS. CC	1.36 (1.05-1.65)	
B11:04.09 Exon 3 Zang, S. I. 2014 Chinese 24 300 G vs. TT 241(15)-38 None with smoking, alconol of boli G, V. S. IT 241(15)-34.99 N.A. G, V.S. TT 1.10(0,771.66) G, G.V. S. TT 1.10(0,771.66) G, V.S. IT 2001 Pointsino, R.C. Pointsino, R.	AFEI	14q11.2	71 0.11	0014	C1 ·	0.47	200	OT TT	0.04/0.(4.1.00)	
	rs1130409	Exon 5	Zhang, S. H.	2014	Chinese	247	300	GI vs. II	0.94(0.64-1.38)	None with smoking, alcohol or BMI
					<i></i>			GG vs. 11	2.41(1.50-3.89)	
CG vs. TT 1330-71-66 CG vs. TT 247 Gallele vs. Tallele vs. Tallet 343(176-67) N.A. Jelonek, K. 2000 Jopanese 68 120 (G1+G2) vs. T1 230(21-448) N.A. Bendi, S.I. 2007 America 777 GT vs. TT 133(1041-169) None with smoking, alcohol rs2307486 Evon 3 Kabiriski, J. 2017 Poimoter 778 GT vs. TT 133(1041-169) None with smoking, alcohol rs1760944 Formoter Talled vs. GG 207(121-35) N.A. rs1176094 Poimoter Zhang, S.H. 2017 Chinese 247 6316 Adv vs. GG 134(072-251) rs1176094 Poimoter Laga-S.H. 2017 Chinese 247 6316 778 GT vs. TT 078(049-125) N.A. rs116410 Evon 17 Lyna S.H. 2007 Chinese 247 Callada vs. ValVal 19(059-159) N.A. rs219145 Intron Tao, H. 2007 Chinese 780 <td></td> <td></td> <td>Li, Y.</td> <td>2013</td> <td>Chinese</td> <td>451</td> <td>631</td> <td>GT vs. TT</td> <td>1.10(0.83-1.49)</td> <td>N.A.</td>			Li, Y.	2013	Chinese	451	631	GT vs. TT	1.10(0.83-1.49)	N.A.
								GG vs. TT	1.13(0.77-1.66)	
rs220748 Even 3 Kasahara, Marka 2000 Poilsh 113 120 171 CfrG, vs. TT 233 (1.21 4.48) N.A. rs220748 Even 3 Kabzinski, J. 2017 American 767 73 GT vs. TT 133 (1.04.1.69) None with smoking, alcohol (GG+GT) vs. TT 133 (1.04.1.69) None with smoking, alcohol (GG+GT) vs. TT 0.707 (1.21.355) N.A. rs1760944 Promoter Zhang, S. H. 2014 Chinese 247 30 To vs. TT 0.750 (5.1-1.10) Interaction with BMI rs1136410 Even 17 Li, Y. 2013 Chinese 451 31 Val Ala vs. Val Val 1.19 (0.89-1.59) N.A. rs1136410 Even 17 Li, Y. 2013 Chinese 451 Val Ala vs. Val Val 1.19 (0.89-1.59) N.A. rs221945 Even 17 Intron 1 Tao, H. 2007 Chinese 310 117 Liga style vs. Lysle vs. 7.0 (0.6-84) Val Ala vs. Val Val 1.19 (0.89-1.59) N.A. rs2219487 Intron 5 Tao, H. 2008 Japanese 685 78 Cf vs. CC 2.6 (0.2-2.07) N.A. <td></td> <td></td> <td>Canbay, E.</td> <td>2011</td> <td>Turkish</td> <td>79</td> <td>247</td> <td>G allele vs. T allele</td> <td>3.43(1.76-6.7)</td> <td>N.A.</td>			Canbay, E.	2011	Turkish	79	247	G allele vs. T allele	3.43(1.76-6.7)	N.A.
Kasahara, M. 2008 Japanese 68 121 (GF+GG) vs. TT 233(121-438) N.A. rs2207486 Exon 3 Kabzinski, J. 2007 American 76 773 GT vs. TT 133(1041-69) None with smoking, alcohol rs2207486 Exon 3 Kabzinski, J. 2015 Polish 12 10 Ad vs. GG 207(121-355) N.A. rs1760944 Promot= Zhang, S. H. 2014 Chinese 247 300 GG vs. TT 0.75(0.51-1.10) Interaction with BMI rs1760944 Promot= Zhang, S. H. 2013 Chinese 451 631 ValAla vs. ValVal 1.19 (0.89-1.59) N.A. rs116410 Exon 17 Li, Y. 2013 Chinese 451 631 ValAla vs. ValVal 1.19 (0.89-1.59) N.A. rs116410 Exon 17 To, M.C. 2007 Chinese 451 778 (CT+TT) vs. CC 1.46(0.87-0.881) NA rs2191457 Intron 1 Too, H. 2008 Japanese 657<			Jelonek, K.	2010	Polish	113	153	T allele vs. G allele	2.00(1.39-2.87)	N.A.
rs2207486 Exon 3 American 767 773 GT vs. TT 1.33(1.04-1.69) (GG+GT) vs. TT 1.27(1.01-1.60) (GG+GT) vs. TT 1.27(1.01-1.60) rs2207486 Exon 3 Kabzinski, J. 2015 Polish 150 150 AG vs. GG 1.34(0.72-2.51) N.A. rs1760944 Promoter Zhang, S.H. 2014 Chinese 247 300 TG vs. TT 0.75(0.51-1.10) Interaction with BMI rs1136410 Exon 17 Li, Y. 2013 Chinese 451 631 ValAla vs. ValVal 1.19 (0.89-1.59) N.A. rs3219145 Exon 21 Stern, M.C. 2007 Chinese 301 176 CT+TT) vs. CC 1.36(0.49-1.25) N.A. rs3219145 Exon 21 Stern, M.C. 2007 Chinese 30 176 CT+TT) vs. CC 1.46(1.02-2.07) N.A. rs321945 Intron 1 Tao, H. 2008 Japanese 685 778 (CT+TT) vs. CC 1.46(1.02-2.07) N.A. rs3219487 Intron 5 Tao, H. 2008 Japanese 685 778 (CG vs. CC 3.36(0.40-4.9)			Kasahara, M.	2008	Japanese	68	121	(GT+GG) vs. TT	2.33(1.21-4.48)	N.A.
rs2307486 Evon 3 Kabzinski, J. 2015 Polish 150 150 AG vs. GG AG vs. GG G vs. GC G vs. GC G vs. TT 127(10-1.60) (34(0.72-2.5)) NA. rs176094 Promote Zhang, S.H. 2014 Chinese 247 300 G vs. GT G vs. TT 0.75(0.51-1.10) 0.78(0.49-1.25) Interaction with BMI PARP1 1q41-q42 Ly. Y. 2013 Chinese 451 631 ValAla vs. ValVal AlaAla vs. ValVal T 70 (0.6-84) NA. rs3219145 Evon 17 Too, H. 2007 Chinese 780 771 0.584(0.387.048) NA. rs3219487 Intron 1 Too, H. 2008 Japanese 685 778 G vs. GG AV vs. GG 140(.88-1.49) 0.97(0.32-2.93) NA. rs3219487 Intron 5 Too, H. 2008 Japanese 685 778 G vs. GG G vs. GG 269(1.47-49) 0.97(0.32-2.93) NA. rs3219487 Intron 5 Too, H. 2008 Japanese 68 778 G vs. GG G vs. GG 269(1.47-4			Berndt, S. I.	2007	American	767	773	GT vs. TT	1.33(1.04-1.69)	None with smoking, alcohol
rs2307486 Exon 3 Kabzinski, J. 2015 Polish 150 AG vs. GG 207 (121-35) N.A. rs176094 Pormote Zhang, S. H. 2014 Chinese 247 300 TG vs. TT 0.75(0.51-1.10) Interaction with BMI PARP1 1q41-q42 rs17.06 v4 1.9 1.97 (0.29-1.57) N.A. rs1136410 Exon 17 Li, Y. 2013 Chinese 451 451 ValAla vs. ValVal 1.17 (12-2.07) N.A. rs3219145 Exon 21 Stern, M. C. 2007 Chinese 310 176 LysArg vs. LysLys 1.7(10-3.0) N.A. rs3219145 Intron 1 Tao, H. 2008 Japanese 685 778 CT+TT) vs. CC 146(102-2.07) N.A. rs3219487 Intron 1 Tao, H. 2008 Japanese 685 778 CT+TT) vs. CC 146(102-2.07) N.A. rs3219487 Intron 1 Tao, H. 2008 Japanese 685 778 CG vs. CC 269(1.47-4.94) N.A. rs3219487 Intron 1 Tao, H. 2008 Japanese 685 778 CG vs. CC 269(1.47-4.94) N.A. <								(GG+GT) vs. TT	1.27(1.01-1.60)	
rs176044 Promote Zhang, S. H. 214 Chinese 247 300 To So, Si, The Constrained on the C	rs2307486	Exon 3	Kabzinski, J.	2015	Polish	150	150	AG vs. GG	2.07(1.21-3.55)	N.A.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$								AA vs. GG	1.34(0.72-2.51)	
rs176094 Promet Zhang, S. H. 2014 Chinese 24 300 G vs. TT 0.750,051-1.00 Interaction with BMI PARPI 494-942 Fx136400 Fx1444 1.9 (0.89-1.59) N.A. rs130401 Exon 17 Li Y. P. 2013 Chinese 4.3 Signed Signe										
PARP1 Iq41-q42 FARP1 Iq41-q42 FARP1 Iq41-q42 FARP1 Iq41-q42 FARP1 Iq41-q42 FARP1 Ip41-q42 FARP1 FARP1 Ip41-q42 FARP1 Ip41-q42 FARP1 Ip41-q42 FARP1 Ip41-q42 FARP1 Ip41-q42 FARP1 FARP1 FARP1	rs1760944	Promoter	Zhang, S. H.	2014	Chinese	247	300	TG vs. TT	0.75(0.51-1.10)	Interaction with BMI
PARPI rs1136410 lq41-q42 Exon 17 Lift Y. 2013 Chinese 451 631 ValAla vs. ValVal AlaAla vs. ValVal AlaAla vs. ValVal AlaAla vs. (ValAla+ValVal) AlaAla vs. (ValAla+ValVal) (CT+CC) vs. TT 1.57 (1.20-2.57) (1.22-2.00) (CT+CC) vs. TT N.A. rs321945 Exon 21 Stem, M.C. 2007 Chinese 310 1176 LysArg vs. LysLys ArgArg vs. LysLys ArgArg vs. LysLys 7.0(0.6-84) N.A. MUTYH rs2275602 jp31.1 Tao, H. 2008 Japanese 685 778 (CT+TT) vs. CC 146(1.02-2.07) N.A. rs3219487 Intron 5 Tao, H. 2008 Japanese 685 778 (CT+TT) vs. CC 146(1.02-2.07) N.A. rs3219487 Intron 5 Tao, H. 2008 Japanese 685 778 (CT+CO) vs. AC 0.67(0.39-1.14) N.A. rs3219487 Intron 5 Tao, H. 2008 Japanese 685 778 (CG vs. CC CC 3.55(1.44-8.70) N.A. rs3219489 Exon 12 Proybylowska 2013 Polish 182 245 CG vs. CC CG vs. CC 355(1.44-8.70) N.A. rs42164216 Proybylowska 2019 Polish 182 245			0					GG vs. TT	0.78(0.49-1.25)	
rs1136410 \dot{F} or 1 \dot{L} Y. 2013 Chinese 451 631 ValAla vs. ValVal 1.19 (0.89-1.59) N.A. rs3219145 Exon 21 Stern, M.C. 2007 Chinese 310 1176 LysArg vs. LysLys 1.77 (1.0-2.57) N.A. rs3219145 Exon 21 Stern, M.C. 2007 Chinese 310 1176 LysArg vs. LysLys 1.7(1.0-3.0) N.A. MUTYH 1p34.1 rs3219487 Intron 1 Tao, H. 2008 Japanese 685 778 (CT+TT) vs. CC 146(1.02-2.07) N.A. rs3219487 Intron 5 Tao, H. 2008 Japanese 685 778 (CT+TT) vs. CC 146(1.02-2.07) N.A. rs3219487 Intron 5 Tao, H. 2008 Japanese 685 778 (CG+CG) vs. AA 0.67(0.39-1.14) N.A. rs3219489 Exon 12 Przybylowska 2013 Polish 182 245 CG vs. CC 2.69(1.47-4.94) N.A. rs3219489 Exon 12 Przybylowska 2013 Polish 182 245 CG vs. CC	PARP1	1a41-a42							()	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	rs1136410	Exon 17	Li, Y.	2013	Chinese	451	631	ValAla vs. ValVal	1.19 (0.89-1.59)	N.A.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$								AlaAla vs. ValVal	1.75 (1.20-2.57)	
rs321945 Exon 21 Stern, M. C. 2007 Chinese 310 1176 LysArg vs. LysLys 1.7(1.0-3.0) N.A. MUTYH 1p34.1 rs2275602 Intron 1 Tao, H. 2008 Japanese 685 778 (CT+TT) vs. CC 1.46(1.02-2.07) N.A. rs3219487 Intron 5 Tao, H. 2008 Japanese 685 778 (CT+TT) vs. CC 1.46(1.02-2.07) N.A. rs3219487 Intron 5 Tao, H. 2008 Japanese 685 778 (CT+TT) vs. CC 1.46(1.02-2.07) N.A. rs3219487 Intron 5 Tao, H. 2008 Japanese 685 778 (CT+TT) vs. CC 1.46(1.02-2.07) N.A. rs3219489 Exon 12 Przybylowska 2013 Polish 182 245 CG vs. CC 2.69(1.47-4.94) N.A. rs3219489 Exon 12 Przybylowska 2013 Polish 182 245 CG vs. CC 3.53(1.44-8.70) N.A. rs4246215 YUTR Liu, L. 2012 Chinese 126 126 AG vs. AA 1.35(0.70-2.72)								AlaAla vs (ValAla+ValVal)	1 57 (1 12-2 20)	
rs3219145 Exon 21 Stern, M. C. 2007 Chinese 310 1176 LysArg vs. LysLys ArgArg vs. LysLys 17(L0-3.0) 7.0(0.6-84) N.A. MUTYH 1p34.1 rs2275602 Tao, H. 2008 Japanese 685 778 (CT+TT) vs. CC 1.46(1.02-2.07) N.A. rs3219487 Intron 5 Tao, H. 2008 Japanese 685 778 (CT+TT) vs. CC 1.46(1.02-2.07) N.A. rs3219487 Intron 5 Tao, H. 2008 Japanese 685 778 (CG+CG) vs. AA 0.67(0.39-1.14) N.A. rs3219489 Exon 12 Przybylowska 2013 Polish 182 245 CG vs. CC 2.69(1.47-4.94) N.A. rs3219489 Exon 12 Przybylowska 2013 Polish 182 245 CG vs. CC 2.69(1.47-4.94) N.A. rs3219489 Exon 12 Przybylowska 2008 Japanese 68 121 (CG+GG) vs. CC 3.53(1.48-6.70) N.A. rs40 Go vs. GG 0.96(0.75-1.22) N.A. CC vs. GG 0.90(0.67-1.22) N.A.								(CT+CC) ve TT	0 584(0 387-0 88	1)
IS21945 Exol 21 Stell, M. C. 200 ^o Clinese 310 If 70 Lyskig vs. Lyskys 7.0(0.6-84) MUTYH 1p34.1 rs2275602 Intron 1 Tao, H. 2008 Japanese 685 778 (CT+TT) vs. CC 1.46(1.02-2.07) N.A. rs3219487 Intron 5 Tao, H. 2008 Japanese 685 778 (AG+GG) vs. AA 0.67(0.39-1.14) N.A. rs3219489 Exon 12 Przybylowska 2013 Polish 182 245 CG vs. CC 2.69(1.47-4.94) N.A. rs3219489 Exon 12 Przybylowska 2013 Polish 182 245 CG vs. CC 2.69(1.47-4.94) N.A. rs3219489 Exon 12 Przybylowska 2013 Polish 182 245 CG vs. CC 3.35(1.44-8.70) N.A. rs42u6215 Washing A. H. 2008 Japanese 68 121 (CG+GG) vs. CC 3.53(1.44-8.70) N.A. re504 Co vs. GG 0.96(0.75-1.22) N.A. CG vs. GG 0.90(0.67-1.22) N.A. FEN1 11q12 Liu, L. 2012 Chinese 126 162 AG vs. AA<	* 2210145	Evon 21	Storn M.C.	2007	Chinasa	210	1176		17(10-30)	N A
MUTYH 1p34.1 rs2275602 Intron 1 Tao, H. 2008 Japanese 685 778 (CT+TT) vs. CC 1.46(1.02-2.07) N.A. rs3219487 Intron 5 Tao, H. 2008 Japanese 685 778 (CT+TT) vs. CC 1.46(1.02-2.07) N.A. rs3219487 Intron 5 Tao, H. 2008 Japanese 685 778 (AG+GG) vs. AA 0.67(0.39-1.14) N.A. rs3219489 Exon 12 Przybylowska 2013 Polish 182 245 CG vs. CC 269(1.47-4.94) N.A. rs3219489 Exon 12 Przybylowska 2008 Japanese 685 778 CG vs. CC 3.35(1.80-6.499) N.A. rs3219489 Exon 12 Przybylowska 2013 Polish 182 245 CG vs. CC 3.35(1.80-6.499) N.A. rs3219470 N.A. 2008 Japanese 68 718 CG vs. CC 3.35(1.44-8.70) N.A. rs4246215 YUTR Liu, L. 2012 Chinese 126 162 AG vs. AA 1.35(0.70-2.72) N.A. rs4246215 YUTR Liu, L. 2012 Chinese 126	153219145	EX011 21	Sterri, M. C.	2007	Chinese	510	1170	Ang Ang via LysLys	7.0(0.6.84)	IN.74.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		1-241						ArgArg vs. LysLys	7.0(0.6-64)	
rs227502 Intron 1 Tao, H. 2008 japanese 685 778 $(C1+11)$ vs. CC 1.46(1.02-2.07) N.A. rs3219487 Intron 5 Tao, H. 2008 Japanese 685 778 AG vs. GG 1.14(0.88-1.49) N.A. IVS10 -2A/G Tao, H. 2008 Japanese 685 778 AG vs. GG 0.97(0.32-2.93) N.A. rs3219489 Exon 12 Przybylowska 2013 Polish 182 245 CG vs. CC 2.69(1.47-4.94) N.A. rs3219489 Exon 12 Przybylowska 2013 Polish 182 245 CG vs. CC 3.35(1.80-6.49) Kasahara, M. 2008 Japanese 68 121 (CG+GG) vs. CC 3.53(1.44-8.70) N.A. FEN1 11q12	MUTTH	1p34.1	T II	2000	T	(0 5	770		1 4(1 00 0 07)	NT A
rs3219487 Intron 5 Tao, H. 2008 Japanese 685 778 AG vs. GG 1.14(0.88-1.49) N.A. IVS10 -2A/C Tao, H. 2008 Japanese 685 778 (AG+GG) vs. AA 0.67(0.39-1.14) N.A. rs3219489 Exon 12 Przybylowska 2013 Polish 182 245 CG vs. CC 269(1.47-4.94) N.A. rs3219489 Kasahara, M. 2008 Japanese 685 121 CG vs. CC 3.53(1.44-8.70) N.A. rs40407 H. 2008 Japanese 685 178 CG vs. CC 3.53(1.44-8.70) N.A. rs40 H. 2008 Japanese 685 121 CG vs. CC 3.53(1.44-8.70) N.A. rs40 H.14 2012 Chinese 162 AG vs. AA 1.35(0.70-2.72) N.A. rs4246215 J'UTR Liu, L. 2012 Chinese 126 Ic2 AG vs. TT 1.35(0.65-2.74) N.A. rs4246215 S1147 Karapa 2006 Sanaib 377 329 (4.4) vs. (4.4)	rs22/5602	Intron 1	1ао, н.	2008	Japanese	685	//8	(C1+11) vs. CC	1.46(1.02-2.07)	N.A.
rs321948/ Intron 5 Iao, H. 2008 Japanese 685 778 AG vs. GG 1.14(0.88-1.49) N.A. IVS10 -2A/G Tao, H. 2008 Japanese 685 778 (AG+GG) vs. AA 0.67(0.39-1.14) N.A. rs3219489 Exon 12 Przybylowska 2013 Polish 182 245 CG vs. CC 2.69(1.47-4.94) N.A. rs3219489 Exon 12 Przybylowska 2013 Polish 182 245 CG vs. CC 2.69(1.47-4.94) N.A. rs3219489 Exon 12 Przybylowska 2008 Japanese 68 121 (CG+GG) vs. CC 3.53(1.44-8.70) N.A. rao, H. 2008 Japanese 68 121 (CG+GG) vs. CC 3.53(1.44-8.70) N.A. rao, H. 2008 Japanese 685 778 CG vs. GG 0.96(0.75-1.22) N.A. rao, H. 2012 Chinese 126 162 AG vs. AA 1.35(0.70-2.72) N.A. rs4246215 3'UTR Liu, L. 2012 Chinese 126 162 GT vs. TT						(0 =				
IVS10 -2A/G Tao, H. 2008 Japanese 685 778 (AG+GG) vs. AA 0.67(0.39-1.14) N.A. rs3219489 Exon 12 Przybylowska 2013 Polish 182 245 CG vs. CC 2.69(1.47-4.94) N.A. rs3219489 Exon 12 Przybylowska 2013 Polish 182 245 CG vs. CC 3.35(1.80-6.49) Kasahara, M. 2008 Japanese 685 778 (CG+GG) vs. CC 3.35(1.44-8.70) N.A. FEN1 Tao, H. 2008 Japanese 685 778 CG vs. GG 0.90(0.67-1.22) N.A. FEN1 11q12 Liu, L. 2012 Chinese 126 162 AG vs. AA 1.35(0.70-2.72) N.A. rs4246215 3'UTR Liu, L. 2012 Chinese 126 162 GT vs. TT 1.35(0.65-2.74) N.A. FOLB 8p11.2 Fyon 9 Moreno V 2006 Spanish 377 329 (±/.4) ys.(±/.4) 023(0.05-0.99) N.A	rs3219487	Intron 5	Тао, Н.	2008	Japanese	685	778	AG vs. GG	1.14(0.88-1.49)	N.A.
IVS10 -2A/G Tao, H. 2008 Japanese 685 778 (AG+GG) vs. AA 0.67(0.39-1.14) N.A. rs3219489 Exon 12 Przybylowska 2013 Polish 182 245 CG vs. CC GG vs. CC GG vs. CC 2.69(1.47-4.94) 3.35(1.80-6.49) N.A. Kasahara, M. Tao, H. 2008 Japanese 68 121 (CG+GG) vs. CC CG vs. GG 3.53(1.44-8.70) N.A. FEN1 11q12 V 2008 Japanese 685 778 CG vs. GG CG vs. GG 0.90(0.67-1.22) N.A. rs4246215 11q12 VIIR Liu, L. 2012 Chinese 126 162 AG vs. AA GG vs. TT 1.35(0.65-2.74) N.A. rs4246215 3'UTR Liu, L. 2012 Chinese 126 162 GT vs. TT GG vs. TT 1.35(0.65-2.74) N.A. POLB 8p11.2 780 727 329 (t-(-) vs. (t-(+)) 0.23(0.05-0.99) N.A								AA vs. GG	0.97(0.32-2.93)	
IVS10 - 2A/G Tao, H. 2008 Japanese 685 778 (AG+GG) vs. AA $0.67(0.39-1.14)$ N.A. rs3219489 Exon 12 Przybylowska 2013 Polish 182 245 CG vs. CC $2.69(1.47-4.94)$ N.A. rs3219489 Exon 12 Przybylowska 2013 Polish 182 245 CG vs. CC $3.35(1.40-6.49)$ N.A. GG vs. CC $3.35(1.44-8.70)$ N.A. Tao, H. 2008 Japanese 68 121 (CG+GG) vs. CC $3.53(1.44-8.70)$ N.A. FEN1 Tao, H. 2008 Japanese 685 778 CG vs. GG $0.96(0.75-1.22)$ N.A. C vs. GG 0.90(0.67-1.22) N.A. CC vs. GG $0.90(0.67-1.22)$ N.A. FEN1 11q12 Liu, L. 2012 Chinese 126 162 AG vs. AA $1.35(0.70-2.72)$ N.A. rs4246215 3'UTR Liu, L. 2012 Chinese 126 162 GT vs. TT $1.35(0.65-2.74)$ N.A. POLB 8p11.2 Family Burgeron V 2006 Spanish 377										
rs3219489 Exon 12 Przybylowska 2013 Polish 182 245 CG vs. CC 2.69(1.47-4.94) N.A. GG vs. CC 3.35(1.80-6.49) N.A. 2008 Japanese 68 121 (CG+CG) vs. CC 3.53(1.44-8.70) N.A. FEN1 Tao, H. 2008 Japanese 68 121 (CG+CG) vs. CC 3.53(1.44-8.70) N.A. FEN1 Tao, H. 2008 Japanese 68 778 CG vs. GG 0.96(0.75-1.22) N.A. Co vs. GG 0.90(0.67-1.22) N.A. Co vs. GG 0.90(0.67-1.22) N.A. rs4246215 YUTR Liu, L. 2012 Chinese 126 162 AG vs. AA 1.35(0.70-2.72) N.A. rs4246215 3'UTR Liu, L. 2012 Chinese 126 162 GT vs. TT 1.35(0.65-2.74) N.A. POLB 8p11.2 Supplication 377 329 (±(-) vs. (±(-±)) 0.23(0.05-0.99) N.A	IVS10 -2A/	′G	Тао, Н.	2008	Japanese	685	778	(AG+GG) vs. AA	0.67(0.39-1.14)	N.A.
rs3219489 Exon 12 Przybylowska 2013 Polish 182 245 CG vs. CC 2.69(1.47-4.94) N.A. GG vs. CC 3.35(1.80-6.49) Kasahara, M. 2008 Japanese 68 121 (CG+GG) vs. CC 3.53(1.44-8.70) N.A. Tao, H. 2008 Japanese 685 778 CG vs. CG 0.96(0.75-1.22) N.A. FEN1 11q12 Covertication Covertication 0.90(0.67-1.22) N.A. rs4246215 3'UTR Liu, L. 2012 Chinese 126 162 AG vs. AA 1.35(0.70-2.72) N.A. rs4246215 3'UTR Liu, L. 2012 Chinese 126 162 GT vs. TT 1.35(0.65-2.74) N.A. POLB 8p11.2 Sp11.2 T 2006 Spanish 377 329 (±(±)) vs. (±(±)) 0.23(0.05-0.99) N.A										
GG vs. CC 3.35(1.80-6.49) Kasahara, M. 2008 Japanese 68 121 (CG+GG) vs. CC 3.53(1.44-8.70) N.A. Tao, H. 2008 Japanese 685 778 CG vs. GG 0.96(0.75-1.22) N.A. FEN1 11q12 CV vs. GG 0.90(0.67-1.22) N.A. (-69 A/G) Promoter Liu, L. 2012 Chinese 126 162 AG vs. AA 1.35(0.70-2.72) N.A. rs4246215 3'UTR Liu, L. 2012 Chinese 126 162 GT vs. TT 1.35(0.65-2.74) N.A. POLB 8p11.2 sp11.2 T T 2006 Spanish 377 329 (±(a) vs. (ts. (ts. (ts. (ts. (ts. (ts. (ts. (t	rs3219489	Exon 12	Przybylowska	2013	Polish	182	245	CG vs. CC	2.69(1.47-4.94)	N.A.
Kasahara, M. 2008 Japanese 68 121 (CG+GG) vs. CC 3.53(1.44-8.70) N.A. Tao, H. 2008 Japanese 685 778 CG vs. GG 0.96(0.75-1.22) N.A. FEN1 11q12 Coverside 0.90(0.67-1.22) N.A. (-69 A/G) Promoter Liu, L. 2012 Chinese 126 162 AG vs. AA 1.35(0.70-2.72) N.A. rs4246215 3'UTR Liu, L. 2012 Chinese 126 162 GT vs. TT 1.35(0.65-2.74) N.A. POLB 8p11.2 sp11.2 Transpansion 377 329 (±(a) vs. (to								GG vs. CC	3.35(1.80-6.49)	
Tao, H. 2008 Japanese 685 778 CG vs. GG 0.96(0.75-1.22) N.A. FEN1 11q12 2012 Chinese 126 162 AG vs. AA 1.35(0.70-2.72) N.A. rs4246215 3'UTR Liu, L. 2012 Chinese 126 162 AG vs. TT 1.35(0.65-2.74) N.A. POLB 8p11.2 2006 Spanish 377 329 (±(-)) vs. (±(-)) vs. (±(-)) vs. (±(-)) 0.23(0.05-0.99) N.A.			Kasahara, M.	2008	Japanese	68	121	(CG+GG) vs. CC	3.53(1.44-8.70)	N.A.
FEN1 11q12 CC vs. GG 0.90(0.67-1.22) (-69 A/G) Promoter Liu, L. 2012 Chinese 126 162 AG vs. AA 1.35(0.70-2.72) N.A. rs4246215 3'UTR Liu, L. 2012 Chinese 126 162 GT vs. TT 1.35(0.65-2.74) N.A. POLB 8p11.2 rs3136797 Evon 9 Moreno V 2006 Spanish 377 329 (±(-)) vs. (±(-)) 0.23(0.05-0.99) N.A.			Tao, H.	2008	Japanese	685	778	CG vs. GG	0.96(0.75-1.22)	N.A.
FEN1 11q12 (-69 A/G) Promoter Liu, L. 2012 Chinese 126 162 AG vs. AA 1.35(0.70-2.72) N.A. rs4246215 3'UTR Liu, L. 2012 Chinese 126 162 GG vs. AA 1.60(0.79-3.44) rs4246215 3'UTR Liu, L. 2012 Chinese 126 162 GT vs. TT 1.35(0.65-2.74) N.A. POLB 8p11.2 rs3136797 Evon 9 Moreno V 2006 Spanish 377 329 (±(±)) vs. (±(±)) 0.23(0.05-0.99) N.A.								CC vs. GG	0.90(0.67-1.22)	
(-69 A/G) Promoter Liu, L. 2012 Chinese 126 162 AG vs. AA GG vs. AA 1.35(0.70-2.72) N.A. rs4246215 3'UTR Liu, L. 2012 Chinese 126 162 GT vs. TT GG vs. TT 1.35(0.65-2.74) N.A. POLB 8p11.2 state state state 1.58(0.77-3.44) N.A.	FEN1	11q12								
GG vs. AA 1.60(0.79-3.44) rs4246215 3'UTR Liu, L. 2012 Chinese 126 162 GT vs. TT 1.35(0.65-2.74) N.A. POLB 8p11.2 gG vs. TT 1.58(0.77-3.44) N.A. rs3136797 Evon 9 Moreno V 2006 Spanish 377 329 (±(±) vs. (±(±)) 0.23(0.05-0.99) N.A.	(-69 A/G)	Promoter	Liu, L.	2012	Chinese	126	162	AG vs. AA	1.35(0.70-2.72)	N.A.
rs4246215 3'UTR Liu, L. 2012 Chinese 126 162 GT vs. TT 1.35(0.65-2.74) N.A. GG vs. TT 1.58(0.77-3.44) POLB 8p11.2 rs3136797 Evon 9 Moreno V 2006 Spanish 377 329 (+(-) vs. (+(+) 0.23(0.05-0.99) N.A.								GG vs. AA	1.60(0.79-3.44)	
rs4246215 3'UTR Liu, L. 2012 Chinese 126 162 GT vs. TT 1.35(0.65-2.74) N.A. POLB 8p11.2 rs3136797 Evon 9 Moreno V 2006 Spanish 377 329 (±(-) vs. (±(+)) 023(0.05-0.99) N.A.									. ,	
GG vs. TT 1.58(0.77-3.44) POLB 8p11.2 rs3136797 Evon 9 Moreno V 2006 Spanish 377 329 (+(-) vs (+(+) 0 23(0 05-0 99) N 4	rs4246215	3'UTR	Liu, L.	2012	Chinese	126	162	GT vs. TT	1.35(0.65-2.74)	N.A.
POLB 8p11.2 rs3136797 Evon 9 Moreno V 2006 Spanish 377 329 (+/-) vs (+/+) 023(005-099) N 4								GG vs. TT	1.58(0.77-3.44)	
$r_{s}3136797$ Evon 9 Moreno V 2006 Spanish 377 329 $(+/_{-})$ vs $(+/_{+})$ 0 23(0 05-0 99) N 4	POLB	8p11.2							- (
-157150777 - 1500177 - 15001010775 - 2000 - 00011511 - 077 - 1775175 - 17751 - 066000000000000000000000000000000000	rs3136797	Exon 9	Moreno, V.	2006	Spanish	377	329	(+/-) vs. $(+/+)$	0.23(0.05-0.99)	N.A.

1421

Only *XPA* rs1800975 polymorphism in 5'UTR has been investigated by two studies. Joshi, A. D. et al. explored 301 CRC cases and 362 controls of American population but found no significant relation of this polymorphism with CRC risk[62]. Similarly, Hansen, R. D. et al. found no significant association in 397 CRC cases and 800 controls in Denmark[63].

XPC

XPC, mapped to chromosome 3p25.1, consists of 18 exons and is one of the eight core genes in NER system. XPC contributes to damage sensing as well as single-stranded DNA binding during NER process [64].

Polymorphism of rs2228001 (Lys939Gln) in exon 16 has been studied in relation with CRC susceptibility in Malaysian[65], Chinese[66, 67], Turkish[17], Czech[25] and Denmark[63]. Liu, D. et al.'s research in Chinese revealed that AC and (AC+CC) genotype of rs2228001 polymorphism were both related with increased CRC risk compared with wild-type AA genotype[66]. Ahmad Aizat, A. A. et al. found that CC genotype significantly increased the risk of CRC in Malaysian population[65]. Similar correlation was confirmed by Mucha, B. et al.'s study in Polish, which also found significant increased CRC risk of CC genotype[68]. Although no significant relation was found between rs2228001 polymorphism and CRC risk, significant interaction of this polymorphism with red meat was found to increase CRC risk by Hansen, R. D. et al.[63]. For rs2279017 A/C polymorphism at intron 11, Gil, J. et al. suggested increased CRC risk of AC genotype in Polish[69] while another study in American did not find any significant result[62]. The results of rs2228000 C/T polymorphism were still inconclusive: Sun, K. et al.'s study in Chinese[70] and Paszkowska-Szczur, K. et al.'s study in Polish[71] suggested that C allele was the risk allele. However, Steck, S. E. et al. [72] revealed that T allele was the risk allele. In addition, Rui-Xi Hua et al. did not find significant association between rs2228000 polymorphism and CRC risk[67].

DNA damage unwinding related NER polymorphisms

XPD (ERCC2)

XPD, located at 19q13.32, contains 24 exons and encodes a protein which participates in transcriptioncoupled repair of NER. XPD contributes to the DNA unwinding as well as the damaged DNA fragments excision[61].

Two most frequently studied *XPD* SNPs are polymorphisms of rs1799793 A/G in exon 10 and rs13181 A/C in exon 22. For rs1799793 polymorphism, Paszkowska-Szczur, K. suggested that both AG genotype and AA genotype were associated with increased risk of CRC compared with wild-type GG genotype in Polish[71]. However, several other investigations did not found similar results in populations of Polish[73], Chinese[22, 74, 75], American[62] or Denmark[63]. Controversies still exist concerning the role of rs13181 polymorphism in relation to CRC susceptibility. Two researches indicated that CC genotype of rs13181 polymorphism was associated with increased risk of CRC compared the AA genotype in Polish[73] and with Romanian[45], respectively. However, Rezaei, H. et al. [76] and Stern, M. C. et al. [77] obtained the opposite conclusion that CC genotype was related with decreased CRC risk in American as well as Iranian. In addition, Stern, M. C. et al. found significant interaction of AC and AA genotype of rs13181 polymorphism with alcohol intake in increasing susceptibility of CRC. In addition, Gil, J. et al. found that the (AC+AA) genotype was associated with decreased CRC susceptibility in polish[69]. Although many other studies investigated the relation between the rs13181 polymorphism and CRC risk in multiple populations[17, 22, 25, 41, 54-56, 62, 63, 74, 75, 78, 79], significance was found. For rs3810366 no polymorphism in promoter, only one team explored the association of this SNP with CRC susceptibility but observed no significance in Chinese [75].

RPA2 and GTF2H1

RPA2 is located at chromosome 1p35.3, encoding a subunit of the heterotrimeric complex RPA which protects single-stranded DNA from nucleases. This heterotrimeric complex binds to single-stranded DNA and contributes to the formation of nucleoprotein complex which plays a key role in DNA unwinding [80]. *GTF2H1* is mapped to chromosome 11p15.1, comprising 17 exons and 16 introns. *GTF2H1* encodes a member of core-TFIIH basal transcription factor which is involved in transcription initiation and NER pathway[81].

Naccarati, A. et al. found that GG and CG carriers of *GTF2H1* rs4596 polymorphism was associated with 0.79 fold decreased CRC risk compared with CC genotype carriers in Czechs [81]. They also observed that the GG genotype of *RPA2* rs7356 in 3'UTR region was associated with increased risk of CRC compared with AG and AA genotype. Importantly, RPA2 protein was widely expressed in CRC and miRNA reduced RPA2 expression by preferentially binding to variant G allele of rs7356 polymorphism. These findings partially explained the reason why rs7356 G allele was associated with decreased CRC susceptibility.

DNA damage incision related NER polymorphisms

ERCCI

ERCC1, located at 19q13.32, contains 14 exons and the protein encoded by this gene assembles XPF to form a heterodimer. The heterodimer endonuclease promotes the 5' incision in repairing DNA lesion as well as contributes to DNA recombination repair and inter-strand crosslinks repair[82].

For ERCC1 rs2298881 A/C polymorphism in intron 1, Yang, H. et al.[83] suggested that the CC genotype was related with increased CRC risk compared with AA genotype in Chinese. They found no significant relation of rs11615 C/T polymorphism in exon 4 with CRC susceptibility in Chinese while another team obtained different result. Te-Cheng Yueh. et al. [84] found that the TT genotype of rs11615 C/T polymorphism was associated with 1.86-fold increased CRC risk compared with CC genotype in Chinese. Significant relation between AA genotype of rs3212986 A/C polymorphism in 3'UTR region and increased CRC risk was observed compared with CC genotype[74, 85] in Chinese but no significance was found in American[62]. Importantly, significant interaction was indicated in increasing risk of CRC between TT genotype of rs3212986 polymorphism and cigarette smoking[82]. Additionally, Dai, Q. et al. found that the AA genotype of rs2336219 A/G polymorphism in 3'UTR correlated with increased risk of CRC compared with wild-type GG genotype in Chinese [39]. A number of researches investigated rs11615 C/T polymorphism in CRC susceptibility but indicated no significance in Chinese and Norwegian population[74, 82-84, 86].

XPF (ERCC4)

XPF, located at 16p13.12, contains 13 exons and 12 introns, spanning approximately 28.2 kb. Its encoding protein XPF forms a complex with ERCC1, which is responsible for the 5' incision of DNA damage repair[82].

For polymorphisms of *XPF* rs2276466 C/G in 3'UTR and rs6498486 A/C in promoter, Hou, R. et al.[82] explored their relationships with CRC risk in Chinese population but indicated no significant association. Another team[83] found no significant association between the rs2276466 C/G polymorphism and risk of CRC. Additionally, no significant association between rs1800067 polymorphism and CRC susceptibility was observed by Joshi, A. D. et al.[62] in American. The synonymous substitution of rs1799801 at exon 13 has been investigated by Kabzinski, J. et al.[87], the result of which indicated that CT genotype correlated with decreased susceptibility of CRC compared with the CC genotype.

XPG (ERCC5)

XPG is mapped to chromosome 13q33, encoding a structure-specific endonuclease XPG which is composed of 1186 amino acids. XPG contributes to the 3' incision of DNA damage and enables DNA repair complex to stabilize to the domain of damage DNA[61].

For polymorphism of XPG rs17655 C/G in exon 15, Du, H. et al.[88] found that the variation from G allele to C allele was associated with increased risk of CRC in Chinese. Additionally, another team observed that CG genotype of rs17655 polymorphism was related with 1.33-fold increased CRC susceptibility in Chinese compared with GG genotype[66]. In 1901 cases and 1976 controls, rs2094258, rs751402, rs2296147, rs1047768 and rs873601 polymorphisms of ERCC1 were studied by Rui-Xi Hua et al.[89] in relation with CRC risk and most of the results demonstrated significance. In this research, they observed that four SNPs (rs2094258C/T in promoter, rs751402C/T in 5' UTR, rs1047768 C/T in exon 2 and rs873601 in 3'UTR) were associated with increased CRC risk, three of which (rs2094258, rs751402 and rs873601) also correlated with XPG mRNA expression. Other three studies suggested no significant association between rs17655 C/G polymorphism and risk of CRC in Chinese[70], American[62] or Czech[25]. For XPG 1558His/Asp polymorphism, Kabzinski, J. et al. failed to show significant association with susceptibility of CRC in Polish[73].

MMR pathway gene polymorphisms and sporadic CRC susceptibility

DNA mismatch repair (MMR) is a highly conserved biological pathway that is involved in maintaining genomic stability[90]. MMR recognizes and corrects the biosynthetic errors aroused during DNA replication as well as the mispaired bases which is generated in DNA recombination or caused by oxidative DNA damage[91]. MMR decreases 100-1000 folds DNA errors and protects them from mutations during cellular proliferation[92]. Human MMR process is classified into four steps: (1) the mismatch recognition by MutS homologs (MSH2, MSH3 and MSH6) and recruitment of MutL homologs (MLH1, MLH3, PMS1 and PMS2); (2) strand discrimination to mark the erroneous DNA strand; (3) strand removal by unwinding and excision reactions (EXO1); (4) DNA-re-synthesis and ligation to complete the repair reaction[93].

Table 2. Significant association of NER pathway gene polymorphisms with sporadic CRC susceptibility.

Variables	Location	Author	Voar	Population	Casa	Control	Constance	OP (05%/CI)	Interaction
Variables	Location	Author	rear	ropulation	Case	Control	Genotypes	OK(95%CI)	Interaction
XPC	3p25.1	A1	0010	M.L.	255	055		1 07(0.07 1.04)	NT A
rs2228001	Exon 16	Anmad Aizat	2013	Malaysian	255	255	AC VS. AA	1.27(0.87-1.84)	N.A.
							CC vs. AA	1.88(1.08-3.28)	
		Liu, D.	2012	Chinese	1028	1085	AC vs. AA	1.40(1.16-1.69)	N.A.
							CC vs. AA	0.98(0.84-1.13)	
							(AC+CC) vs. AA	1.31(1.10-1.56)	
		Hansen, R. D.	2007	Dane	397	800	AC vs. AA	1.08(0.83-1.42)	Interaction with red meat
							CC vs. AA	1.16(0.77-1.77)	
		Mucha, B.	2018	Polish	221	270	AC vs. AA	1.07(0.65-1.76)	N.A.
							CC vs. AA	1.82(1.08-3.06)	
rs2279017	Intron 11	Gil, J.	2012	Polish	133	100	AC vs. CC	2.07(1.14-3.78)	N.A.
rs2228000	Exon 9	Sun, K.	2015	Chinese	890	910	CT vs. TT	1.06(0.87-1.30)	N.A.
		, .					CC vs TT	2.19(1.60-3.01)	
		Paezkowska	2015	Polish	758	1841	CT ve CC	0 59(0 49-0 72)	ΝΔ
		1 dozkowska	2015	1 011311	750	1041	TT vs. CC	0.29(0.20-0.41)	1 1.7 1.
		Charle C. E.	2014	۸. (: ۸	244	221	CT CC	1.7(1.1.2.6)	NT A
1500500	F 10	Steck, S. E.	2014	African American	244	331	CI vs. CC	1.7(1.1-2.6)	N.A.
rs1799793	Exon 10	Paszkowska	2015	Polish	758	1841	AG vs. GG	1.92(1.41-2.62)	N.A.
							AA vs. GG	6.92(4.61-10.36)	
rs13181	Exon 22	Kabzinski, J.	2015	Polish	235	240	AC vs. AA	0.60(0.35-1.02)	N.A.
							CC vs. AA	14(6.31-31.05)	
		Rezaei, H.	2013	Iranian	88	88	AC vs. AA	1.33(0.68-2.62)	N.A.
							CC vs. AA	0.10(0.03-0.30)	
		Procopciuc	2013	Romanian	150	162	AC vs. AA	1.49(0.91-2.44)	N.A.
		1					CC vs. AA	3.02(1.15-8.25)	
		Gil I.	2012	Polish	133	100	(AC+CC) vs. AA	0.45(0.22-0.91)	N.A.
		Stern M C	2006	American	753	799		1.0(0.8-1.2)	Interaction with smoking
		Sterri, W. C.	2000	merican	755	1))	//C v3.////	1.0(0.0-1.2)	or drinking
							CC vs AA	0.7(0.4-1.0)	or annung
XPE(FRCC4)	16p13 12						0010.1111		
Sor835Sor	Evon 15	Kabzinski I	2015	Polich	146	140	CT vc CC	0 57(0 34_0 98)	N A
561855561	EXOIT 15	Kabziliski, J.	2015	FOIISIT	140	149	CT VS. CC	1 12(0.00 2.07)	IN.A.
							11 vs. CC	1.12(0.60-2.07)	
XPG(ERCC5)	13q33								
rs17655	Exon 15	Sun, K.	2015	Chinese	890	910	CG vs. GG	1.01(0.80-1.26)	N.A.
							CC vs. GG	1.12(0.85-1.47)	
		Du, H.	2014	Chinese	878	884	CG vs. GG	1.41(1.15-1.74)	N.A.
							CC vs. GG	1.34(1.00-1.79)	
							(CG+CC) vs.GG	1.40(1.15-1.70)	
		Liu, D.	2012	Chinese	1028	1085	CG vs. GG	1.33(1.09-1.63)	N.A.
							CC vs. GG	0.93(0.81-1.06)	
							(CG+CC) vs.GG	1.20(0.99-1.46)	
rs2094258	Promoter	Rui-Xi Hua	2016	Chinese	1901	1976	CT vs CC	1 17(1 01-1 36)	
132074230	Tomoter	Kui-Xi i iuu	2010	Cillicse	1701	1770	TT vs. CC	1.17 (1.01 1.00)	
751400		DIVIT	0016	C 1.	1001	1070	CT CC	1.49(1.10-1.09)	
rs/51402	5'UTK	Kui-Xi Hua	2016	Chinese	1901	1976	CI vs. CC	0.82(0.70-0.96)	
							11 vs. CC	0.69(0.55-0.86)	
rs1047768	Exon 2	Rui-Xi Hua	2016	Chinese	1901	1976	TC vs. TT	1.00(0.86-1.16)	
							CC vs. TT	1.33(1.01-1.75)	
rs873601	3'UTR	Rui-Xi Hua	2016	Chinese	1901	1976	AG vs. GG	1.18(1.00-1.40)	
							AA vs. GG	1.41(1.15-1.72)	
ERCC1	19q13.32								
rs2298881	Intron 1	Yang, H.	2015	Chinese	279	316	AC vs. AA	1.37(0.91-1.92)	N.A.
		2					CC vs. AA	2.68(1.47-4.75)	
		Hou, R.	2014	Chinese	204	204	AC vs. AA	1.08(0.71-1.74)	N.A.
							CC vs AA	1 45(0 64-3 46)	
wo11615	Evon 4	To Chong V	2017	Chinasa	267	267	CT va. CC	1.45(0.04-3.40)	
1511015	EXOIT 4	re-Cheng r.	2017	Cliniese	362	362	CT VS. CC	1.00 (0.77-1.40)	
	a/1 1770			C1 .			11 vs. CC	1.86 (1.20-2.87)	
rs3212986	3'UTR	Ni, M.	2014	Chinese	213	240	AC vs. CC	1.47(0.99-2.18)	None with smoking or
								2 5 0 (1 1 0 5 5 0)	arinking
							AA vs. CC	2.50(1.10-5.70)	
		Hou, R.	2014	Chinese	204	204	GT vs. GG	1.26(0.81-2.03)	Interaction with smoking
							TT vs. GG	1.93(0.96-3.94)	
		Zhang, Q.	2018	Chinese	200	200	AC vs. CC	1.20(0.79-1.81)	N.A.
							AA vs. CC	2.53(1.14-5.60)	
rs2336219	3'UTR	Dai, Q.	2015	Chinese	438	438	AG vs. GG	1.34(0.88-1.77)	N.A.
		-					AA vs. GG	1.46(1.14-2.43)	
RPA2	1p35.3								
rs7356	3'UTR	Naccarati	2012	Czech	1098	1469	GG vs (AG + A A)	1.33(1.01-1.75)	NA
GTF2H1	11p15 1	- meenind	-014		1070	1107	20.0.(10.111)		
rc/506	2/11TD	Naccarati	2012	Czoch	1000	1//-0		0 70(0 64 0 00)	NI A
131370	5 0 IK	ivaccarati	2012	CZCCII	1090	1-107	(CG, GG) VS. CC	5.7 5(0.01-0.77)	

MutS homologs related MMR polymorphisms

MSH2

MSH2 is located at chromosome 2p21-p16.3, consisting of 21 exons and 20 introns. MSH2 participates in the formation of two heterodimeric complexes of Muts α and Muts β which are involved in insertion-deletion loops in DSBR[94].

In Chinese population, Li, G. et al. [95] found that CT genotype of MSH2 IVS15-214 polymorphism was associated with decreased risk of CRC compared with TT genotype. They observed that the AG genotype of IVS11+107 polymorphism were related with decreased CRC susceptibility compared with AA genotype. Importantly, significant gene-environment interactions were detected of both C allele of IVS15-214 polymorphism and GG genotype of IVS11+107 polymorphism with cereals intake in decreasing CRC susceptibility. In addition, TT genotype of rs1981928 polymorphism was correlated with 0.78 fold reduced CRC risk in English[96]. For rs4987188 polymorphism, several researches showed no significant association with CRC risk in American[62], Canadian[97] or Polish[98]. No significant relationship was observed of another two SNPs of -118 T/C[99] and IVS12-6 T/C[97] polymorphisms with CRC risk in Canadian population.

MSH3

MSH3, also known as *DUP*, *FAP4* and *MRP1*, is located at 5q14.1 and consists of 24 exons. MSH3 cooperates with MSH2 to form a heterodimer Mutsa which binds to a mismatch and activates the MMR pathway[93].

Only one study by Koessler, T. et al.[96] explored the association between *MSH3* rs1979005 C/T polymorphism and CRC risk and found that the TT genotype was associated with decreased risk of CRC compared with CC genotype in English. They observed that the GG genotype of rs26279 A/G polymorphism in exon 23 correlated with 1.31 folds increased risk of CRC compared with wild-type AA genotype.

MSH6

MSH6 is mapped to chromosome 2p16.3 and encodes a MutS family protein which contributes to the mismatched nucleotides recognition before repair. Together with MSH2, MSH6 forms a mismatch recognition heterodimer complex which adjusts the function of MMR by exchanging ATP and ADP when DNA mismatches are bound and divided[94].

For *MSH6* rs1042821 G/A polymorphism in exon 1, significant association was found of the AG

genotype with increased CRC risk compared with GG genotype in Polish [100] but another team failed to observed significance in mixed population[101]. However, Tulupova, E. et al. found that GA and AA genotype of the same rs1042821 polymorphism in promoter correlated with decreased CRC susceptibility compared with GG genotype in Czech population, the reason of which might be that rs1042821 played different roles in variant transcripts. They also observed that T-allele carriers of *MSH6* rs3136228 polymorphism in promoter were associated with increased risk of CRC in Czechs compared with carriers of GG genotype [102]. For *MSH6* -159C/T promoter polymorphism, Mrkonjic, M. et al. showed no significance in Canadians[99].

MutL homologs related MMR polymorphisms

MLH1 and PMS2

MLH1, located at 3p22.2, contains 21 exons and *PMS2* is mapped to 7p22.1, consisting of 16 exons and 15 introns. MLH1 and PMS2 form a MutL-alpha heterodimer which manages the activity of endonuclease involved in mismatches recognition and loops insertion or deletion[103]. In addition, MutL-alpha heterodimer also plays a key role in mismatched DNA removal[103].

For MLH1 rs1800734 A/G polymorphism in prompter, A allele was found to significantly reduce the risk of CRC compared with G allele in Polish[98], Spanish[104] and Mexican population[51]. However, Nizam, Z. M. suggested that AG genotype was associated with 3.71 folds increased CRC risk compared with GG genotype in Malaysian[105]. Other two researches also investigated the relation of rs1800734 polymorphism with CRC risk but no significance was shown in American[101] and Canadian[97]. For MLH1 rs1799977 polymorphism in exon 8, Nejda, N. et al. observed that both AG and GG genotype were associated with increased risk of CRC compared with AA genotype in Spanish [106]. But other teams failed to find significance in Mexican[51], American[62, 101] or Canadians[97]. Only Raptis, S. et al. studied MLH1 IVS14-19A>G polymorphism but did not obtain significant result[97]. Although H.X. Peng et al. studied the relation of V384D, R217C and rs1799977 polymorphisms with CRC risk, the samples of each genotypes were insufficient to draw reliable conclusion[107]. For PMS2 rs63750451 polymorphism in exon 9, one team explored its relation with CRC risk but show no significance in Polish[100].

DNA nicking related **MMR** polymorphisms

EX01

EXO1, mapped to 1q42-q43, consists of 17 exons

and encodes a protein with 5' to 3' exonuclease activity and RNase H activity, which participates in DNA nicking of MMR. Additionally, EXO1 is the only known active nuclease in human cells MMR[93].

For *EXO1* rs9350 polymorphism in exon 14, Haghighi, M. M. et al. found that CT genotype was associated with 0.17-fold decreased CRC susceptibility compared with CC genotype in Iranian [108]. Another team observed that C allele of rs9350 significantly increased the risk of CRC compared with T allele in American[109]. Importantly, they showed a significant interaction between C allele of rs9350 polymorphism and cigarette smoking in increasing CRC risk.

DSBR pathway gene polymorphisms and sporadic CRC susceptibility

DNA double-strand breaks (DSBs) are highly toxic lesions which result in genetic instability[110]. To preserve genome integrity, a number of DSBR reactions exist in organisms, of which non-homoloend-joining (NHEJ) and homologous gous recombination (HR) are the two most widely used systems[111]. NHEJ is regarded as an error-prone manner and utilizes limited or no homologous DNA for end joining. Bound to the damaged DNA ends to initiate NHEJ, the Ku70/80 heterodimer recruits and triggers the DNA-dependent protein kinase catalytic subunit (DNA-PKcs) which facilitates the downstream repair processes. Then, scaffold proteins XRCC4 and XLF move to the defect domain and combine with DNA Ligase 4 for repairing the lesions[111, 112]. In contrast, HR is largely error free and requires extensive homology for the repair of DNA DSBs. After the recognition of DSBs in HR, the resection of DSBs is completed by the MRE11/RAD50 /NBS1 complex which then generates a 3' ssDNA overhang. BRCA2, RAD51 as well as RAD51 paralogous (Rad51C, Rad51D, XRCC2, XRCC3) bind to the ssDNA tails and form a presynaptic filament. Subsequently, the formation of D loop in strand invasion is initialized and DSBs were repaired by structure-specific nucleases[113].

Homologous recombination (HR)

End resection related DSBR polymorphisms

MREII and NBSI

MRE11, located at chromosome 11q21, contains 22 exons and encodes a protein with 3' to 5' exonuclease and endonuclease activity. *NBS1* is mapped to 8q21.3 and consists of 19 exons and 18 introns. Together with MRE11 and RAD50, NBS1 forms a complex involved in DNA ends resection, which generates 3' single-stranded tails in HR[114].

Table 3. Significant association of MMR pathway gene polymorphisms with sporadic CRC susceptibility.

Variable MEHIN HDIHQual 9222AutorRepulsionGendrymControl Control Avance Avance Control Avance Control Control Control Control Control Control Avance Control				•	, , , ,			•	, ,	
MLH1 3p22.2 es1800734 Promoter Nizam 2013 Malaysian 52 104 AG vs. GG 371(1.42-9.74) N.A. es1800734 Promoter Nizam 2017 Polish 144 151 AG vs. GG 1.09 (0.58-0.31) N.A. Michal Mik 2017 Polish 144 151 AG vs. GG 1.09 (0.58-0.35) N.A. Martinez 2012 Maxican 108 120 AG vs. GG 0.66(0.37-1.17) N.A. es1799977 Exon 8 Nejda, N. 2009 Spanish 140 125 AG vs. GG 0.66(0.37-1.17) N.A. V384D HX. Peng 2016 Chinese 156 311 AA 0.03 (0.02.4) Interaction for cereals VV35-2147 Li G. 2015 Chinese 451 630 CV vs. TT 0.89(0.62-1.26) Interaction for cereals VV51-2147 Li G. 2015 Chinese 451 630 CV vs. TT 0.89(0.62-1.26) Interaction for cereals VV51-2147 Koessler, T. 2008 English 22	Variables	Location	Author	Year	Population	Case	Control	Genotypes	OR(95%CI)	Interaction
rs1800734 Promoter Nizam 2013 Malaysian 52 104 A G vs. GG 2.7(1,42-9.74) N.A. Adves. GG 2.3(0,856-3.1) Michal Mik 2017 Polish 144 151 AG vs. GG 2.3(0,856-3.1) Martinez 2013 Spanish 183 2.6 AG vs. GG 0.58(0,856-3.1) Martinez 2012 Mexican 108 120 AG vs. GG 0.58(0,930-966) N.A. rs1799977 Exon 8 Nejda, N. 2002 Mexican 108 120 AG vs. AG 2.36(1,8439) N.A. v384D H.X. Peng 2016 Chinese 156 311 AA A03 (0-0.24) Martinez V1515-241P-C Li, G. 2015 Chinese 451 630 CT vs. TT 0.62(0.46-0.83) Interaction for cereals V1515-241P-C Li, G. 2015 Chinese 451 630 CT vs. TT 0.62(0.46-0.83) Interaction for cereals v159928 Intron 7 Koessler, T. 2008 English 229 2284 AT vs. AA 0.58(0.62-1.26) <td>MLH1</td> <td>3p22.2</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	MLH1	3p22.2								
AA vs. GG 236(0.88-6.31) Michał Mik 2017 Polish 144 151 AG vs. AA 100 (0.58-2.05) GG vs. AA 207 (1.11-383) GG vs. AA 207 (1.11-383) AG vs. GG 116(0.55-3.91) Prestromedia Muniz 2012 Mexican 108 120 AG vs. GG 0.58(0.39-0.66) N.A. Prestromedia Muniz 2012 Mexican 108 120 AG vs. GG 0.32(0.130-79) Prestromedia Nejda, N. 2009 Spanish 140 125 AG vs. GG 0.32(0.130-79) V384D HX. Peng 2016 Chinese 156 311 AA 0.03 (0.024) AT 2321-p16.3 Iti, G. 2015 Chinese 451 630 CT vs. TT 0.62(0.46-0.83) Interaction for cereals VIS11-107A>G Li, G. 2015 Chinese 451 630 AG vs. AA 0.5(0.32-1.10) N.A. rs1999205 Intron 7 Koessler, T. 2008 English 229 2284 AT vs. AA 0.76(0.32-1.10) N.A. rs19919	rs1800734	Promoter	Nizam	2013	Malaysian	52	104	AG vs. GG	3.71(1.42-9.74)	N.A.
								AA vs. GG	2.36(0.88-6.31)	
			Michal Mik	2017	Polish	144	151	AG vs.AA	1.09 (0.58-2.05)	
$ \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$								GG vs AA	2.07 (1.11-3.83)	
			Martinez	2013	Spanish	183	236	AG vs. GG	0.58(0.39-0.86)	N.A.
								AA vs. GG	1.16(0.35-3.91)	
rs1799977 Exon 8 Nejda, N. 2009 Spanish 140 125 AG vs. GG 0.230(1.34.7.9) V384D HX. Peng 2016 Chinese 156 311 AA 0.30 (00.24) V384D HX. Peng 2016 Chinese 156 311 AA 0.33 (00.24) V384D Li, G. 2015 Chinese 156 311 AA 0.33 (00.24) MSH2 2p21-p16.3 Tr oo (0.50) Tr oo (0.50) Interaction for cereals V0S15-2147>C Li, G. 2015 Chinese 451 630 AG vs. AA 0.610.420.880 Interaction for cereals V0S15-107/NS Li, G. 2015 Chinese 451 630 AG vs. AA 0.610.420.800 Interaction for cereals V0S14107A>C Keessler, T. 2008 English 2299 2284 AT vs. AA 1.05(0.60-9.9) Interaction for cereals V111107A>C Koessler, T. 2008 English 229 2284 CT vs. CC 0.90(0.76-1.06) N.A. v11111510 Koessler, T. 2008			Muniz	2012	Mexican	108	120	AG vs. GG	0.66(0.37-1.17)	N.A.
								AA vs. GG	0.32(0.13-0.79)	
V384D H.X. Peng 2016 Chinese 156 311 AA 0.03 (0-024) MSH2 2p21-p16.3 T 28.18 (S1-∞) TT ∞ (0-∞) MSH2 2p21-p16.3 Li, G. 2015 Chinese 451 630 CT vs. TT 0.82(0.46-0.83) Interaction for cereals IVS115-214T>C Li, G. 2015 Chinese 451 630 CT vs. TT 0.82(0.46-0.83) Interaction for cereals IVS11+107A>C Li, G. 2015 Chinese 451 630 AG vs. AA 0.61(0.42-0.88) Interaction for cereals rs1981928 Intron 7 Koessler, T. 2008 English 2299 2284 AT vs. AA 1.05(0.93-1.18) N.A. rs1979005 Intron 20 Koessler, T. 2008 English 2299 2284 CT vs. CC 0.90(0.76-1.06) N.A. rs26279 Exon 23 Koessler, T. 2008 English 2299 2284 CT vs. CC 0.90(0.76-1.06) N.A. rs1042821 Fron 42 For Zelga 2017 Polish 200 AG vs. AA	rs1799977	Exon 8	Nejda, N.	2009	Spanish	140	125	AG vs. AA	2.55(1.48-4.39)	N.A.
V384D H.X. Peng 2016 Chinese 156 311 AA 0.03 (0.0.24) AT 28.18 (3.81-∞) TT weight (3.81-∞) TT MSH2 2p21-p16.3 Interaction for cereals 0.60 0.60 Interaction for cereals CC vs. TT 0.89(0.62-1.26) Interaction for cereals MSH2 2p21-p16.3 Li, G. 2015 Chinese 451 630 CT vs. TT 0.89(0.62-1.26) Interaction for cereals RSH3 GG vs. AA 0.61(0.42-0.88) Interaction for cereals GG vs. AA 0.76(0.52-1.10) Interaction for cereals MSH3 5q14.1 rs197905 Intron 7 Koessler, T. 2008 English 2299 2284 AG vs. AA 1.05(0.93-1.18) N.A. rs197905 Intron 20 Koessler, T. 2008 English 2299 2284 AG vs. CC 0.90(0.76-1.06) N.A. rs26279 Exon 23 Koessler, T. 2008 English 2299 2284 AG vs. GG 1.04(0.92-1.17) N.A. rs1042821 Exon 1 Piotr Zelga 2017 Polish 200 200 AG vs. GG								GG vs. AA	2.48(1.20-5.11)	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	V384D		H.X. Peng	2016	Chinese	156	311	AA	0.03 (0-0.24)	
MSH2 2p21-p163 T ∞ (0-∞) IVS15-214T>C Li, G. 2015 Chinese 451 630 CT vs. TT 0.62(0.46-0.83) Interaction for cereals IVS15-214T>C Li, G. 2015 Chinese 451 630 CT vs. TT 0.62(0.46-0.83) Interaction for cereals IVS11+107A>C Li, G. 2015 Chinese 451 630 AG vs. AA 0.61(0.420.88) Interaction for cereals rs1981928 Intron 7 Koessler, T. 2008 English 2299 284 AT vs. AA 1.05(0.951.1.8) N.A. rs1979005 Intron 20 Koessler, T. 2008 English 2299 284 CT vs. CC 0.90(0.76-1.06) N.A. rs1979005 Intron 20 Koessler, T. 2008 English 2299 284 AG vs. AA 1.04(0.92-1.17) N.A. rs1042821 Picon 1 Piot Zelga 2017 Polish 200 AG vs. AG 1.04(0.92-1.17) N.A. rs1042821 Promoter Tulupova 2008 Czech 614 614 (GT+TT) vs. GC								AT	28.18 (3.81-∞)	
MSH2 2p21-p16.3 IVS15-214T>C Li, G. 2015 Chinese 451 630 CT vs. TT 0.62(0.46-0.83) Interaction for cereals IVS11+107A>G Li, G. 2015 Chinese 451 630 AG vs. AA 0.61(0.42-0.88) Interaction for cereals IVS11+107A>G Li, G. 2015 Chinese 451 630 AG vs. AA 0.61(0.42-0.88) Interaction for cereals rs1981928 Intron 7 Koessler, T. 2008 English 2299 2284 AT vs. AA 1.05(0.93-1.18) N.A. rs1979005 Intron 20 Koessler, T. 2008 English 2299 2284 CT vs. CC 0.90(0.76-1.06) N.A. rs26279 Exon 23 Koessler, T. 2008 English 2299 2284 AG vs. AA 1.04(0.92-1.17) N.A. rs1042821 Exon 13 Piotr Zelga 2017 Polish 200 200 AG vs. GG 1.69 (1.1-2.61) AA vs. GG 2.08 (0.52-5.42) N.A. rs1042821 Exon 14 Haghighi 2010 Czech 614 614								TT	∞ (0-∞)	
$ \begin{split} \text{WS15-214T>C} & \text{Li, G.} & 2015 \\ \text{WS11+107A>G} & \text{Li, G.} & 2015 \\ \text{Li, G.} & 2015 \\ \text{Chinese} & 451 \\ cd. solution of the constraint of the c$	MSH2	2p21-p16.3								
$ \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	IVS15-214T>C		Li, G.	2015	Chinese	451	630	CT vs. TT	0.62(0.46-0.83)	Interaction for cereals
INVS11+107A>G Li, G. 2015 Chinese 451 630 AG vs. AA 0.61(0.42-0.88) Interaction for cereals rs1981928 Intron 7 Koessler, T. 2008 English 2299 2284 AT vs. AA 0.76(0.52-1.10) N.A. MSH3 5q14.1 Tr vs. AA 0.78(0.62-0.99) N.A. Tr vs. AA 0.78(0.62-0.99) MSH3 5q14.1 English 2299 2284 CT vs. CC 0.90(0.76-1.06) N.A. rs1979005 Intron 20 Koessler, T. 2008 English 2299 2284 CT vs. CC 0.90(0.76-1.06) N.A. rs26279 Exon 23 Koessler, T. 2008 English 2299 2284 CT vs. CC 0.90(0.76-1.06) N.A. rs1042821 Exon 13 Piotr Zelga 2017 Polish 200 200 AG vs. GG 1.69 (1.1-2.61) N.A. rs1042821 Promoter Tulupova 2008 Czech 614 614 (G4+AA) vs. GG 206(0.60-0.99) N.A. rs1042821 Promoter Tulupova 2008 Czech <								CC vs. TT	0.89(0.62-1.26)	
	IVS11+107A>G		Li, G.	2015	Chinese	451	630	AG vs. AA	0.61(0.42-0.88)	Interaction for cereals
rs1981928 Intron 7 Koessler, T. 2008 English 229 2284 AT vs. AA 1.05(0.93-1.18) N.A. MSH3 5q14.1 Tr vs. AA 0.78(0.62-0.99) N.A. Tr vs. AA 0.78(0.62-0.99) N.A. rs1979005 Intron 20 Koessler, T. 2008 English 2299 2284 CT vs. CC 0.90(0.76-1.06) N.A. rs1979005 Intron 20 Koessler, T. 2008 English 2299 2284 AG vs. AA 1.04(0.92-1.17) N.A. rs26279 Exon 12 Piotr Zelga 2017 Polish 200 200 AG vs. GG 1.69 (1.1-2.61) Avs. GG 208 (0.52-8.42) V rs3136228 Promoter Tulupova 2008 Czech 614 614 (GT+TT) vs. GG 1.29(1.02-1.62) N.A. rs1042821 Promoter Tulupova 2008 Czech 614 614 (GA+AA) vs. GG 0.76(0.60-0.98) N.A. rs9350 Exon 14 Haghighi 2010 Iranian 90 98 CT vs.CC 0.69(0.37-1.28) Interaction with smoking								GG vs. AA	0.76(0.52-1.10)	
MSH3 5q14.1 TT vs. AA 0.78(0.62-0.99) MSH3 5q14.1 rs1979005 Intron 20 Koessler, T. 2008 English 2299 2284 CT vs. CC 0.90(0.76-1.06) N.A. rs26279 Exon 23 Koessler, T. 2008 English 2299 2284 AG vs. AA 1.04(0.92-1.17) N.A. MSH6 2p16.3 rs1042821 Exon 1 Piotr Zelga 2017 Polish 200 200 AG vs. AA 1.04(0.92-1.17) N.A. rs1042821 Exon 1 Piotr Zelga 2017 Polish 200 200 AG vs. GG 1.69 (1.1-2.61) rs1042821 Promoter Tulupova 2008 Czech 614 614 (G1+TT) vs. GG 1.29(1.02-1.62) N.A. rs1042821 Promoter Tulupova 2008 Czech 614 614 (G4+AA) vs. GG 0.076(0.60-0.98) N.A. rs1042821 Promoter Tulupova 2008 Czech 614 614 (G4+AA) vs. GG 0.076(0.60-0.98) N.A. rs9950 Exon 14 Haghig	rs1981928	Intron 7	Koessler, T.	2008	English	2299	2284	AT vs. AA	1.05(0.93-1.18)	N.A.
MSH3 5q14.1 rs1979005 Intron 20 Koessler, T. 2008 English 2299 2284 CT vs. CC 0.90(0.76-1.06) N.A. rs26279 Exon 23 Koessler, T. 2008 English 2299 2284 AG vs. AA 1.04(0.92-1.17) N.A. MSH6 2p16.3 rs1042821 Exon 1 Piotr Zelga 2017 Polish 200 200 AG vs. GG 1.69 (1.1-2.61) AA vs. GG 2.08 (0.52-8.42) rs1042821 Exon 1 Piotr Zelga 2017 Polish 200 200 AG vs. GG 1.69 (1.1-2.61) AA vs. GG 2.08 (0.52-8.42) N.A. rs1042821 Promoter Tulupova 2008 Czech 614 614 (GT+TT) vs. GG 1.29(1.02-1.62) N.A. EXO1 1q42-q43 rs9350 Exon 14 Haghighi 2010 Iranian 90 98 CT vs.CC 0.17(0.03-0.82) N.A. rs9350 Exon 14 Haghighi 2010 Iranian 90 98 CT vs.CC 0.69(0.37-1.28) I.30(1.11-1.51) Interaction with smoking					0			TT vs. AA	0.78(0.62-0.99)	
rs1979005 Intron 20 Koessler, T. 2008 English 2299 2284 CT vs. CC 0.90(0.76-1.06) N.A. TT vs. CC 0.41(0.18-0.94) Tr vs. CC 0.41(0.18-0.94) Tr vs. CC 0.41(0.18-0.94) N.A. TT vs. CC 0.41(0.18-0.94) N.A. Second 1.04(0.92-1.17) N.A. GG vs. AA 1.01(0.92-1.17) N.A. Second 1.01(0.92-1.17) N.A. Second 1.01(0.92-1.17) N.A. Second 1.01(0.92-1.17) N.A. Second 1.01(0.92-1.17) N.A. Tr vs. CG 1.09(1.1-2.61) N.A. Tr vs. CG 1.09(1.1-2.61) N.A. N.A. Tr vs. CG 1.29(1.02-1.62) N.A. Second 1.01(1.1-1.61) N.A. Second 1.01(0.92-1.17) N.A. Second 1.01(0	MSH3	5q14.1								
rs26279 Exon 23 Koessler, T. 2008 English 2299 2284 AG vs. AA 1.04(0.92-1.17) N.A. MSH6 2p16.3 rs1042821 Exon 1 Piotr Zelga 2017 Polish 200 200 AG vs. GG 1.69 (1.1-2.61) AA vs. GG 2.08 (0.52-8.42) rs3136228 Promoter Tulupova 2008 Czech 614 614 (GT+TT) vs. GG 1.29(1.02-1.62) N.A. rs1042821 Promoter Tulupova 2008 Czech 614 614 (GA+AA) vs. GG 0.76(0.60-0.98) N.A. exO1 1q42-q43 rs9350 Exon 14 Haghighi 2010 Iranian 90 98 CT vs.CC 0.17(0.03-0.82) N.A. rg3136228 Gao, Y. 2011 American 1338 1503 C allele vs. T allele 1.30(1.11-1.51) Interaction with smoking rg31362 Exon 14 Haghighi 2010 Iranian 90 98 CT vs.CC 0.69(0.37-1.28) N.A. rg1042821 rg1042821 rg1042821 rg1042821 rg1042821 rg1042821 rg197900	rs1979005	Intron 20	Koessler, T.	2008	English	2299	2284	CT vs. CC	0.90(0.76-1.06)	N.A.
rs26279 Exon 23 Koessler, T. 208 English 229 2284 AG vs. AA 1.04(0.92-1.17) N.A. MSH6 2p16.3 rs1042821 Exon 1 Piotr Zelga 2017 Polish 200 200 AG vs. AG 1.69 (1.1-2.61) AA vs. GG 2.08 (0.52-8.42) rs3136228 Promoter Tulupova 2008 Czech 614 614 (GT+TT) vs. GG 1.29(1.02-1.62) N.A. rs1042821 Promoter Tulupova 2008 Czech 614 614 (GT+TT) vs. GG 1.29(1.02-1.62) N.A. rs1042821 Promoter Tulupova 2008 Czech 614 614 (GA+AA) vs. GG 0.76(0.60-0.98) N.A. EXO1 1q42-q43 I Interaction 90 98 CT vs.CC 0.17(0.03-0.82) N.A. rs9350 Exon 14 Haghighi 2010 Iranian 90 98 CT vs.CC 0.69(0.37-1.28) Interaction with smoking Gao, Y. 2011 American 1338 1503 C allele vs. T allele 1.30(1.11-1.51) Interaction with smoking </td <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td>TT vs. CC</td> <td>0.41(0.18-0.94)</td> <td></td>					-			TT vs. CC	0.41(0.18-0.94)	
MSH6 2p16.3 rs1042821 Exon 1 Piotr Zelga 2017 Polish 200 200 AG vs.GG 1.69 (1.1-2.61) AA vs. GG 2.08 (0.52-8.42) rs3136228 Promoter Tulupova 2008 Czech 614 614 (GT+TT) vs. GG 1.29(1.02-1.62) N.A. rs1042821 Promoter Tulupova 2008 Czech 614 614 (GA+AA) vs. GG 0.76(0.60-0.98) N.A. rs1042821 Promoter Tulupova 2008 Czech 614 614 (GA+AA) vs. GG 0.76(0.60-0.98) N.A. EXO1 1q42-q43 rs9350 Exon 14 Haghighi 2010 Iranian 90 98 CT vs.CC 0.17(0.03-0.82) N.A. Tr vs.CC 0.69(0.37-1.28) Gao, Y. 2011 American 1338 1503 C allele vs. T allele 1.30(1.11-1.51) Interaction with smoking Mismatch recognition Mismatch recognition Mismatch recognition Image: State	rs26279	Exon 23	Koessler, T.	2008	English	2299	2284	AG vs. AA	1.04(0.92-1.17)	N.A.
MSH6 2p16.3 rs1042821 Exon 1 Piotr Zelga 2017 Polish 200 200 AG vs.GG 1.69 (1.1-2.61) AA vs. GG 2.08 (0.52-8.42) rs3136228 Promoter Tulupova 2008 Czech 614 614 (GT+TT) vs. GG 1.29(1.02-1.62) N.A. rs1042821 Promoter Tulupova 2008 Czech 614 614 (GA+AA) vs. GG 0.76(0.60-0.98) N.A. EXO1 1q42-q43 rs9350 Exon 14 Haghighi 2010 Iranian 90 98 CT vs.CC 0.17(0.03-0.82) N.A. Tr vs.CC 0.69(0.37-1.28) Gao, Y. 2011 American 1338 1503 C allele vs. T allele 1.30(1.11-1.51) Interaction with smoking Mismatch recognition Image: State					0			GG vs. AA	1.31(1.05-1.62)	
rs1042821 Exon 1 Piotr Zelga 2017 Polish 200 200 AG vs.GG 1.69 (1.1-2.61) rs3136228 Promoter Tulupova 2008 Czech 614 614 (GT+TT) vs. GG 1.29(1.02-1.62) N.A. rs1042821 Promoter Tulupova 2008 Czech 614 614 (GA+AA) vs. GG 0.76(0.60-0.98) N.A. EXO1 1q42-q43 rs9350 Exon 14 Haghighi 2010 Iranian 90 98 CT vs.CC 0.17(0.03-0.82) N.A. rs9350 Exon 14 Haghighi 2010 Iranian 90 98 CT vs.CC 0.69(0.37-1.28) N.A. Gao, Y. 2011 American 1338 1503 C allele vs. T allele 1.30(1.11-1.51) Interaction with smoking Mismatch recognition Image: State stat	MSH6	2p16.3							. ,	
AA vs. GG 2.08 (0.52–8.42) rs3136228 Promoter Tulupova 2008 Czech 614 614 (GT+TT) vs. GG 1.29(1.02-1.62) N.A. rs1042821 Promoter Tulupova 2008 Czech 614 614 (GA+AA) vs. GG 0.76(0.60-0.98) N.A. EXO1 1q42-q43 rs9350 Exon 14 Haghighi 2010 Iranian 90 98 CT vs.CC 0.17(0.03-0.82) N.A. TT vs.CC 0.69(0.37-1.28) Gao, Y. 2011 American 1338 1503 C allele vs. T allele 1.30(1.11-1.51) Interaction with smoking rs1042821 rs1042821 rs1042821 rs1042821 rs1042821 rs1042821 rs1042821 rs1981928 rs1VS11 Mismatch recognition	rs1042821	Exon 1	Piotr Zelga	2017	Polish	200	200	AG vs.GG	1.69 (1.1-2.61)	
rs3136228 Promoter Tulupova 2008 Czech 614 614 (GT+TT) vs. GG 1.29(1.02-1.62) N.A. rs1042821 Promoter Tulupova 2008 Czech 614 614 (GA+AA) vs. GG 0.76(0.60-0.98) N.A. EXO1 1q42-q43 rs9350 Exon 14 Haghighi 2010 Iranian 90 98 CT vs.CC 0.17(0.03-0.82) N.A. Gao, Y. 2011 American 1338 1503 C allele vs. T allele 1.30(1.11-1.51) Interaction with smoking Mismatch recognition rs1981928 rs1VS11 Mismatch recognition			0					AA vs. GG	2.08 (0.52-8.42)	
rs1042821 Promoter Tulupova 2008 Czech 614 614 (GA+AA) vs. GG 0.76(0.60-0.98) N.A. EXO1 1q42-q43 rs9350 Exon 14 Haghighi 2010 Iranian 90 98 CT vs.CC 0.17(0.03-0.82) N.A. TT vs.CC 0.69(0.37-1.28) Gao, Y. 2011 American 1338 1503 C allele vs. T allele 1.30(1.11-1.51) Interaction with smoking Mismatch recognition Ts1042821 rs1981928 rs1VS11 Mismatch recognition	rs3136228	Promoter	Tulupova	2008	Czech	614	614	(GT+TT) vs. GG	1.29(1.02-1.62)	N.A.
EXO1 1q42-q43 rs9350 Exon 14 Haghighi 2010 Iranian 90 98 CT vs.CC 0.17(0.03-0.82) N.A. TT vs.CC 0.69(0.37-1.28) Gao, Y. 2011 American 1338 1503 C allele vs. T allele 1.30(1.11-1.51) Interaction with smoking mismatch recognition mismatch	rs1042821	Promoter	Tulupova	2008	Czech	614	614	(GA+AA) vs. GG	0.76(0.60-0.98)	N.A.
rs9350 Exon 14 Haghighi 2010 Iranian 90 98 CT vs.CC 0.17(0.03-0.82) N.A. Gao, Y. 2011 American 1338 1503 C allele vs. T allele 1.30(1.11-1.51) Interaction with smoking Mismatch recognition Mismatch recognition Mismatch recognition 0.69 75 75	EXO1	1q42-q43	1					· /	· · · ·	
Gao, Y. 2011 American 1338 1503 C allele vs. T allele 0.69(0.37-1.28) Interaction with smoking MSH6 MSH6 Image: Strategy of the strate	rs9350	Exon 14	Haghighi	2010	Iranian	90	98	CT vs.CC	0.17(0.03-0.82)	N.A.
Gao, Y. 2011 American 1338 1503 C allele vs. T allele 1.30(1.11-1.51) Interaction with smoking MSH6 MSH6 rs3136228 rs1042821 rs3136228 rs1042821 MSH2 rs1979005 rs26279 rs1979005 rs26279 Mismatch recognition rs1VS11 rs1VS15			0 0					TT vs.CC	0.69(0.37-1.28)	
MSH2 Mismatch recognition			Gao, Y.	2011	American	1338	1503	C allele vs. T allele	1.30(1.11-1.51)	Interaction with smoking
Mismatch recognition			0.00, 11							8
Mismatch recognition						\frown				rs3136228
MISH2 MISH3 rs1979005 rs26279 MISH2 rs1981928 rs1VS11 rs1VS15					(1	MSH6	\frown			rs1042821
Mismatch recognition					MSH2		MSH3			rs1979005
Mismatch recognition							MSH2			rs26279
Misinatch recognition	Min	ah #222!!!				¢.				rs1981928 rsIVS11
	Iviismat	ch recognition				T				rsIVS15
						1	\bigcirc			
Recruitment of MLH1-PMS2, PCNA	Recruit	ment of MLH1	-PMS2, PCNA				(MLH1)			rs1800734

Naccarati, A. et al. found that CC genotype of *MRE11* rs2155209 polymorphism was associated with decreased risk of CRC compared with TT genotype in Italian[115]. However, they did not find significant relation between CT genotype of *NBS1* rs14448 polymorphism and CRC risk. For *NBS1* rs2735383 polymorphism, Li, J. T. et al. observed that CC genotype correlated with increased CRC susceptibility compared with GG genotype in Chinese[116]. In addition, no significant association was found of *NBS1* rs1805794 polymorphism in exon 5 with CRC susceptibility in Czech population[25].

Strand invasion and exchange related DSBR polymorphisms

XRCC2

XRCC2 is located at chromosome 7q36.1 and comprises three exons and two introns. XRCC2 protein improves the activity of RAD51 which is involved in strand invasion and exchange reactions in HR[117].

Li, X. B. et al. demonstrated significant association of *XRCC2* rs718282 polymorphism with increased CRC risk in Chinese but no significance was found for rs3218384 polymorphism[117]. For *XRCC2* rs3218499 polymorphism, Curtin, K. observed that CC genotype correlated with increased CRC risk compared with CG and GG genotypes in the mixed population of English and American[118]. Additionally, two researches failed to find significant relationship between rs3218536 polymorphism in exon 3 and CRC susceptibility in Polish [119] and American[120].

XRCC3

XRCC3, also known as *CMM6*, is located at chromosome 14q32.3 and contains 10 exons. *XRCC3* encodes a member of Rad51-related proteins which function in the maintenance of chromosome stability and initiation of homologous sequence strand invasion[121].

Controversial results were found for the association between XRCC3 rs861539 C/T polymorphism and CRC risk. Zhao, Y. et al. observed that T allele was a risk factor for CRC in Chinese[44] but C allele indicated higher CRC risk according to Mort, R. et al.'s study in English[122]. Other two teams suggested that CT genotype was related with increased CRC risk compared with CC genotype in Kashmirian[123] and Chinese[121], respectively. However, Mucha, B. et al. suggested that CT genotype significantly decreased CRC risk in Polish[124]. Krupa, R. et al. found that CT genotype significantly decreased risk of CRC but TT genotype correlated with increased susceptibility of CRC in Polish[48]. In addition, some other researches failed to indicate significant association of rs861539 polymorphism with CRC risk in Algerian[78], Polish[119], Indian[54], Czech[25], Chinese[55], Norwegian[41] or American [47, 120]. For rs1799794 and rs1799796 polymorphisms of *XRCC3*, no significant relation was observed in American[120].

RAD51

RAD51, located at chromosome 15q15.1, contains 14 exons and encodes RAD51 which interacts with BRCA1 and BRCA2 in response to the DNA damage in DSBR. RAD51 also cooperates with RAD51 paralogues to handle the strand transfer of DNA in HR[112].

For RAD51 rs1801320 polymorphism, Krupa, R. et al. found that CC genotype was related with decreased CRC risk compared with GG genotype in polish[119]but another team obtained an opposite conclusion in the same population[125]. Nissar, S. et al. suggested that CG genotype was a risk genotype of CRC in Kashmiri[126]. No significant association was found in Yazdanpanahi, N. et al.'s study of RAD51 rs1801320 polymorphism in Iranian[127]. One research investigated the relationship between RAD51 172G/T polymorphism and CRC risk in polish but no significance was found[125]. Mucha, B. et al. indicated that AG genotype of rs5030789 promoter polymorphism was associated with increased CRC susceptibility [128] but no significant association was observed for rs2619679 [128] or rs1801320 polymorphism[129].

RAD52

RAD52 is located at chromosome 12p13.33 and contains 17 exons and 16 introns. RAD52 works as a mediator alone in HR or interacts with RAD51 to participate in the strand invasion and exchange in human cells[112].

Although the relation was studied between several *RAD52* SNPs and CRC risk, only Naccarati, A. et al. found that AA genotype of *RAD52* rs1051669 polymorphism significantly increased CRC risk compared with GG genotype in Italian [130]. For rs11571378, rs7963551, rs6489769 and rs10774474 polymorphisms, no significance was found in relation with CRC susceptibility[130, 131].

Non-homologous end-joining (NHEJ)

End ligation related DSBR polymorphisms

XRCC4

XRCC4, also known as *SSMED*, is mapped to chromosome 5q14.2 and consists of 13 exons and 12 introns. Together with XLF, scaffold protein XRCC4 binds DNA ligase IV in order to seal the breaks in NHEJ[112]. Emami, N. studied the relationship of *XRCC4* rs6869366 and rs28360071 polymorphisms with CRC risk in Iranian population but demonstrated no significance[132].

Figure 4. DSBR pathway gene polymorphisms and sporadic CRC susceptibility.

TABLE 4. Significant association of DSBK pathway gene polymorphisms with sporadic CKC susceptibilit
--

Variables	Location	Author	Year	Population	Case	Control	Genotypes	OR(95%CI)	Interaction
XRCC2	7q36.1								
rs718282		Li, X. B.	2014	Chinese	246	262	(CT+TT) vs. CC	1.65(1.13-2.40)	N.A.
rs3218384	Promoter	Li, X. B.	2014	Chinese	246	262	(CG+CC) vs. GG	1.30(0.89-1.90)	N.A.
rs3218499	Intron 2	Curtin, K.	2009	U.K./U.S.	1252	1422	CC vs. (CG+GG)	1.6(1.1-2.2)	N.A.
XRCC3	14q32.3								
rs861539	Exon 7	Nissar, S.	2014	Kashmirian	120	150	CT vs. CC	2.53 (1.37-4.66)	N.A.
							TT vs. CC	2.29(0.96-5.40)	
		Mucha, B.	2013	Polish	194	204	CT vs. CC	0.57(0.37-0.87)	N.A.
							TT vs. CC	0.82(0.44-1.55)	
		Zhao, Y.	2012	Chinese	485	970	CT vs. CC	1.82(1.24-2.93)	N.A.
							TT vs. CC	1.84(1.15-3.12)	
		Jin, M. J.	2005	Chinese	140	280	CT vs. CC	3.25(1.42-7.42)	None with smoking or drinking
		Krupa, R.	2004	Polish	51	100	CT vs. CC	0.26(0.25-0.27)	N.A.
							TT vs. CC	9.45(8.77-11.65)	
		Tranah, G. J.	2004	American	932	1282	CT vs. CC	0.95(0.78-1.16)	N.A.
							TT vs. CC	0.89(0.68-1.17)	
		Mort, R.	2003	English	246	256	C allele vs. T allele	1.52(1.04-2.22)	N.A.
NBS1	8q21.3								
rs2735383	3'UTR	Li, J. T.	2015	Chinese	1076	1263	CG vs. GG	1.13(0.97-1.41)	N.A.
							CC vs. GG	1.68(1.31-2.13)	
							CC vs. (CG+GG)	1.55 (1.27-1.94)	
rs14448	3'UTR	Naccarati, A.	2016	Italian	1111	1469	TC vs. TT	0.78 (0.51-1.19)	
RAD51	15q15.1								
rs1801320	5' UTR	Nissar, S.	2014	Kashmiri	100	120	CG vs. GG	3.84(3.84-7.20)	N.A.
							CC vs. GG	1.82(0.85-3.88)	
							(CG+CC) vs. GG	3.0(1.6-5.3)	
		Romanowicz	2012	Polish	320	320	CG vs. GG	0.60 (0.38-0.96)	N.A.
							CC vs. GG	5.84 (3.76-9.09)	
		Krupa, R.	2011	Polish	100	100	CG vs. GG	0.60(0.33-1.12)	N.A.
							CC vs. GG	0.06(0.02-0.22)	
rs5030789	Promoter	Mucha, B.	2015	Polish	115	118	AG vs. GG	1.85(1.06-2.26)	N.A.
							AA vs. GG	1.21(0.47-3.12)	
RAD52	12p13.33								
		Naccarati, A.	2016	Italian	1111	1469	GA vs. GG	1.09(0.86-1.37)	

Variables	Location	Author	Year	Population	Case	Control	Genotypes	OR(95%CI)	Interaction
							AA vs.GG	1.78 (1.13-2.80)	
							(GA+AA) vs. GG	1.17 (0.93-1.46)	
							AA vs.(GG+GA)	1.72(1.10-2.69)	
MRE11A	11q21								
rs2155209	3'UTR	Naccarati, A.	2016	Italian	1111	1469	CT vs. TT	0.94 (0.75-1.19)	N.A.
							CC vs.TT	0.66 (0.45-0.96)	
							(TC+CC) vs TT	0.88 (0.70-1.09)	
							CC vs.(TT+TC)	0.68 (0.47-0.97)	

Summary and Future Directions

Genetic polymorphisms in DNA repair genes may modulate DNA repair efficiency thereby influencing the development of sporadic CRC. In recent years, substantial progress has been made towards uncovering the genetic architecture of CRC, which offer great opportunity to benefit the understanding of sporadic CRC development. In this review, we summarized the genetic architecture of DNA repair genes involved in sporadic colorectal carcinogenesis as well as discussed the future directions of how genetic insights improve clinical surveillance, prevention and treatment strategies of sporadic CRC.

Previously, polymorphisms of BER core genes including XRCC1, OGG1, APE1, PARP1, MUTYH and POLB have been linked to altered CRC risk by multiple studies. Important genes involved in NER pathway of XPC, XPD, XPF, XPG and ERCC1 all possess certain polymorphisms which significantly influence CRC susceptibility. For MMR system, key genes of MLH1, MSH2, MSH3, MSH6 and EXO1 demonstrated significant associations with CRC risk. As essential members of DSBR pathway, XRCC2, XRCC3, NBS1, RAD51, RAD52 and MRE11A showed involvement polymorphisms in the determination of CRC susceptibility. The observed significant associations of polymorphisms in BER, NER, MMR and DSBR pathway core genes with sporadic CRC risk suggested an extensive implication of genetic polymorphisms of DNA repair pathways in colorectal carcinogenesis. The promising values of these polymorphisms in CRC prediction and prevention as well as their underlying mechanisms are of great importance. In addition, polymorphisms of DNA repair pathways might be applied in clinical outcomes to guide management of CRC patients. For example, ERCC1 and XRCC1 polymorphisms may influence the clinical outcome of colorectal cancer patients treated with mFOLFOX6 adjuvant chemotherapy[133]. Genetic polymorphisms of MLH3 rs175057 as well as MSH2 rs3771273, rs10188090 and rs10191478 may predict prognosis in patients with locally advanced rectal cancer who received preoperative chemoradiotherapy [134]. XRCC3 Thr241Met polymorphism was associated with

time-to-metastasis of CRC[135]. The specific role of the summarized polymorphisms of our review in clinical application and underlying mechanisms required further studies to elucidate.

Acknowledgements

This study is supported by grants from the National Science and Technology Support Program (2015BAI13B07), Public Welfare Foundation of Liaoning Province (No. 2015005002) and Fund for Scientific Research of The First Hospital Of China Medical University (FHCMU-FSR).

Competing Interests

The authors have declared that no competing interest exists.

References

- Roos WP, Thomas AD, Kaina B: DNA damage and the balance between survival and death in cancer biology. *Nature reviews Cancer* 2016, 16(1):20-33.
 Decordier I, Loock KV, Kirsch-Volders M: Phenotyping for DNA repair
- capacity. *Mutat Res* 2010, 705(2):107-129.
 Siegel RL, Miller KD, Jemal A: Cancer statistics, 2015. *CA: a cancer journal for*
- clinicians 2015, 65(1):5-29.
 Schreuders EH, Ruco A, Rabeneck L, Schoen RE, Sung JJ, Young GP, Kuipers EJ: Colorectal cancer screening: a global overview of existing programmes. *Gut* 2015, 64(10):1637-1649.
- Wallace SS: Base excision repair: a critical player in many games. DNA Repair (Amst) 2014, 19:14-26.
- Krokan HE, Bjoras M: Base Excision Repair. Cold Spring Harbor Perspectives in Biology 2013, 5(4):a012583-a012583.
- Parsons JL, Dianov GL: Co-ordination of base excision repair and genome stability. DNA Repair (Amst) 2013, 12(5):326-333.
- Patrono C, Sterpone S, Testa A, Cozzi R: Polymorphisms in base excision repair genes: Breast cancer risk and individual radiosensitivity. *World journal of clinical oncology* 2014, 5(5):874-882.
- Dianov GL, Hubscher U: Mammalian base excision repair: the forgotten archangel. Nucleic Acids Res 2013, 41(6):3483-3490.
- Sharma RA, Dianov GL: Targeting base excision repair to improve cancer therapies. Mol Aspects Med 2007, 28(3-4):345-374.
- Liu Y, Wilson SH: DNA base excision repair: a mechanism of trinucleotide repeat expansion. *Trends in biochemical sciences* 2012, 37(4):162-172.
- Canbay E, Cakmakoglu B, Zeybek U, Sozen S, Cacina C, Gulluoglu M, Balik E, Bulut T, Yamaner S, Bugra D: Association of APE1 and hOGG1 polymorphisms with colorectal cancer risk in a Turkish population. *Curr Med Res Opin* 2011, 27(7):1295-1302.
- Moreno V, Gemignani F, Landi S, Gioia-Patricola L, Chabrier A, Blanco I, Gonzalez S, Guino E, Capella G, Canzian F: Polymorphisms in genes of nucleotide and base excision repair: risk and prognosis of colorectal cancer. *Clin Cancer Res* 2006, 12(7 Pt 1):2101-2108.
- Przybylowska K, Kabzinski J, Sygut A, Dziki L, Dziki A, Majsterek I: An association selected polymorphisms of XRCC1, OGG1 and MUTYH gene and the level of efficiency oxidative DNA damage repair with a risk of colorectal cancer. *Mutat Res* 2013, 745-746:6-15.
- Zhang SH, Wang LA, Li Z, Peng Y, Cun YP, Dai N, Cheng Y, Xiao H, Xiong YL, Wang D: APE1 polymorphisms are associated with colorectal cancer susceptibility in Chinese Hans. World J Gastroenterol 2014, 20(26):8700-8708.
- Sameer AS, Nissar S, Abdullah S, Chowdri NA, Siddiqi MA: DNA repair gene 8-oxoguanine DNA glycosylase Ser326Cys polymorphism and colorectal cancer risk in a Kashmiri population. DNA Cell Biol 2012, 31(4):541-546.
- Engin AB, Karahalil B, Engin A, Karakaya AE: Oxidative stress, Helicobacter pylori, and OGG1 Ser326Cys, XPC Lys939Gln, and XPD Lys751Gln

polymorphisms in a Turkish population with colorectal carcinoma. *Genet Test Mol Biomarkers* 2010, 14(4):559-564.

- Curtin K, Samowitz WS, Wolff RK, Ulrich CM, Caan BJ, Potter JD, Slattery ML: Assessing tumor mutations to gain insight into base excision repair sequence polymorphisms and smoking in colon cancer. *Cancer Epidemiol Biomarkers Prev* 2009, 18(12):3384-3388.
- Sliwinski T, Krupa R, Wisniewska-Jarosinska M, Lech J, Morawiec Z, Chojnacki J, Blasiak J: No association between the Arg194Trp and Arg399Gln polymorphisms of the XRCC1 gene and colorectal cancer risk and progression in a Polish population. *Exp Oncol* 2008, 30(3):253-254.
- Kasahara M, Osawa K, Yoshida K, Miyaishi A, Osawa Y, Inoue N, Tsutou A, Tabuchi Y, Tanaka K, Yamamoto M *et al*: Association of MUTYH Gln324His and APEX1 Asp148Glu with colorectal cancer and smoking in a Japanese population. J Exp Clin Cancer Res 2008, 27:49.
- Kury S, Buecher B, Robiou-du-Pont S, Scoul C, Colman H, Le Neel T, Le Houerou C, Faroux R, Ollivry J, Lafraise B *et al*: Low-penetrance alleles predisposing to sporadic colorectal cancers: a French case-controlled genetic association study. *BMC Cancer* 2008, 8:326.
- Stern MC, Conti DV, Siegmund KD, Corral R, Yuan JM, Koh WP, Yu MC: DNA repair single-nucleotide polymorphisms in colorectal cancer and their role as modifiers of the effect of cigarette smoking and alcohol in the Singapore Chinese Health Study. *Cancer Epidemiol Biomarkers Prev* 2007, 16(11):2363-2372.
- 23. Hansen R, Saebo M, Skjelbred CF, Nexo BA, Hagen PC, Bock G, Bowitz Lothe IM, Johnson E, Aase S, Hansteen IL *et al*: GPX Pro198Leu and OGG1 Ser326Cys polymorphisms and risk of development of colorectal adenomas and colorectal cancer. *Cancer Lett* 2005, 229(1):85-91.
- 24. Lai CY, Hsieh LL, Tang R, Santella RM, Chang-Chieh CR, Yeh CC: Association between polymorphisms of APE1 and OGG1 and risk of colorectal cancer in Taiwan. *World J Gastroenterol* 2016, 22(12):3372-3380.
- Pardini B, Naccarati A, Novotny J, Smerhovsky Z, Vodickova L, Polakova V, Hanova M, Slyskova J, Tulupova E, Kumar R et al: DNA repair genetic polymorphisms and risk of colorectal cancer in the Czech Republic. *Mutat Res* 2008, 638(1-2):146-153.
- Tao H, Shinmura K, Suzuki M, Kono S, Mibu R, Tanaka M, Kakeji Y, Maehara Y, Okamura T, Ikejiri K *et al*: Association between genetic polymorphisms of the base excision repair gene MUTYH and increased colorectal cancer risk in a Japanese population. *Cancer Sci* 2008, 99(2):355-360.
- Laev SS, Salakhutdinov NF, Lavrik OI: Inhibitors of nuclease and redox activity of apurinic/apyrimidinic endonuclease 1/redox effector factor 1 (APE1/Ref-1). *Bioorganic & medicinal chemistry* 2017, 25(9):2531-2544.
- Kabzinski J, Majsterek I, Mik M, Dziki A, Dziki L, Maciejczak L: Impact of APEX Ile64val Gene Polymorphisms of DNA Repair Ber System on Modulation of the Risk of Colorectal Cancer in the Polish Population. *Pol Przegl Chir* 2015, 87(3):121-123.
- Berndt SI, Huang WY, Fallin MD, Helzlsouer KJ, Platz EA, Weissfeld JL, Church TR, Welch R, Chanock SJ, Hayes RB: Genetic variation in base excision repair genes and the prevalence of advanced colorectal adenoma. *Cancer Res* 2007, 67(3):1395-1404.
- Jelonek K, Gdowicz-Klosok A, Pietrowska M, Borkowska M, Korfanty J, Rzeszowska-Wolny J, Widlak P: Association between single-nucleotide polymorphisms of selected genes involved in the response to DNA damage and risk of colon, head and neck, and breast cancers in a Polish population. J Appl Genet 2010, 51(3):343-352.
- Santos JC, Funck A, Silva-Fernandes IJ, Rabenhorst SH, Martinez CA, Ribeiro ML: Effect of APE1 T2197G (Asp148Glu) polymorphism on APE1, XRCC1, PARP1 and OGG1 expression in patients with colorectal cancer. *Int J Mol Sci* 2014, 15(10):17333-17343.
- Li Y, Li S, Wu Z, Hu F, Zhu L, Zhao X, Cui B, Dong X, Tian S, Wang F et al: Polymorphisms in genes of APE1, PARP1, and XRCC1: risk and prognosis of colorectal cancer in a northeast Chinese population. *Med Oncol* 2013, 30(2):505.
- Ray Chaudhuri A, Nussenzweig A: The multifaceted roles of PARP1 in DNA repair and chromatin remodelling. *Nature reviews Molecular cell biology* 2017, 18(10):610-621.
- Alhadheq AM, Purusottapatnam Shaik J, Alamri A, Aljebreen AM, Alharbi O, Almadi MA, Alhadeq F, Azzam NA, Semlali A, Alanazi M *et al*: The Effect of Poly(ADP-ribose) Polymerase-1 Gene 3'Untranslated Region Polymorphism in Colorectal Cancer Risk among Saudi Cohort. *Dis Markers* 2016, 2016:8289293.
- Kaufman BA, Van Houten B: POLB: A new role of DNA polymerase beta in mitochondrial base excision repair. DNA Repair (Amst) 2017, 60:A1-A5.
- Dehe PM, Gaillard PH: Control of structure-specific endonucleases to maintain genome stability. *Nature reviews Molecular cell biology* 2017, 18(5):315-330.
- Liu L, Zhou C, Zhou L, Peng L, Li D, Zhang X, Zhou M, Kuang P, Yuan Q, Song X et al: Functional FEN1 genetic variants contribute to risk of hepatocellular carcinoma, esophageal cancer, gastric cancer and colorectal cancer. *Carcinogenesis* 2012, 33(1):119-123.
- Nissar S, Sameer AS, Rasool R, Chowdri NA, Rashid F: Polymorphism of the DNA Repair Gene XRCC1 (Arg194Trp) and its role in Colorectal Cancer in Kashmiri Population: a Case Control Study. *Asian Pac J Cancer Prev* 2015, 16(15):6385-6390.
- Dai Q, Luo H, Li XP, Huang J, Zhou TJ, Yang ZH: XRCC1 and ERCC1 polymorphisms are related to susceptibility and survival of colorectal cancer in the Chinese population. *Mutagenesis* 2015, 30(3):441-449.

- Yin G, Morita M, Ohnaka K, Toyomura K, Hamajima N, Mizoue T, Ueki T, Tanaka M, Kakeji Y, Maehara Y et al: Genetic polymorphisms of XRCC1, alcohol consumption, and the risk of colorectal cancer in Japan. J Epidemiol 2012, 22(1):64-71.
- 41. Skjelbred CF, Saebo M, Wallin H, Nexo BA, Hagen PC, Lothe IM, Aase S, Johnson E, Hansteen IL, Vogel U *et al*: Polymorphisms of the XRCC1, XRCC3 and XPD genes and risk of colorectal adenoma and carcinoma, in a Norwegian cohort: a case control study. *BMC Cancer* 2006, 6:67.
- Hong YC, Lee KH, Kim WC, Choi SK, Woo ZH, Shin SK, Kim H: Polymorphisms of XRCC1 gene, alcohol consumption and colorectal cancer. *Int J Cancer* 2005, 116(3):428-432.
- Abdel-Rahman SZ, Soliman AS, Bondy ML, Omar S, El-Badawy SA, Khaled HM, Seifeldin IA, Levin B: Inheritance of the 194Trp and the 399Gln variant alleles of the DNA repair gene XRCC1 are associated with increased risk of early-onset colorectal carcinoma in Egypt. *Cancer Lett* 2000, 159(1):79-86.
- Zhao Y, Deng X, Wang Z, Wang Q, Liu Y: Genetic polymorphisms of DNA repair genes XRCC1 and XRCC3 and risk of colorectal cancer in Chinese population. Asian Pac J Cancer Prev 2012, 13(2):665-669.
- Procopciuc LM, Osian G: Lys751Gln XPD and Arg399Gln XRCC1 in Romanians. Association with sporadic colorectal cancer risk and different stages of carcinomas. *Chirurgia (Bucur)* 2013, 108(5):711-718.
- Poomphakwaen K, Promthet S, Suwanrungruang K, Chopjitt P, Songserm N, Wiangnon S: XRCC1 gene polymorphism, diet and risk of colorectal cancer in Thailand. Asian Pac J Cancer Prev 2014, 15(17):7479-7486.
- Stern MC, Siegmund KD, Corral R, Haile RW: XRCC1 and XRCC3 polymorphisms and their role as effect modifiers of unsaturated fatty acids and antioxidant intake on colorectal adenomas risk. *Cancer Epidemiol Biomarkers Prev* 2005, 14(3):609-615.
- Krupa R, Blasiak J: An association of polymorphism of DNA repair genes XRCC1 and XRCC3 with colorectal cancer. J Exp Clin Cancer Res 2004, 23(2):285-294.
- Gao CM, Ding JH, Li SP, Liu YT, Cao HX, Wu JZ, Tang JH, Tajima K: Polymorphisms in XRCC1 gene, alcohol drinking, and risk of colorectal cancer: a case-control study in Jiangsu Province of China. Asian Pac J Cancer Prev 2014, 14(11):6613-6618.
- Khan NP, Pandith AA, Yousuf A, Khan NS, Khan MS, Bhat IA, Nazir ZW, Wani KA, Hussain MU, Mudassar S: The XRCC1 Arg399Gln gene polymorphism and risk of colorectal cancer: a study in Kashmir. *Asian Pac J Cancer Prev* 2013, 14(11):6779-6782.
- Muniz-Mendoza R, Ayala-Madrigal ML, Partida-Perez M, Peregrina-Sandoval J, Leal-Ugarte E, Macias-Gomez N, Peralta-Leal V, Meza-Espinoza JP, Moreno-Ortiz JM, Ramirez-Ramirez R et al: MLH1 and XRCC1 polymorphisms in Mexican patients with colorectal cancer. *Genet Mol Res* 2012, 11(3):2315-2320.
- Gsur A, Bernhart K, Baierl A, Feik E, Fuhrlinger G, Hofer P, Leeb G, Mach K, Micksche M: No association of XRCC1 polymorphisms Arg194Trp and Arg399Gln with colorectal cancer risk. *Cancer Epidemiol* 2011, 35(5):e38-41.
- Engin AB, Karahalil B, Karakaya AE, Engin A: Association between XRCC1 ARG399GLN and P53 ARG72PRO polymorphisms and the risk of gastric and colorectal cancer in Turkish population. *Arth Hig Rada Toksikol* 2011, 62(3):207-214.
- Wang J, Zhao Y, Jiang J, Gajalakshmi V, Kuriki K, Nakamura S, Akasaka S, Ishikawa H, Suzuki S, Nagaya T *et al*: Polymorphisms in DNA repair genes XRCC1, XRCC3 and XPD, and colorectal cancer risk: a case-control study in an Indian population. *J Cancer Res Clin Oncol* 2010, 136(10):1517-1525.
- Yeh CC, Sung FC, Tang R, Chang-Chieh CR, Hsieh LL: Association between polymorphisms of biotransformation and DNA-repair genes and risk of colorectal cancer in Taiwan. J Biomed Sci 2007, 14(2):183-193.
- Karam RA, Al Jiffry BO, Al Saeed M, Abd El Rahman TM, Hatem M, Amer MG: DNA repair genes polymorphisms and risk of colorectal cancer in Saudi patients. Arab journal of gastroenterology : the official publication of the Pan-Arab Association of Gastroenterology 2016, 17(3):117-120.
- Kamileri I, Karakasilioti I, Garinis GA: Nucleotide excision repair: new tricks with old bricks. *Trends in genetics : TIG* 2012, 28(11):566-573.
- Marteijn JA, Lans H, Vermeulen W, Hoeijmakers JH: Understanding nucleotide excision repair and its roles in cancer and ageing. *Nature reviews Molecular cell biology* 2014, 15(7):465-481.
- Liu J, He C, Xing C, Yuan Y: Nucleotide excision repair related gene polymorphisms and genetic susceptibility, chemotherapeutic sensitivity and prognosis of gastric cancer. *Mutat Res* 2014, 765:11-21.
- 60. Spivak G: Nucleotide excision repair in humans. DNA Repair (Amst) 2015, 36:13-18.
- Cleaver JE: Cancer in xeroderma pigmentosum and related disorders of DNA repair. Nature reviews Cancer 2005, 5(7):564-573.
- 62. Joshi AD, Corral R, Siegmund KD, Haile RW, Le Marchand L, Martinez ME, Ahnen DJ, Sandler RS, Lance P, Stern MC: Red meat and poultry intake, polymorphisms in the nucleotide excision repair and mismatch repair pathways and colorectal cancer risk. *Carcinogenesis* 2009, 30(3):472-479.
- Hansen RD, Sorensen M, Tjonneland A, Overvad K, Wallin H, Raaschou-Nielsen O, Vogel U: XPA A23G, XPC Lys939Gln, XPD Lys751Gln and XPD Asp312Asn polymorphisms, interactions with smoking, alcohol and dietary factors, and risk of colorectal cancer. *Mutat Res* 2007, 619(1-2):68-80.
- Nemzow L, Lubin A, Zhang L, Gong F: XPC: Going where no DNA damage sensor has gone before. DNA Repair (Amst) 2015, 36:19-27.

- Ahmad Aizat AA, Siti Nurfatimah MS, Aminudin MM, Ankathil R: XPC Lys939GIn polymorphism, smoking and risk of sporadic colorectal cancer among Malaysians. World J Gastroenterol 2013, 19(23):3623-3628.
- 66. Liu D, Wu HZ, Zhang YN, Kang H, Sun MJ, Wang EH, Yang XL, Lian MQ, Yu ZJ, Zhao L *et al*: DNA repair genes XPC, XPG polymorphisms: relation to the risk of colorectal carcinoma and therapeutic outcome with Oxaliplatin-based adjuvant chemotherapy. *Mol Carcinog* 2012, 51 Suppl 1:E83-93.
- Hua RX, Zhu J, Jiang DH, Zhang SD, Zhang JB, Xue WQ, Li XZ, Zhang PF, He J, Jia WH: Association of XPC Gene Polymorphisms with Colorectal Cancer Risk in a Southern Chinese Population: A Case-Control Study and Meta-Analysis. *Genes* 2016, 7(10):73.
- Mucha B, Pytel D, Markiewicz L, Cuchra M, Szymczak I, Przybylowska-Sygut K, Dziki A, Majsterek I, Dziki L: Nucleotide Excision Repair Capacity and XPC and XPD Gene Polymorphism Modulate Colorectal Cancer Risk. *Clinical colorectal cancer* 2018, 17(2):e435-e441.
- 69. Gil J, Ramsey D, Stembalska A, Karpinski P, Pesz KA, Laczmanska I, Leszczynski P, Grzebieniak Z, Sasiadek MM: The C/A polymorphism in intron 11 of the XPC gene plays a crucial role in the modulation of an individual's susceptibility to sporadic colorectal cancer. *Mol Biol Rep* 2012, 39(1):527-534.
- Sun K, Gong A, Liang P: Predictive impact of genetic polymorphisms in DNA repair genes on susceptibility and therapeutic outcomes to colorectal cancer patients. *Tumour Biol* 2015, 36(3):1549-1559.
- Paszkowska-Szczur K, Scott RJ, Gorski B, Cybulski C, Kurzawski G, Dymerska D, Gupta S, van de Wetering T, Masojc B, Kashyap A *et al*: Polymorphisms in nucleotide excision repair genes and susceptibility to colorectal cancer in the Polish population. *Mol Biol Rep* 2015, 42(3):755-764.
- 72. Steck SE, Butler LM, Keku T, Antwi S, Galanko J, Sandler RS, Hu JJ: Nucleotide excision repair gene polymorphisms, meat intake and colon cancer risk. *Mutat Res* 2014, 762:24-31.
- Kabzinski J, Przybylowska K, Dziki L, Dziki A, Majsterek I: An association of selected ERCC2 and ERCC5 genes polymorphisms, the level of oxidative DNA damage and its repair efficiency with a risk of colorectal cancer in Polish population. *Cancer Biomark* 2015, 15(4):413-423.
- Ni M, Zhang WZ, Qiu JR, Liu F, Li M, Zhang YJ, Liu Q, Bai J: Association of ERCC1 and ERCC2 polymorphisms with colorectal cancer risk in a Chinese population. *Sci Rep* 2014, 4:4112.
- Chang WS, Yueh TC, Tsai CW, Ji HX, Wu CN, Wang SC, Lai YL, Hsu SW, Hsieh MH, Hsiao CL et al: Contribution of DNA Repair Xeroderma Pigmentosum Group D Genotypes to Colorectal Cancer Risk in Taiwan. Anticancer Res 2016, 36(4):1657-1663.
- Rezaei H, Motovali-Bashi M, Khodadad K, Elahi A, Emami H, Naddaffnia H: Relationship between XPD Lys 751 Gln polymorphism and colorectal cancer risk: a case-control study in a population-based study. *Gastroenterol Hepatol Bed Bench* 2013, 6(1):18-24.
- Stern MC, Siegmund KD, Conti DV, Corral R, Haile RW: XRCC1, XRCC3, and XPD polymorphisms as modifiers of the effect of smoking and alcohol on colorectal adenoma risk. *Cancer Epidemiol Biomarkers Prev* 2006, 15(12):2384-2390.
- Moghtit FZ, Aberkane MS, Le Morvan V, Louhibi L, Bellot R, Bousahba A, Megaiz A, Fodil M, Mediene-Benchekor S, Zemani-Fodil F et al: No association between XRCC3 Thr241Met and XPD Lys751Gln polymorphisms and the risk of colorectal cancer in West Algerian population: a case-control study. Med Oncol 2014, 31(5):942.
- 79. Sliwinski T, Krupa R, Wisniewska-Jarosinska M, Pawlowska E, Lech J, Chojnacki J, Blasiak J: Common polymorphisms in the XPD and hOGG1 genes are not associated with the risk of colorectal cancer in a Polish population. *Tohoku J Exp Med* 2009, 218(3):185-191.
- Liu T, Huang J: Replication protein A and more: single-stranded DNA-binding proteins in eukaryotic cells. Acta biochimica et biophysica Sinica 2016, 48(7):665-670.
- Naccarati A, Pardini B, Stefano L, Landi D, Slyskova J, Novotny J, Levy M, Polakova V, Lipska L, Vodicka P: Polymorphisms in miRNA-binding sites of nucleotide excision repair genes and colorectal cancer risk. *Carcinogenesis* 2012, 33(7):1346-1351.
- Hou R, Liu Y, Feng Y, Sun L, Shu Z, Zhao J, Yang S: Association of single nucleotide polymorphisms of ERCC1 and XPF with colorectal cancer risk and interaction with tobacco use. *Gene* 2014, 548(1):1-5.
- Yang H, Li G, Li WF: Association between ERCC1 and XPF polymorphisms and risk of colorectal cancer. *Genet Mol Res* 2015, 14(1):700-705.
- Yueh TC, Chou AK, Gong CL, Fu CK, Pei JS, Wu MH, Tsai CW, Chang WS, Hsiao CL, Yen ST *et al*: The Contribution of Excision Repair Cross-complementing Group 1 Genotypes to Colorectal Cancer Susceptibility in Taiwan. *Anticancer Res* 2017, 37(5):2307-2313.
- Zhang Q, Zheng X, Li X, Sun D, Xue P, Zhang G, Xiao M, Cai Y, Jin C, Yang J et al: The polymorphisms of miRNA-binding site in MLH3 and ERCC1 were linked to the risk of colorectal cancer in a case-control study. *Cancer medicine* 2018, 7(4):1264-1274.
- Skjelbred CF, Saebo M, Nexo BA, Wallin H, Hansteen IL, Vogel U, Kure EH: Effects of polymorphisms in ERCC1, ASE-1 and RAI on the risk of colorectal carcinomas and adenomas: a case control study. *BMC Cancer* 2006, 6:175.
- Kabzinski J, Majsterek I, Dziki A, Mik M. The Role of the XPF Gene Polymorphism (Xrcc4) Ser835ser in the Risk of Malignant Transformation of Cells in the Colorectal Cancer. *Pol Przegl Chir* 2015, 87(2):83-85.

- Du H, Zhang X, Du M, Guo N, Chen Z, Shu Y, Zhang Z, Wang M, Zhu L: Association study between XPG Asp1104His polymorphism and colorectal cancer risk in a Chinese population. *Sci Rep* 2014, 4:6700.
- Hua RX, Zhuo ZJ, Zhu J, Zhang SD, Xue WQ, Zhang JB, Xu HM, Li XZ, Zhang PF, He J et al: XPG Gene Polymorphisms Contribute to Colorectal Cancer Susceptibility: A Two-Stage Case-Control Study. Journal of Cancer 2016, 7(12):1731-1739.
- Fu D, Calvo JA, Samson LD: Balancing repair and tolerance of DNA damage caused by alkylating agents. *Nature reviews Cancer* 2012, 12(2):104-120.
- Li GM: Mechanisms and functions of DNA mismatch repair. Cell research 2008, 18(1):85-98.
- Friedhoff P, Li P, Gotthardt J: Protein-protein interactions in DNA mismatch repair. DNA Repair (Amst) 2016, 38:50-57.
- Goellner EM, Putnam CD, Kolodner RD: Exonuclease 1-dependent and independent mismatch repair. DNA Repair (Amst) 2015, 32:24-32.
- Edelbrock MA, Kaliyaperumal S, Williams KJ: Structural, molecular and cellular functions of MSH2 and MSH6 during DNA mismatch repair, damage signaling and other noncanonical activities. *Mutat Res* 2013, 743-744:53-66.
- Li G, Hu F, Yuan F, Fan J, Yu Z, Wu Z, Zhao X, Li Y, Li S, Rong J et al: Intronic and promoter polymorphisms of hMLH1/hMSH2 and colorectal cancer risk in Heilongjiang Province of China. J Cancer Res Clin Oncol 2015, 141(8):1393-1404.
- Koessler T, Oestergaard MZ, Song H, Tyrer J, Perkins B, Dunning AM, Easton DF, Pharoah PD: Common variants in mismatch repair genes and risk of colorectal cancer. *Gut* 2008, 57(8):1097-1101.
- Raptis S, Mrkonjic M, Green RC, Pethe VV, Monga N, Chan YM, Daftary D, Dicks E, Younghusband BH, Parfrey PS *et al*: MLH1 -93G>A promoter polymorphism and the risk of microsatellite-unstable colorectal cancer. *J Natl Cancer Inst* 2007, 99(6):463-474.
- Mik M, Dziki L, Malinowska K, Trzcinski R, Majsterek I, Dziki A: Polymorphism of MSH2 Gly322Asp and MLH1 -93G>A in non-familial colon cancer - a case-controlled study. *Archives of medical science : AMS* 2017, 13(6):1295-1302.
- Mrkonjic M, Raptis S, Green RC, Monga N, Daftary D, Dicks E, Younghusband HB, Parfrey PS, Gallinger SS, McLaughlin JR et al: MSH2 118T>C and MSH6 159C>T promoter polymorphisms and the risk of colorectal cancer. *Carcinogenesis* 2007, 28(12):2575-2580.
- Zelga P, Przybylowska-Sygut K, Zelga M, Dziki A, Majsterek I: The 116G > A MSH6 and IVS1-1121C > T PMS2 Genes Polymorphisms Modulate the Risk of the Sporadic Colorectal Cancer Development in Polish Population. *Pathol* Oncol Res 2017, 24(2):231-235.
- 101. Campbell PT, Curtin K, Ulrich CM, Samowitz WS, Bigler J, Velicer CM, Caan B, Potter JD, Slattery ML: Mismatch repair polymorphisms and risk of colon cancer, tumour microsatellite instability and interactions with lifestyle factors. *Gut* 2009, 58(5):661-667.
- 102. Tulupova E, Kumar R, Hanova M, Slyskova J, Pardini B, Polakova V, Naccarati A, Vodickova L, Novotny J, Halamkova J et al: Do polymorphisms and haplotypes of mismatch repair genes modulate risk of sporadic colorectal cancer? *Mutat Res* 2008, 648(1-2):40-45.
- 103. de Barros AC, Takeda AAS, Dreyer TR, Velazquez-Campoy A, Kobe B, Fontes MRM: DNA mismatch repair proteins MLH1 and PMS2 can be imported to the nucleus by a classical nuclear import pathway. *Biochimie* 2018, 146:87-96.
- Martinez-Uruena N, Macias L, Perez-Cabornero L, Infante M, Lastra E, Cruz JJ, Miner C, Gonzalez R, Duran M: Incidence of -93 MLH1 promoter polymorphism in familial and sporadic colorectal cancer. *Colorectal Dis* 2013, 15(3):e118-123.
- 105. Nizam ZM, Abdul Aziz AA, Kaur G, Abu Hassan MR, Mohd Sidek AS, Yeh LY, Mazuwin M, Ankathil R: Contribution of the MLH1 -93G>a promoter polymorphism in modulating susceptibility risk in Malaysian colorectal cancer patients. *Asian Pac J Cancer Prev* 2013, 14(2):619-624.
- Nejda N, Iglesias D, Moreno Azcoita M, Medina Arana V, Gonzalez-Aguilera JJ, Fernandez-Peralta AM: A MLH1 polymorphism that increases cancer risk is associated with better outcome in sporadic colorectal cancer. *Cancer Genet Cytogenet* 2009, 193(2):71-77.
- 107. Peng HX, Xu X, Yang R, Chu YM, Yang DM, Xu Y, Zhou FL, Ma WZ, Zhang XJ, Guan M et al: Molecular analysis of MLH1 variants in Chinese sporadic colorectal cancer patients. *Genet Mol Res* 2016, 15(2):gmr7689.
- Haghighi MM, Taleghani MY, Mohebbi SR, Vahedi M, Fatemi SR, Zali N, Shemirani AI, Zali MR: Impact of EXO1 polymorphism in susceptibility to colorectal cancer. *Genet Test Mol Biomarkers* 2010, 14(5):649-652.
- 109. Gao Y, Hayes RB, Huang WY, Caporaso NE, Burdette L, Yeager M, Chanock SJ, Berndt SI: DNA repair gene polymorphisms and tobacco smoking in the risk for colorectal adenomas. *Carcinogenesis* 2011, 32(6):882-887.
- 110. Le Guen T, Ragu S, Guirouilh-Barbat J, Lopez BS: Role of the double-strand break repair pathway in the maintenance of genomic stability. *Molecular & cellular oncology* 2015, 2(1):e968020.
- Chapman JR, Taylor MR, Boulton SJ: Playing the end game: DNA double-strand break repair pathway choice. *Molecular cell* 2012, 47(4):497-510.
- 112. Srivastava M, Raghavan SC: DNA double-strand break repair inhibitors as cancer therapeutics. *Chemistry & biology* 2015, 22(1):17-29.
- 113. Tham KC, Kanaar R, Lebbink JH: Mismatch repair and homeologous recombination. DNA Repair (Amst) 2016, 38:75-83.
- 114. Lafrance-Vanasse J, Williams GJ, Tainer JA: Envisioning the dynamics and flexibility of Mre11-Rad50-Nbs1 complex to decipher its roles in DNA

replication and repair. Progress in Biophysics and Molecular Biology 2015, 117(2-3):182-193.

- 115. Naccarati A, Rosa F, Vymetalkova V, Barone E, Jiraskova K, Di Gaetano C, Novotny J, Levy M, Vodickova L, Gemignani F et al: Double-strand break repair and colorectal cancer: gene variants within 3' UTRs and microRNAs binding as modulators of cancer risk and clinical outcome. Oncotarget 2016, 7(17):23156-23169.
- Li JT, Zhong BY, Xu HH, Qiao SY, Wang G, Huang J, Fan HZ, Zhao HC: Associations between NBS1 Polymorphisms and Colorectal Cancer in Chinese Population. *PLoS One* 2015, 10(7):e0132332.
- 117. Li XB, Luo H, Huang J, Zhang JD, Yang ZX, Sun XW: XRCC2 gene polymorphisms and its protein are associated with colorectal cancer susceptibility in Chinese Han population. *Med Oncol* 2014, 31(11):245.
- Curtin K, Lin WY, George R, Katory M, Shorto J, Cannon-Albright LA, Smith G, Bishop DT, Cox A, Camp NJ: Genetic variants in XRCC2: new insights into colorectal cancer tumorigenesis. *Cancer Epidemiol Biomarkers Prev* 2009, 18(9):2476-2484.
- 119. Krupa R, Sliwinski T, Wisniewska-Jarosinska M, Chojnacki J, Wasylecka M, Dziki L, Morawiec J, Blasiak J: Polymorphisms in RAD51, XRCC2 and XRCC3 genes of the homologous recombination repair in colorectal cancer--a case control study. *Mol Biol Rep* 2011, 38(4):2849-2854.
- Tranah GJ, Giovannucci E, Ma J, Fuchs C, Hankinson SE, Hunter DJ: XRCC2 and XRCC3 polymorphisms are not associated with risk of colorectal adenoma. *Cancer Epidemiol Biomarkers Prev* 2004, 13(6):1090-1091.
- 121. Jin MJ, Chen K, Song L, Fan CH, Chen Q, Zhu YM, Ma XY, Yao KY: The association of the DNA repair gene XRCC3 Thr241Met polymorphism with susceptibility to colorectal cancer in a Chinese population. *Cancer Genet Cytogenet* 2005, 163(1):38-43.
- Mort R, Mo L, McEwan C, Melton DW: Lack of involvement of nucleotide excision repair gene polymorphisms in colorectal cancer. Br J Cancer 2003, 89(2):333-337.
- 123. Nissar S, Sameer AS, Lone TA, Chowdri NA, Rasool R: XRCC3 Thr241Met gene polymorphism and risk of colorectal cancer in Kashmir: a case control study. Asian Pac J Cancer Prev 2014, 15(22):9621-9625.
- Mucha B, Przybylowska-Sygut K, Dziki AJ, Dziki L, Sygut A, Majsterek I: Association of Thr241Met polymorphism of XRCC3 gene with risk of colorectal cancer in the Polish population. *Pol J Pathol* 2013, 64(3):185-190.
- 125. Romanowicz-Makowska H, Samulak D, Michalska M, Sporny S, Langner E, Dziki A, Sychowski R, Smolarz B: RAD51 gene polymorphisms and sporadic colorectal cancer risk in Poland. *Pol J Pathol* 2012, 63(3):193-198.
- Nissar S, Baba SM, Akhtar T, Rasool R, Shah ZA, Sameer AS: RAD51 G135C gene polymorphism and risk of colorectal cancer in Kashmir. *Eur J Cancer Prev* 2014, 23(4):264-268.
- Yazdanpanahi N, Salehi R, Kamali S: RAD51 135G>C polymorphism and risk of sporadic colorectal cancer in Iranian population. *Journal of cancer research and* therapeutics 2018, 14(3):614-618.
- 128. Mucha B, Kabzinski J, Dziki A, Przybylowska-Sygut K, Sygut A, Majsterek I, Dziki L: Polymorphism within the distal RAD51 gene promoter is associated with colorectal cancer in a Polish population. *Int J Clin Exp Pathol* 2015, 8(9):11601-11607.
- Mucha B, Przybylowska-Sygut K, Dziki L, Dziki A, Sygut A, Majsterek I: Lack of association between the 135G/C RAD51 gene polymorphism and the risk of colorectal cancer among Polish population. *Pol Przegl Chir* 2012, 84(7):358-362.
- 130. Naccarati A, Rosa F, Vymetalkova V, Barone E, Jiraskova K, Di Gaetano C, Novotny J, Levy M, Vodickova L, Gemignani F *et al*: Double-strand break repair and colorectal cancer: gene variants within 3' UTRs and microRNAs binding as modulators of cancer risk and clinical outcome. *Oncotarget* 2015, 7(17):23156-23169.
- Zhang L, Zhang Y, Tang CH, Su CM: RAD52 gene polymorphisms are associated with risk of colorectal cancer in a Chinese Han population. *Medicine* 2017, 96(49):e8994.
- Emami N, Saadat I, Omidvari S: Susceptibility to Colorectal Cancer and Two Genetic Polymorphisms of XRCC4. *Pathol Oncol Res* 2015, 21(4):881-885.
- 133. Zhang L, Zhao J, Yu B, Song X, Sun G, Han L, Wang L, Dong S: Correlations between microsatellite instability, ERCC1/XRCC1 polymorphism and clinical characteristics, and FOLFOX adjuvant chemotherapy effect of colorectal cancer patients. *Cancer genetics* 2017, 218-219:51-57.
- 134. Yang J, Wang X, Zou SM, Li HM, Xiao Q, Feng YR, Huang Y, Feng T, Chen JN, Lin DX et al: [Genetic variations in MLH3 and MSH2 genes are associated with the sensitivity and prognosis in locally advanced rectal cancer patients receiving preoperative chemoradiotherapy]. Zhonghua Zhong Liu Za Zhi 2018, 40(6):433-440.
- 135. He Y, Penney ME, Negandhi AA, Parfrey PS, Savas S, Yilmaz YE: XRCC3 Thr241Met and TYMS variable number tandem repeat polymorphisms are associated with time-to-metastasis in colorectal cancer. *PLoS One* 2018, 13(2):e0192316.