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Abstract 

Pressing problems in urban ventilation and thermal comfort affecting pedestrians related to current urban develop-
ment and densification are increasingly dealt with from the perspective of climate change adaptation strategies. In 
recent research efforts, the prime objective is to accurately assess pedestrian-level wind (PLW) environments by using 
different simulation approaches that have reasonable computational time. This review aims to provide insights into 
the most recent PLW studies that use both established and data-driven simulation approaches during the last 5 years, 
covering 215 articles using computational fluid dynamics (CFD) and typical data-driven models. We observe that 
steady-state Reynolds-averaged Navier-Stokes (SRANS) simulations are still the most dominantly used approach. Due 
to the model uncertainty embedded in the SRANS approach, a sensitivity test is recommended as a remedial measure 
for using SRANS. Another noted thriving trend is conducting unsteady-state simulations using high-efficiency meth-
ods. Specifically, both the massively parallelized large-eddy simulation (LES) and hybrid LES-RANS offer high computa-
tional efficiency and accuracy. While data-driven models are in general believed to be more computationally efficient 
in predicting PLW dynamics, they in fact still call for substantial computational resources and efforts if the time for 
development, training and validation of a data-driven model is taken into account. The synthesized understanding of 
these modeling approaches is expected to facilitate the choosing of proper simulation approaches for PLW environ-
ment studies, to ultimately serving urban planning and building designs with respect to pedestrian comfort and 
urban ventilation assessment.

Keywords: Pedestrian-level wind (PLW), Computational fluid dynamics (CFD), Data-driven model, Steady- and 
unsteady-state simulations, Uncertainty quantification
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1 Introduction
Building sustainable and healthy cities has become an 
important attention point on the international agenda 
being continuously underscored in future. As stated in 
a United Nations report, 55% of the global population 
are currently living in cities. The percentage is projected 

to increase to 68% by the year 2050 (UN, 2018). Mean-
while, current urban developments and densifications 
have led to various urban health problems, e.g. increased 
lung cancer risk due to excessive vehicle waste exposure 
(Scungio et  al., 2018), increased influenza infection risk 
due to lateral and upwind spread of virus (Wei et  al., 
2018), and deteriorated outdoor thermal comfort due 
to high pedestrian-level wind (PLW) velocities during 
cold (Shui et al., 2018) or low PLWs during hot weather, 
especially heatwaves (Jay et al., 2021; Kubilay et al., 2020; 
Mei & Yuan, 2022; Moonen et al., 2012). Previous stud-
ies have proved that these aforementioned problems can 
to some extent be mitigated through appropriate urban 
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planning and designs. In particular, building elevated 
design (Liu et  al., 2017; Liu, Zhang, et  al., 2019), build-
ing arcade design (Wen et  al., 2017), building overhang 
design (Hang, Chen, et  al., 2018), pocket park design 
(Zhong et  al., 2022), and city-scale ventilation corridors 
(Wang et al., 2020) can make partial improvements to the 
local or even the urban PLW conditions.

Since the PLW flow field is located at the lower level of 
the urban canopy layer (UCL), it is largely affected by the 
geometrical features of the surrounding built environ-
ment (Blocken et al., 2004; Blocken et al., 2008; Blocken 
et al., 2012; Blocken & Carmeliet, 2008). Note that winds 
at the pedestrian level vary from one location to another, 
requiring high-resolution investigation approaches. Field 
measurements and wind tunnel tests have been con-
ducted in several studies providing valuable data for PLW 
assessments (Allegrini, 2018; Moonen et al., 2007; Tomi-
naga & Shirzadi, 2021; Zhao et al., 2021; Zou et al., 2021), 
but the former usually provide discrete data points and 
the latter are time and resource expensive. As noted in 
the review on computational wind engineering (Blocken, 
2014), a distinct feature of numerical simulations is that 
they can provide whole-flow field data at practical costs, 
i.e. data on the relevant parameters in all points of the 
computational domain, suitable for detailed investiga-
tions as well as parametric design studies.

However, unvalidated simulations may be inaccu-
rate and lead to non-optimal urban planning and design 
decisions, which in turn could undermine PLW studies’ 
credibility. Toparlar et al. (2017) documented that 58% of 
their surveyed urban microclimate studies by computa-
tional fluid dynamics (CFD) did not validate their simula-
tion results against experimental data. Sometimes, even 
if the simulations are validated, they may in effect still be 
problematic. For instance, studies using reduced-scale 
experimental data to validate their simulations for full-
scale cases could be insufficiently correct in the case of 
narrow street canyons due to nonlinear growth of ther-
mal layers on building surfaces (Zhao et al., 2020). Inap-
propriate validations due to the absence of full-scale 
measurement data may lead to an imperfect interpre-
tation of simulation results manifesting the epistemic 
uncertainty of simulations introduced by a lack of knowl-
edge. Even after choosing validation cases carefully, 
there still are other epistemic uncertainties, for instance, 
the lack of knowledge for proper turbulence modeling. 
Fortunately, the epistemic uncertainty associated with 
turbulence modeling can be analyzed and minimized 
through verification of the models using parametric and 
non-parametric methods (Xiao & Cinnella, 2019). The 
former method focuses on comparisons between differ-
ent model coefficients (e.g. turbulence model’s closure 
coefficient sensitivity test) and between different models 

(e.g. multi-model comparison studies concerning differ-
ent turbulence models). The latter method focuses on 
critically evaluating the assumptions made by the mod-
els (e.g. eddy-viscosity approximation for the Reynolds 
stress). Since the parametric method has gained much 
popularity among different PLW simulation studies, this 
review will focus on how parametric methods can help to 
improve the PLW simulation studies’ reliability.

Recently, a variety of simulation approaches in PLW 
studies emerged improving both speed and accuracy. 
Examples are the hybrid LES-RANS (large eddy simula-
tion & Reynolds-averaged Navier-Stokes) approach (Liu 
& Niu, 2016, 2019), the massively parallelized (mass. 
Para.) LES approach (Wang et al., 2021), and the lattice-
Boltzmann method (LBM) approach (Jacob & Sagaut, 
2018) used to investigate urban airflows at the pedestrian 
level. Apart from the established CFD models, successful 
applications of highly efficient data-driven models, along 
with the emerging trend of machine learning, appeared 
in PLW studies (Xiang, Zhou, et al., 2021). It is undeni-
able that this thriving trend of developing and applying 
high-efficiency simulation approaches has huge poten-
tial in promoting PLW studies, especially in terms of 
improving realistic urban planning and design. These 
simulation approaches have also widened and enriched 
the speed-accuracy spectrum for different PLW simu-
lation approaches. It is meaningful to review the recent 
advances in this spectrum and highlight some approaches 
at certain locations in this spectrum.

To this end, we review PLW studies published in recent 
5 years that used simulation approaches. A systematic 
search was conducted in the Web of Science core collec-
tion database to obtain the studies within this scope. The 
present review is organized as follows: 1) an introduction 
to the recent progress in PLW simulation studies; 2) an 
overview of PLW simulation studies published in recent 
5 years; 3) PLW simulation studies that used steady-state 
simulation approaches; 4) PLW simulation studies that 
used unsteady-state simulation approaches; 5) a thematic 
discussion focusing on the applicability of unsteady-state 
simulation approaches in PLW comfort assessment; and 
6) conclusions and limitations.

2  PLW simulation studies published in the recent 
5 years

In total, we have investigated 215 journal articles pub-
lished in recent 5 years (2017 ~ 2021). All of the articles 
apply CFD to study urban wind flows at the pedestrian 
level. These characteristics are used in query search in 
the Web of Science core collection database. It is possi-
ble that there are other studies that have also made essen-
tial contributions to the PLW simulation approaches 
but are not covered in this review. These could include 



Page 3 of 18Zhong et al. Architectural Intelligence              (2022) 1:5  

conference papers, studies that are not indexed in the 
Web of Science core collection database, studies that 
do not emphasize their pedestrian-level applications, 
and studies that are published later than the publication 
year included in this review. It is important to note that 
publications published earlier than 5 years ago are not 
included in this review as we attempt to discuss the most 
recent advances in simulation approaches to underpin 
sound and efficient decision-makings for PLW simulation 
studies. However, we refer to some of these older publi-
cations when needed.

The reviewed journal articles’ distribution is plotted 
in terms of their publication year and their specific tur-
bulence modeling approach, as shown in Fig. 1. Besides, 
we also document some typical data-driven approaches, 
e.g. neural networks and non-intrusive reduced-order 
modeling (NIROM) models, as they represent emerging 
trends in current PLW studies. Data-driven articles are 
presented and discussed in sections 3.2 and 4.2.

Figure  1 shows that the applications of CFD in PLW 
studies are gradually increasing within recent 5 years. 
Specifically, the turbulence modeling approaches 
are steady-state RANS (SRANS, e.g. in Tsichritzis 
and Nikolopoulou (2019) and Shirzadi et  al. (2017)), 
unsteady-state RANS (URANS, e.g. in Antoniou et  al. 
(2019) and Sanchez et  al. (2021)), LES (e.g. in Zhang, 
Kwok, et al. (2021) and Liu, Zhang, et al. (2019)), mass. 
para. LES (e.g. in Wang et al. (2021) and Zhang, Ye, et al. 
(2021)), hybrid LES-RANS (e.g. in Liu et  al. (2017) and 
Vita et al. (2020)), LBM (e.g. in Ahmad et al. (2017) and 
Han et al. (2021)), and fast fluid dynamics (FFD, in Morte-
zazadeh and Wang (2020)). The most popular modeling 
approach in the investigated articles is still SRANS. There 

are 134 studies using SRANS which account for 62.3% of 
all the articles we investigate. Another important obser-
vation is that LES is applied in 37 studies, accounting for 
17.2% of the articles. And together with the other tran-
sient modeling approaches, they constitute 37.7% of the 
articles. This observation differs from an earlier review by 
Toparlar et al. (2017), who investigated 183 CFD micro-
climate studies published between 1998 and 2015 and 
reported that 96% of the studies used SRANS approach. 
The less predominant use of SRANS as observed in this 
review probably indicates advances in computational 
capacities, increased availability of high-efficiency simu-
lation approaches, and more awareness of the signifi-
cance of using transient simulations.

3  Steady‑state simulation approaches
3.1  Turbulence modeling
The popular use of SRANS in PLW studies partly results 
from the norms and best practice guidelines established 
in earlier studies. For example, several works in the 
2000s have discussed uncertainty issues such as horizon-
tal homogeneity (Blocken, Carmeliet, & Stathopoulos, 
2007; Blocken, Stathopoulos, & Carmeliet, 2007) and 
model sub-configuration validation (Blocken & Carme-
liet, 2008), which then led to the formulation of more 
general model development frameworks (Blocken, 2015; 
Blocken & Gualtieri, 2012). Well-recognized guidelines, 
namely the Cooperation in Science and Technology 
(COST) Action 732 (Franke et al., 2007) and the Archi-
tectural Institute of Japan’s (AIJ) best practice guideline 
(Tominaga et al., 2008) have been fueling the popularity 
of proper application of SRANS in PLW studies. Among 
the studies investigated in this review, SRANS is broadly 

Fig. 1 CFD applications in PLW studies published in recent 5 years
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applied to investigate PLW flow fields in different urban 
settings, ranging from an isolated building (Huang et al., 
2021; Jia et  al., 2021; van Druenen et  al., 2019; Weeras-
uriya et  al., 2018; Zhang, Yang, et  al., 2021) to more 
complex geometries such as building arrays (Allegrini & 
Carmeliet, 2017; Hang, Chen, et  al., 2018; Hang, Xian, 
et al., 2018; Lin et al., 2019; Sattar et al., 2018; Sha et al., 
2018), generic street canyons (Liu et  al., 2021; Sun & 
Zhang, 2018; Wen & Malki-Epshtein, 2018; Yang et  al., 
2020; Zhang et al., 2019; Zhang, Chen, et al., 2020), and 
realistic urban areas (Ricci et  al., 2020; Santiago et  al., 
2021; Sousa & Gorle, 2019; Tsichritzis & Nikolopoulou, 
2019; Vervoort et al., 2019).

The SRANS equation is an approximate form of the 
Navier-Stokes equation (NSE), which uses the Reynolds 
averaging process to average out the fluctuation veloci-
ties. Specifically, this process introduces a stress term 
known as the Reynolds stress. The Reynolds stress is a 
tensor of fluctuation velocities which are not solved for in 
SRANS simulations. In order to make the Reynolds aver-
aged NSE solvable, turbulence models are required to 
close the set of equations. The present review identified 
the top three most commonly used turbulence models 
in the SRANS-based PLW studies. They are the standard 
(STD) k-ε, the re-normalization group (RNG) k-ε, and the 
realizable (RLZ) k-ε turbulence models, which account 
for 43%, 23%, and 17% of the turbulence models used in 
SRANS studies investigated in this review, respectively.

The popular use of the STD k-ε model does not nec-
essarily mean that the model is more accurate. Typical 
values for the closure coefficients involved in the model 
are determined from an earlier study by Launder and 
Spalding (1974), who focused on canonical flow problems 
such as free shear flow and channel flow. However, it has 

been well documented in earlier studies that the STD k-
ε model underpredicts turbulence kinetic energy (TKE) 
in both the separation region over the roof and the wake 
region behind an isolated building, resulting in inac-
curate prediction of the isolated building’s wake region 
length (Gousseau et al., 2011; Mochida & Lun, 2008; Var-
doulakis et  al., 2011; Yoshie et  al., 2007). By fine-tuning 
the closure coefficients of Cε1, Cε2, σε, σk, and mostly Cμ, it 
is possible to increase the production of TKE and shorten 
the predicted wake length, hence improving prediction 
accuracy (Shirzadi et  al., 2017). Nevertheless, achiev-
ing desired fine-tuning outcomes requires expertise in 
modeling turbulence flow to some extent. Besides, the 
intrinsic model structure would limit the solution space 
reachable by fine-tuning of the coefficients. As shown in 
Fig.  2, fine-tuning will unlikely improve the prediction 
accuracy because the true solution might locate outside 
the solution space (Xiao & Cinnella, 2019). More accu-
rate predictions may be achieved when switching to the 
k-ε model variants, which incorporate different consid-
erations regarding the production of TKE and its dissipa-
tion rate. The RNG k-ε model incorporates contributions 
of the mean flow field’s strain-rates to the production of 
TKE, and thus has more realistic predictions of TKE in 
separation regions. Good agreement with wind tunnel 
test results is obtained in several studies that focus on the 
airflow around isolated buildings using the RNG k-ε tur-
bulence model (Bairagi & Dalui, 2021; Lee & Mak, 2022; 
Li & Chen, 2020; Liu, Wu, et  al., 2020). Several other 
studies applied the RLZ k-ε turbulence model to simu-
late the airflows around isolated buildings (Chen & Mak, 
2021; van Druenen et al., 2019; Weerasuriya et al., 2020; 
Zhang, Weerasuriya, et  al., 2020). However, the predic-
tions are still not fully accurate, as shown in Fig. 2, due 

Fig. 2 A conceptual illustration of the solution space reachable by the k-ε turbulence models and potential accuracy improvements from 
fine-tuning and multi-model methods (inspired by Xiao and Cinnella (2019))
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to the underlying uncertainty from the eddy-viscosity 
approximation.

After all, fine-tuning and multi-model methods induce 
extra computational cost, which to some extent under-
mines the cost-effectiveness of SRANS. However, these 
extra computational costs are inevitable due to the lack 
of predictive generality of SRANS. The lack of predictive 
generality means that, for instance, a given turbulence 
model is only valid for a limited number of validated 
problems. As an example, the RNG k-ε model obtains a 
better accuracy for modeling turbulent airflows around 
an isolated building, compared to RLZ k-ε model with 
a Reynolds number (Re) of 3.7 ×  104 (Lee & Mak, 2022), 
but inferior accuracy with a Re of 4.2 ×  104 (van Druenen 
et al., 2019).

3.2  Data‑driven models
Applying machine learning in fluid mechanics has 
become an active yet still challenging topic (Brunton 
et  al., 2020). Among the variety of models, genera-
tive models have drawn our attention. They are capable 
of predicating PLW flow fields in an extremely efficient 
way having a great potential for making a difference to 
both academic and practical built environment applica-
tions. There are different generative model architectures 
that can be used for PLW studies, as shown in Fig.  3. 
We will mainly cover the autoencoder architecture as 
it is believed to have versatile performance and thus 

promising applicability. More information on up-sam-
pling and single-model architectures can be found in Cal-
zolari and Liu (2021) and Fukami et al. (2019).

The autoencoder model architecture is also often 
referred to as non-intrusive reduced order model or 
NIROM, which will be introduced in section 4.2. In this 
section, the main characteristics of the autoencoder 
architecture are discussed. Typically, an autoencoder 
contains an encoder and a decoder. The encoder down-
sizes the high-dimensional inputs into a low-dimensional 
latent vector, which can be effectively interpreted by the 
decoder. Then, the decoder upscales the latent vector to 
predict new data with the same dimensions of the input 
data. The examples given in Fig.  3 are based on CNNs 
(convolutional neural networks). In general, the CNN 
model uses a convolution kernel to slide through each 
input data (usually pixels) to get outputs, which serve 
as inputs for the next layer. The convolution kernel con-
tains all weights needed for the current inputs, which is 
an efficient data storage method. In PLW studies where 
the flow fields are often presented and analyzed in the 
form of image-like contour plots, CNN models have been 
applied for flow field prediction purposes (Mokhtar et al., 
2020; Xiang, Fu, et al., 2021; Xiang, Zhou, et al., 2021).

Multilayer perceptron (MLP) is also a popular approach 
to construct machine learning models. However, since 
each node in the MLP needs to store weights for nodes 
of the previous layer, dealing with high-dimensional 

Fig. 3 Model architectures for potential applications of generative data-driven models in PLW studies (modified from Morimoto et al. (2022))
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inputs like a PLW flow field using MLPs will imply gigan-
tic weight matrices, adding to computational and storage 
costs. In view of the obvious disadvantage, MLP’s appli-
cation in PLW and other fluid flow studies is limited. For 
instance, MLP is used to extract features from boundary 
conditions and other flow parameters, as shown in Fig. 4. 
Then, the MLP’s output is fed to a generator of flow fields 
(Chen et al., 2020).

A common challenge for the data-driven models is the 
difficulty in obtaining adequately large high-fidelity train-
ing data sets. Especially, different training data sets have 
to be created when different urban morphologies are 
used, which can become computationally very expen-
sive. Apart from tending to high-efficiency simulation 
approaches, this review observes a trend to apply meth-
ods that can facilitate the process of data training. There 
are methods that can be used to bulk out the high-fidelity 
training data sets. They are the flip method, the noise 
addition method, and the local transfer method. Never-
theless, these methods have their limits, and more details 
of these training data bulking methods can be found in 
Morimoto et al. (2022).

Another challenge for training the data-driven models 
is constructing appropriate loss functions. In the case of 
generative models for images, manually constructing loss 
functions is a cumbersome and challenging task (Isola 
et al., 2017). In the influential work done by Goodfellow 
et al. (2014), the generative adversarial network (GAN) is 
proposed. GAN avoids the manual construction of loss 

functions, and instead, puts two models in an adversarial 
game. Based on the GAN architecture, several variants 
are proposed that consider conditional inputs (cGAN) 
(Chen et al., 2020; Isola et al., 2017), which can be used 
to inform the data-driven models of the building geom-
etries so PLW flow fields can also be predicted with 
GANs (Kim et al., 2021; Mokhtar et al., 2020). Moreover, 
the loss function can be used to inform the data-driven 
models of existing physical laws to be conserved, such as 
conservation of mass and momentum, so their predic-
tions are physically realistic and accurate. Examples for 
this method are the physics-informed deep neural net-
work (FlowDNN) by Chen et al. (2022) and the physics-
informed neural network (PINN) by Raissi et al. (2019).

4  Unsteady‑state simulation approaches
4.1  Turbulence modeling
4.1.1  Unsteady‑state Reynolds‑averaged Navier‑stokes
The URANS approach is adapted from the SRANS 
approach, showing similar computational efficiency and 
uncertainties as introduced by turbulence models. Solv-
ing the URANS equations involves the solving of time-
varying mean flows. Intermediate time scales need to be 
selected carefully for URANS simulations, so that the 
time-varying mean flows can be observed and the tur-
bulent fluctuations are averaged out. This review inves-
tigates several studies that have conducted URANS 
simulations concerning PLW flow fields in various urban 
settings. Antoniou et al. (2019) modeled a compact urban 

Fig. 4 Schematic representation of a MLP model.  P1 ~  P64 are geometrical information, Re is the Reynolds number, and Dir is the inflow direction 
(modified from Chen et al. (2020))
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area (0.247  km2) within the city Nicosia, Cyprus. Their 
URANS simulation included 1.5 ×  107 cells and modeled 
the time interval of 5 days with a time step size of 1 hour. 
Results indicate in general good agreement with the 
hourly measurement data. However, since the simulation 
adopted a large time step, mean flow variations within 
the one-hour time frame induced by synoptic trends are 
not captured. In another study (Sanchez et  al., 2021), a 
much shorter time interval and time step size were used, 
namely 1 hour and 1 second, which cannot average out 
turbulent fluctuations and might lead to contaminated 
mean flows. However, the authors did not perform a sys-
tematic validation for the PLW velocities. Since shorten-
ing the time interval and the time step size can enable 
URANS simulations to capture more details about how 
the mean flows vary with time at the pedestrian level, 
testing the sensitivity towards different time scales for the 
URANS approach remains a meaningful yet insufficiently 
investigated task.

4.1.2  Scale resolving simulations
Large‑eddy simulation LES is a well-recognized high-
fidelity CFD simulation approach. It is also well-known 
that the LES approach usually requires a large amount 
of computational resources. Thanks to the continuous 
advances in computational power, this review shows 
that 17.2% of the studies have applied the LES approach 
to the studies of the PLW flow fields in different urban 
settings in the recent five years. There are studies focus-
ing on simplified geometries of isolated buildings (Liu, 
Yu, et  al., 2020; Tse et  al., 2020; Zhang, Ooka, & Kiku-
moto, 2020), generic urban settings of building arrays 
(Freidooni et al., 2021; Ikegaya et al., 2017; Ishida et al., 
2018; Liu, Niu, et al., 2019; Liu, Zhang, et al., 2019), street 
canyons (Duan et al., 2020; Puigferrat et al., 2021; Salim 
et  al., 2020), and complex urban areas (Adamek et  al., 
2017; Antoniou et  al., 2017; Zhang, Kwok, et  al., 2021). 
In some earlier studies, researchers considered different 
aspects of reality in their simulations. The realistic ele-
ments are also observed in the studies investigated. They 
include roof types (Liu, Yu, et al., 2020), parked cars (Gal-
lagher & Lago, 2019), elevated walkways (Duan et  al., 
2020), tree crowns (Matsuda et  al., 2018), building bal-
conies (Zheng et  al., 2022), and terraced houses (Salim 
et  al., 2020). These realistic elements either connect to 
design features or human activities that are common in 
the current urban environment. As reported by (Zheng 
et al., 2020; Zheng et al., 2021), some of the realistic ele-
ments cost high simulating time of LES to achieve ade-
quate simulation accuracy. Nevertheless, the simulation 
cost is justifiable given that incorporating them in simu-
lations not only helps close the gap between simulation 
results and real-world processes, but also helps make the 

simulation results easier for urban planners and design-
ers to interpret.

Even though the LES approach is less sensitive to uncer-
tainties introduced by turbulence models than the RANS 
approach, it is prone to uncertainties originating from 
initial and boundary conditions or introduced by discre-
tization schemes. This review investigates several studies 
that contributed to the quantification of the uncertainties 
in simulating PLW flow fields using the LES approach. 
Firstly, since the LES approach resolves most of the tur-
bulent fluctuations, the effect of subgrid-scale (SGS) 
models is assessed to be minor. As reported in some ear-
lier studies, the SGS model coefficients are less influential 
factors in flow field simulations. For example, the coeffi-
cient CS, when its standard value of 0.1 is used and when 
it is dynamically determined, is reported to have similar 
prediction accuracies (Ai & Mak, 2015; Gousseau et al., 
2013). Recently, the study by Liu, Niu, et al. (2019) inves-
tigated the sensitivity of LES to four different SGS models 
simulating the PLW flow field around a generic building 
array. The SGS models are the standard Smagorinsky-
Lilly model (SSL), the dynamic Smagorinsky-Lilly model 
(DSL), the wall-adapting local eddy-viscosity model 
(WALE), and the dynamic kinetic energy model (DKE). 
They reported marginal differences between the cor-
relation coefficient (R) values achieved for mean veloci-
ties using different SGS models. Even though notable 
deviations between the different simulation results for 
second-order turbulence statistics are observed, they did 
not evaluate the results in terms of accuracy due to the 
lack of corresponding experimental data. Another study 
by Okaze et  al. (2021) used the multi-model method. 
They studied the influence of using different SGS mod-
els on the simulation result of airflows around an isolated 
building. They compared the SSL, the DSL, the WALE, 
the coherent structure Smagorinsky (CSS) model, and a 
case using no SGS model. Their results agreed with the 
study by Liu, Niu, et al. (2019). Using or not using the dif-
ferent SGS models does not influence the mean veloci-
ties notably, but it does influence turbulent fluctuations. 
Moreover, in the study by Okaze et al. (2021), the simu-
lated turbulence statistics are evaluated in terms of accu-
racy. Results indicate that using no SGS model achieves 
similar accuracy as using the SSL model, while the DSL, 
the WALE, and the CSS models improve the simulation 
accuracy to nearly equal extents.

Secondly, transient turbulent fluctuations need to be 
defined at the inflow boundary. Three different methods 
are commonly used in literature, namely the precursor 
method, the periodic method, and the synthetic method. 
Vortex method (VM) is a commonly used synthetic 
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method, and it is readily available in CFD codes. In the 
study by Liu, Niu, et  al. (2019), they reported that by 
increasing the number of vortices at the VM inflow 
boundary, the agreement between the simulation and the 
experiment improved, from R = 0.84 for 150 vortices to 
R = 0.90 for 230 vortices. Also, the distance between the 
inflow boundary and the building can introduce uncer-
tainties to the simulation results. An upstream distance 
that is too small (equal to building height) deteriorates 
the simulation accuracy, but including a long upstream 
distance leads to ineffective use of computational 
resources (Liu, Niu, et al., 2019).

Thirdly, appropriate discretization schemes need to be 
specified. LES simulations differentiate between resolved 
and modeled scales using local grid scales. Since it is 
common to conduct mesh sensitivity tests in the inves-
tigated studies, uncertainties in this aspect can be mini-
mized. Apart from the spatial discretization, Ikegaya 
et al. (2019) and Okaze et al. (2021) conducted sensitivity 
studies regarding influences of different numerical dis-
cretization schemes on simulation accuracy concerning 
airflows around an isolated building. Both of the stud-
ies reported that using the first-order upwind convec-
tion scheme notably deteriorated the overall simulation 
accuracy. In comparison, second-order schemes (central 
scheme in Ikegaya et al. (2019) and the linear scheme in 
Okaze et  al. (2021)) are more accurate, but their accu-
racies deteriorated after blending with the first-order 
upwind scheme, especially for the accuracy regarding the 
turbulence statistics. The deteriorated accuracies result 
from the introduction of a high numerical viscosity in the 
first-order upwind scheme. Therefore, it is recommended 
to not use the first-order upwind scheme in conducting 
LES simulations for PLW studies.

Hybrid LES‑RANS Predicting high Reynolds number 
flows using the LES approach can be a computation-
ally prohibitive task. However, the computation cost 
can be reduced through modeling the near-wall region 
and resolving the outer layer only (Piomelli, 2008). Such 
approaches have been applied to investigate the high-
fidelity transient PLW flow fields in different urban set-
tings. Through multi-model comparisons, it is concluded 
that the hybrid LES-RANS approaches, e.g., detached 
eddy simulation (DES), offer significantly higher simula-
tion accuracies compared to the SRANS (Liu et al., 2017; 
Vita et  al., 2020) and the URANS approach (Liu et  al., 
2017) for obtaining the mean flow results. In compari-
son to the LES approach, their simulation results agree 
well (R = 0.90) for the simulated PLW flow field around a 
generic building array (Liu & Niu, 2019). Figure 5 shows 
the pedestrian-level mean flow fields around a generic 
building array (Re = 4.8 ×  104) simulated with SRANS, 
LES, and DES, respectively. It can be observed that DES 
has better agreement with LES than SRANS does. Fur-
ther investigations identified the uncertainties embedded 
in hybrid LES-RANS simulations. Different turbulent 
fluctuations generating algorithms can lead to notable 
differences in the simulated PLW flow field around an 
isolated building with elevated design (a building design 
that has lift-up space at the ground level) (Liu et  al., 
2017). However, in a more complex urban setting, Vita 
et  al. (2020) reported that the turbulent inflow profiles 
generated using different methods did not significantly 
affect the PLW flow field, indicating the local airflows are 
mainly affected by the complex geometrical features of 
the surrounding buildings.

Hybrid LES-RANS approaches are found to be more 
efficient compared to other simulation approaches. 

Fig. 5 PLW flow fields simulated with a) SRANS, b) LES, and c) DES (cited from Liu and Niu (2019))
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One typical example is delayed detached eddy simula-
tion (DDES) (Spalart et al., 2006), which can make much 
better predictions than URANS using less calculation 
time (Liu et al., 2017). In modeling PLW flows around a 
generic building array, DDES is 1.2 times quicker than 
LES (Liu & Niu, 2019). Instead of using a blending func-
tion that depends on the flow field, the wall-modeled LES 
(WMLES) approach implements the RANS approach at 
the first wall-adjacent cell. Theoretically, coarse meshes 
used in RANS simulations are also allowed for run-
ning WMLES simulations. Despite the improved cost-
effectiveness of the hybrid LES-RANS models, running 
hybrid LES-RANS simulations is still less practical for 
applications concerning more realistic large-scale urban 
areas. Vita et al. (2020) applied the WMLES approach to 
model the PLW flow field in the campus of the Univer-
sity of Birmingham (1.44  km2) within a time interval of 
15 seconds. The simulation domain was discretized into 
1.7 ×  107 cells spatially and 3 ×  104 time steps temporally. 
The calculation was conducted on a computer cluster 
using 140 central processing unit (CPU) cores and took 
10 ~ 20 days of calculation time for different mesh resolu-
tions. To sum up, the hybrid LES-RANS approach is an 
efficient and less computationally costly alternative to the 
LES approach. But, it is still an expensive technique that 
needs to be improved before it can be applied to large-
scale realistic built environment cases.

Massively parallelized LES We observe a growing trend 
of conducting LES simulations using massive paralleli-
zation codes. Most of the studies involved in this trend 
utilized mass. para. LES to investigate city-scale (above 
1  km2) PLW flow fields at high-resolution (Fu et al., 2020; 
Wang et al., 2021; Zhang, Ye, et al., 2021). Typically, these 
studies used the non-commercial CFD code of the Paral-
lelized Large-eddy Simulation Model (PALM) (Maronga 
et  al., 2015) developed by the Leibniz University Han-
nover, Germany. The PALM model has been validated in 
several studies. For a generic urban area, good agreement 
with wind tunnel test results for mean velocities with 
buoyancy (R2 = 0.63) and without buoyancy (R2 = 0.67) 
is reported in Wang et al. (2021). In another study con-
cerning roadside CO dispersion in a realistic urban area, 
the simulation accuracy varies with human activities and 
wind conditions (Zhang, Ye, et al., 2021). Their simulated 
CO concentrations agree well with the field measure-
ments for non-rush hours and with middle or low natural 
winds (R2 = 0.35 ~ 0.67).

The feature that truly distinguishes the PALM model 
from other ordinary LES models is its linear speed-
up effect with increasing number of CPU cores. The 
model is ready for running on graphics processing units 

(GPU). However, their actual simulations’ costs, i.e. 
computational resources as well as computing time are 
not clearly reported. In the study by Kristof and Papp 
(2018), who tested the Discovery Live software devel-
oped by Ansys, detailed simulation costs are partly pro-
vided. They modeled pollutant dispersion in a 3D street 
canyon for a 20 seconds time interval with the time step 
size of 5.2 ×  10− 4 second and 9 million cells as computa-
tion domain. The simulation took approximately 1 h on a 
typical personal computer with a NVIDIA GTX 1080Ti 
graphics card. These mass. para. LES codes have great 
potential for PLW-related academic and practical built 
environment applications.

Lattice‑Boltzmann method The LBM approach simu-
lates fluid flows by solving the lattice-Boltzmann equa-
tion (LBE), instead of the NSE (Chen & Doolen, 1998). 
Several studies have explored the application of LBM to 
simulate city-scale PLW flow fields. Potential influenc-
ing factors, including turbulence model, mesh resolu-
tion, time step size, and boundary condition, are found 
at the roots of uncertainties of the LBM approach. Simi-
lar to the LES approach, LBM resolves large-scale turbu-
lent fluctuations and models small-scale turbulent fluc-
tuations using SGS models. However, there is a lack in 
knowledge concerning how sensitive the LBM simulation 
results are to different SGS models. Uncertainties result-
ing from mesh resolutions can be minimized performing 
a mesh sensitivity test, which has become a necessary 
procedure for PLW simulation studies. As for the time 
step size, it appears that it can be determined in a deter-
ministic way, based on the Courant–Friedrichs–Lewy 
(CFL) number and low Mach flow requirements (Ahmad 
et  al., 2017; Merli et  al., 2018). However, a sensitivity 
study of the time step is still advantageous allowing for 
possible improvements in cost-effectiveness. Last but not 
least, PLW flow fields are usually characterized by high 
Reynolds numbers. Other CFD models, e.g. URANS, 
can parameterize flow details near walls with wall func-
tions to reduce computational costs. But for the LBM 
approach, there is commonly no appropriate wall func-
tion boundary condition implemented. Han et al. (2020) 
managed to incorporate the wall function boundary 
into LBM simulations by implementing a wall-function 
bounce boundary. The results indicate good agreement 
with experiments. Later, Han et  al. (2021) conducted a 
sensitivity test on different wall boundary conditions for 
the LBM approach. As shown in Fig. 6, results showed a 
notably higher accuracy using the wall-function bounce 
boundary (blue solid lines) compared to the conventional 
bounce back boundary (blue dashed lines) when coarse 
meshes are used.



Page 10 of 18Zhong et al. Architectural Intelligence              (2022) 1:5 

The LBM approach also has the advantage in running 
high-resolution simulations for PLW flow fields of large 
realistic urban areas with massive parallelization. For 
example, Mons et al. (2017) investigated the airflow in a 
compact urban area (1 × 1  km2) within a time interval of 
3600 seconds, using 6 million cells and  105 times steps. 
The calculation took approximately 8 hours for each run. 
Ahmad et  al. (2017) modeled a coastal area of Tokyo 
(19.2 × 4.8  km2) using a high-resolution mesh that has 
approximately 1.2 ×  1010 cells. A period of 4320 seconds 
was simulated on a GPU-based supercomputer using a 
time step size of 0.008 second, which took 40 hours of cal-
culation time.

4.1.3  Fast fluid dynamics
FFD was first developed for fluid visualization in ani-
mation tools (Stam, 1999). In a previous study the FFD 
approach is applied to investigate the airflows around 
a building complex, but the simulation encountered 
convergence problems (Jin et  al., 2013). Mortezaza-
deh and Wang (2020) recently modified a conventional 
FFD approach to implement large time steps and coarse 
meshes. Their simulation results agree well with wind 
tunnel tests of the PLW flow field around a building array 
with a central high-rise building. Comparisons are also 
made between the FFD model and three RANS simula-
tions using the STD k-ε, the RNG k-ε, and the Launder-
Kato (LK) k-ε turbulence models. As shown in Fig.  7, 
results indicate that the performance of the proposed 
FFD model is comparable to the RNG k-ε and the LK k-ε 
turbulence models for the prediction of normalized mean 
velocities at high wind regions, but overestimates the 

normalized velocities in wake regions. In comparison, 
the STD k-ε turbulence model underestimates the nor-
malized velocities in the high wind regions, but making 
fairly good predictions regarding the normalized veloci-
ties in the wake regions.

It is worth noting that the FFD model, in the case of the 
study by Mortezazadeh and Wang (2020), took approxi-
mately 1.5 hours to simulate a validation case with 17 mil-
lion cells, which could be considered significantly faster 
even than using the SRANS approach. Furthermore, their 
subsequent application case studied the transient PLW 
flow field in a complex urban area (9  km2), in which the 
unsteady simulation with 35 million cells took less than 
2 hours of computing time. Given that FFD’s prediction 
accuracy has become an active research field recently 
(Dai et  al., 2022; Li et  al., 2022; Zheng et  al., 2022), we 
may conclude that FFD shows potential for reducing 
computational time costs, but is still in further develop-
ment and needs validation for more built environment 
cases.

4.2  Data‑driven models
In general, reduced-order modeling (ROM) can be used 
to enable near real-time flow simulations. Specifically, 
ROM is subdivided into intrusive ROM (IROM) and 
non-intrusive ROM (NIROM) models. IROM focuses 
on the projection of full-order governing equations onto 
low-order spaces in favor of higher solution efficiency 
(Fang et  al., 2014; Galletti et  al., 2004; Star et  al., 2021; 
Tello et al., 2020). This approach, as the name indicates, 
is intrusive to the full-order governing equations as it 
involves manipulation of the governing equations. On the 
contrary, NIROM sidesteps the cumbersome procedures 

Fig. 6 Mean streamwise velocity ratios around an isolated building simulated with LBM (cited from Han et al. (2021)). BB – bounce back boundary; 
WFB – wall-function bounce boundary; 08, 16, and 32 – coarse, medium, and fine mesh resolutions
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of manipulating and solving the governing equations. 
Specifically, NIROM uses either proper orthogonal 
decomposition (POD) or data-driven models to achieve 
the order reduction, and mostly uses data-driven mod-
els to retrieve full-order flow fields from the reduced-
order representations. Given its close relation with the 
data-driven models, this review focuses on the NIROM 
approach. For more information about the IROM 
approach, readers are referred to the review by Masoumi-
Verki et al. (2022).

To obtain the low-order representation of an unsteady 
PLW flow field using the POD method, the flow field A 
∈ ℝN × S is decomposed into the POD mode matrix U ∈ 
ℝN × N, the diagonal matrix Σ ∈ ℝN × S, and the POD coef-
ficient matrix VT ∈ ℝS × S. Their relations are typically 
expressed as follows: A = UΣVT. The superscript T refers 
to matrix transpose, N and S refer to the number of cells 
and the number of time steps contained in the full-order 
unsteady PLW flow field, respectively. Each column in U 
is a spatial mode for the full-order unsteady flow field, 
and the columns are arranged in a descending order 
with reference to the contribution to the full-order flow 
field. These spatial modes’ contributions are recorded 
in the diagonal elements of Σ. Only the first few modes 
that have adequate cumulative contributions are consid-
ered in the subsequent prediction procedures for better 

performance in terms of computation and storage. An 
example for the relation between the POD modes and 
the cumulative contribution is shown in Fig.  8, where 
the contribution of individual modes reduces, while the 
cumulative contribution increases. Information of the 
flow unsteadiness is stored in VT. Having obtained the 
low-order representation of the full-order flow field, 
future full-order flow fields can be predicted efficiently 
using data-driven models. The key is to train data-driven 
models that can predict future flow unsteadiness, i.e. 
predict new columns for VT. In this process, a variety of 
data-driven models can be used, and more discussion on 
this topic is available in Masoumi-Verki et al. (2022). In 
comparison with the high-fidelity simulation approach 
of LES, the NIROM approach can speed up the com-
puting time by  105 ~  106 times, as reported in the stud-
ies by Xiao, Heaney, Fang, et al. (2019) and Xiao, Heaney, 
Mottet, et al. (2019) in which unsteady flow fields in com-
pact urban areas are studied.

Apart from using POD for order reduction, the low-
order representations of full-order flow fields can also 
be obtained with data-driven methods. In this case, the 
low-order representations are found in the form of latent 
vectors in the so-called latent space. Specifically, a typical 
workflow for this type of NIROM method first involves 
the use of a data-driven model for regression on given 

Fig. 7 Normalized PLW mean velocities around the generic building array with a central high-rise building (cited from Mortezazadeh and Wang 
(2020))
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boundary conditions to obtain the latent vector, and 
then another data-driven model known as the genera-
tor is used to retrieve the predicted full-order flow field 
from the latent vector. An example visualization of this 
workflow is shown in Fig. 9, where CNN is used for both 
regression and generation. The speed-up effect of this 
NIROM method is reported to be hundreds of times 
faster than the high-efficiency high-fidelity simulation 
approach of PALM, according to Xiang, Fu, et al. (2021) 
and Xiang, Zhou, et al. (2021) who focused on PLW flows 
in large urban areas.

Both NIROM methods show high efficiency and high 
accuracy. The major differences between these two meth-
ods are that POD-based NIROM has simpler expres-
sion, better interpretability, shorter training time, but 
fixed boundary conditions, while data-driven NIROM 
shows better accuracy, unsteady boundary conditions, 
but longer training time. It is worth noting that it is also 
possible to use POD on unsteady PLW flow fields with 
transient boundary conditions, but this will impair inter-
pretability and lower prediction accuracy, as reported 
in the study by Xiang, Fu, et  al. (2021) in which the 

Fig. 8 The first few principal POD modes kept in subsequent procedures for efficient computation and storage (cited from Weerasuriya et al. 
(2021))

Fig. 9 An example visualization of the workflow of using NIROM to predict full-order flow fields, where CNN is used for both regression and 
generation (modified from Xiang, Fu, et al. (2021))
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high-fidelity unsteady PLW flow field around a large 
urban area was modeled with transient boundary condi-
tions. NIROM models with four different order-reduc-
tion methods, namely CNN, MLP, linear regression, and 
POD, were compared and organized in descending order 
with respect to their prediction accuracies.

5  Applicability of unsteady‑state simulations 
in PLW comfort assessment

PLW comfort studies focus on the effect of winds on 
pedestrian wind comfort. Poorly designed PLW environ-
ments cause wind nuisance and affect pedestrians’ sub-
jective feelings regarding the outdoor environment. In 
extreme cases, windy environment can cause pedestrians 
tripping over, exposing pedestrians to dangers (Blocken & 
Carmeliet, 2004). For a systematic PLW comfort assess-
ment, three vital elements are required, namely wind 
statistics, wind amplification factors, and a wind comfort 
criterion (Blocken et  al., 2016). Wind amplification fac-
tors reflect the impacts of surrounding built environment 
on local wind conditions, and are usually taken as the 
ratio of the local wind velocity to a reference wind veloc-
ity. The wind amplification factors are often obtained in 
an ad hoc manner. Field measurements provide discrete 
data points and wind tunnel measurements are expen-
sive. Simulations can offer whole-flow field data at prac-
tical costs. Simulation approaches obtaining steady-state 
PLW flow fields, such as SRANS and some data-driven 
models, provide wind amplification factors for the trans-
lation of meteorology data to the building site. Broad 
applications of the steady-state simulations have proven 
that their tradeoffs between data fidelity and computa-
tion efficiency are acceptable (Dhunny et al., 2018; Ricci 
et al., 2022; Tsichritzis & Nikolopoulou, 2019). More dis-
cussions on PLW comfort assessment with SRANS can 
be found in the reviews by Blocken and Carmeliet (2004) 
and Blocken et al. (2016).

As observed in this review, there is recently a sub-
stantial growth of PLW studies using unsteady-state 
simulations. Their benefits to PLW comfort assessment 
are briefly discussed as follows. Using unsteady simula-
tions, researchers can gain enriched insights into local 
wind conditions. For example, gust wind velocities that 
are commonly used in PLW comfort assessment can be 
derived from the unsteady simulation results accurately 
(Jacob & Sagaut, 2018). However, running unsteady-state 
simulations would incur extra computational costs, espe-
cially for the high-fidelity models. LES is a highly accu-
rate simulation approach, but it often induces impractical 
computation costs. Hybrid LES-RANS approaches, such 
as DES and WMLES, are versions of the LES approach 
that have incorporated tradeoffs for higher computation 

efficiency, but they are still far from being a practical 
option for practical city-scale built environment applica-
tions, especially for those involving multiple alternative 
design options. On the other side of the computational 
speed - accuracy spectrum, there is the FFD approach 
which is computationally efficient but still introduces 
too many uncertainties for the wind comfort assess-
ments due to the mediocre simulation accuracy. In par-
ticular, there are studies promoting large time steps to 
further increase FFD’s computational efficiency. But, 
these choices lower the time resolution undermining the 
approach’s applicability.

Other discussed simulation approaches appear more 
promising for PLW simulations in large realistic urban 
areas. Allegedly, the mass. para. LES approach could 
achieve linear speed-up with increasing CPU cores. 
Also rapid LES simulations are to be considered if there 
is enough CPU cores within one’s access. However, for 
the mass. para. LES approach, the studies investigated 
in the present review do not provide sufficient informa-
tion about their actual computational costs, with excep-
tion for the study by Xiang, Zhou, et  al. (2021). They 
documented that the computation time for a city-scale 
PALM simulation within a one-day time interval would 
be approximately 22 days running on Intel(R) Xeon(R) 
Platinum 8160 CPU processors with 48 cores. Therefore, 
mass. para. LES can be considered as a possible practical 
option for practical built environment applications con-
cerning PLW comfort if shorter time intervals are consid-
ered and enough CPU cores are provided.

LBM can also be considered as a promising approach. 
Ahmad et  al. (2017) applied the LBM approach to sim-
ulate unsteady PLW flow field in a city (19.2 × 4.8  km2) 
at both high spatial (1.2 ×  1010 cells) and high temporal 
(0.008 s) resolution. Running on a GPU-based supercom-
puter, the simulation of the time interval of 1.2 h took 
40 h of computation time. Because of the different com-
puter specifications and the insufficient information on 
numerical settings, the computation efficiencies of mass. 
para. LES and LBM are not compared.

Substantial speed-ups achieved by data-driven mod-
els are observed in this review. With the high compu-
tation efficiency, it is safe to say that the data-driven 
model can predict a city-scale PLW flow field in real-
time. However, at the current state the major restric-
tion for applying the data-driven model in practical 
planning and design applications is the precursor time 
needed for obtaining the training data and training the 
model. In the study by Xiang, Zhou, et  al. (2021), it 
took 4 weeks to obtain the training data set for a given 
urban setting using a high-efficiency PALM model. For 
applications concerning generic building geometries, 
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there might be available pre-trained models (Weerasur-
iya et al., 2021), and these models can be recommended 
to be more computationally effective.

Finally, we summarize the aforementioned discus-
sions by marking the discussed unsteady-state simula-
tion approaches on a prediction accuracy - computing 
speed diagram, as shown in Fig. 10. The abscissa refers 
to the prediction accuracy, and the ordinate refers to 
the computing speed. It is worth noting that the data-
driven model appears at the top of the plot because it 
is presumed to be trained, or in the online prediction 
stage, after training with high-fidelity data. And, it is 
also presumed that there are adequate computational 
resources, i.e. CPU or GPU cores and storage, for LBM 
and mass. para. LES, so they appear in the top half on 
the plot.

6  Conclusions
We reviewed the use of CFD and data-driven models 
for pedestrian-level wind (PLW) simulation studies 
as reported in the literature in last 5 years. Emerging 
trends, advances, and challenges of different simulation 
approaches in this field are discussed and articulated 
critically with a focus on the computational efficiency 
and accuracy. The main conclusions are as follows:

(1) SRANS is still the most dominant simulation 
approach. Among the 215 CFD studies investi-
gated in this review, 62.3% of them used the SRANS 

approach. However, SRANS simulations have to 
be used with caution because of certain uncer-
tainties embedded in the approach. It is recom-
mended, as has been done successfully in the 
studies investigated in this review, to minimize 
the uncertainties by conducting sensitivity tests 
for model closure coefficients or performing 
multi-model comparative studies for choosing the 
most appropriate turbulence models for the current 
application.

(2) There is a thriving trend of conducting unsteady-
state simulations with high-efficiency approaches. 
Apart from the conventional URANS and LES 
approaches, hybrid LES-RANS, mass. para. LES 
and LBM have been preliminarily assessed and 
applied in modeling turbulent wind flow in the built 
environment. They show improved computational 
efficiencies and promising simulation accuracies.

(3) The pre-trained data-driven model has unmatched 
computational efficiency in predicting PLW flow 
fields after a successful training of the model using 
high-fidelity simulation results. However, at the 
current stage, when access to pre-trained data-
driven models is still limited, the precursor time 
required for obtaining the high-fidelity training data 
for the specific application and training the model 
still render the data-driven model impractical for 
urban planning and design applications. Neverthe-
less, the pre-trained data-driven models show an 
important potential in future to perform fast and 
accurate simulations for the wind environment at 
the pedestrian level.
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