
RESEARCH ARTICLE Open Access

Predicting cytotoxicity from heterogeneous data
sources with Bayesian learning
Sarah R Langdon1,3, Joanna Mulgrew2, Gaia V Paolini1,4, Willem P van Hoorn1,5*

Abstract

Background: We collected data from over 80 different cytotoxicity assays from Pfizer in-house work as well as
from public sources and investigated the feasibility of using these datasets, which come from a variety of assay
formats (having for instance different measured endpoints, incubation times and cell types) to derive a general
cytotoxicity model. Our main aim was to derive a computational model based on this data that can highlight
potentially cytotoxic series early in the drug discovery process.

Results: We developed Bayesian models for each assay using Scitegic FCFP_6 fingerprints together with the
default physical property descriptors. Pairs of assays that are mutually predictive were identified by calculating the
ROC score of the model derived from one predicting the experimental outcome of the other, and vice versa. The
prediction pairs were visualised in a network where nodes are assays and edges are drawn for ROC scores >0.60 in
both directions. We observed that, if assay pairs (A, B) and (B, C) were mutually predictive, this was often not the
case for the pair (A, C). The results from 48 assays connected to each other were merged in one training set of
145590 compounds and a general cytotoxicity model was derived. The model has been cross-validated as well as
being validated with a set of 89 FDA approved drug compounds.

Conclusions: We have generated a predictive model for general cytotoxicity which could speed up the drug
discovery process in multiple ways. Firstly, this analysis has shown that the outcomes of different assay formats can
be mutually predictive, thus removing the need to submit a potentially toxic compound to multiple assays.
Furthermore, this analysis enables selection of (a) the easiest-to-run assay as corporate standard, or (b) the most
descriptive panel of assays by including assays whose outcomes are not mutually predictive. The model is no
replacement for a cytotoxicity assay but opens the opportunity to be more selective about which compounds are
to be submitted to it. On a more mundane level, having data from more than 80 assays in one dataset answers,
for the first time, the question - “what are the known cytotoxic compounds from the Pfizer compound collection?”
Finally, having a predictive cytotoxicity model will assist the design of new compounds with a desired cytotoxicity
profile, since comparison of the model output with data from an in vitro safety/toxicology assay suggests one is
predictive of the other.

Background
A 2003 study estimated the cost of the research and
development of a drug up to the pre-approval point to
be over 800 million US dollars [1]. Toxicity is the reason
behind the withdrawal of over 90% of drugs from the
market and the failure of a third of drugs in phase I-III
clinical trials [2]. Because of the huge cost in research-
ing and developing a new drug, pharmaceutical

companies want to minimise the number of failures in
clinical trials and the number of withdrawals from the
market. One way to minimise the number of failures is
to ensure drugs are not toxic before they reach clinical
trials. This is done by screening compounds for toxicity
in the early stages of drug discovery and understanding
the mechanisms of toxicity to avoid designing toxic
drugs in the first place.
The general toxicity testing pipeline in the pharma-

ceutical industry begins with in vitro toxicology screen-
ing followed by in vivo studies [3]. The majority of
mandatory non-clinical toxicity investigations are in vivo
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[4]. Preclinical in vivo studies are used to determine
potential adverse effects of drugs, estimate safety mar-
gins [5], understand mechanisms of toxicity and decide
if compounds should be eliminated from the develop-
ment process [6]. At the moment no in vitro test for
acute oral toxicity has been approved by regulatory
agencies to be sufficient evidence to allow commence-
ment of clinical trials [4]. However, there are two man-
datory in vitro studies, genotoxicity and hERG assays,
that must be carried out before clinical trials can
commence.
In order to use in vivo and in vitro methods, com-

pounds must have already been synthesised and avail-
able in sufficient quantities. Moreover, the experimental
methods are time consuming and costly. For the time
being it is a requirement that in vitro and in vivo toxi-
city studies are carried out on all drug candidates before
they reach clinical trials. Development of a predictive
model allows in-silico screening of compounds in virtual
libraries, i.e. before any compounds are actually made.
In vitro cytotoxicity assays are often run in parallel to

primary cell-based activity screens in order to identify
hits that only appear to be active because of their cyto-
toxic effects [7,8]. These cytotoxicity assays are usually
run to triage compounds which appear active in a cell-
based primary assay against a target of interest. The
choice of cytotoxicity assay is not restrictive, with some
scientists choosing to re-use an assay from a previous
project, while others opt for the newest cytotoxicity
assay kits on the market. Cytotoxicity assays may be run
against cell lines from different species (e.g. human,
mouse, rat) and/or different cell types (e.g. skin, neuro-
nal, liver). The choice of cell line and/or species may be
aligned to those used in the primary target assay or be
more comparable to the in vitro toxicology assay which
it precedes. Assay methodologies vary widely (e.g. mea-
surements of mitochondrial activity, ATP concentra-
tions, and membrane integrity) but the basic principle is
to assess cell viability and/or proliferation. Endpoint
detection methods are similarly diverse, e.g. lumines-
cence, absorbance or fluorescence. Finally, the period of
cell incubation with compound varies from 2 hours in
acute studies to several days in some long term antiviral
assays. Again the length of incubation time may be
selected simply to parallel that of the primary assay.
The aim of this project was to develop a computa-

tional model which could be used to generate a general
“cytotoxicity score”. This could then be used as a service
to alert when a new synthesis is similar to a known
cytotoxic compound, and/or as a tool to give an indica-
tion of compound cytotoxicity. To make this model as
generally applicable as possible we tried to maximise the
coverage of chemical space in the training set by mer-
ging data from multiple assays. We see a general

cytotoxicity model as crucial in early stages of drug dis-
covery when typically chemical series are pursued for
which little cytotoxicity data is available and therefore
no opportunity exists to build a more accurate series-
specific model. Users could then access more informa-
tion to include cell line, species, compound dose and
incubation time details - and use this to triage their data
further. Finally, we plan to collaborate with safety collea-
gues to be able to identify the cytotoxicity assays which
are the best predictors of in vitro and clinical toxicity.
This would provide the potential to reduce compound
attrition since series with cytotoxic characteristics which
track with known toxicology profiles would not be
pursued.
Predicting toxicity is a challenging task because of the

complex biological mechanisms behind it. The results of
in vivo studies can be used to validate in vitro studies
[9]. As long as the in vitro methods used to generate
the data are successful at predicting in vivo outcomes,
then the in silico models built with that data should be
able to closely mimic the results of in vivo studies [9].
In this project, data from in vitro experiments will be
used alongside Bayesian learning to predict the cytotoxi-
city of compounds.
There are several examples of predicting cytotoxicity

from in vitro data in the literature, including the use of
neural networks [10], random forests [11], decision trees
and linear least squares [12]. The last example success-
fully predicts general cytotoxicity using in vitro results
from 59 different cell lines. In this work we will attempt
to predict general cytotoxicity using in vitro data gath-
ered using many different assay formats, we will also
compare our work with Guha and Schürer’s random
forests, as we can reproduce their models using our own
methods and the same publicly available datasets.
Bayesian learning is a popular and mature machine

learning method that can be used to classify molecules
in two sets e.g. active/inactive or toxic/non-toxic. It has
many applications in the pharmaceutical industry
including modelling biological activity [13-15], such as
kinase inhibitors [16] and hERG blockers [17,18],
enriching high throughput screening (HTS) data [19,20]
& docking results [21], predicting combinatorial library
protocols [22] and describing compound similarity [23].
Bayesian learning is used in this paper because of its
speed, safety with respect to over-fitting and its ability
for handling noisy data. The speed of Bayesian learning
scales linearly with the number of compounds, making
it a fast and efficient technique. No pre-selection of
descriptors is required prior to learning as only those
descriptors that correlate with activity will have a great
effect on learning and unimportant descriptors will not
lead to over-fitting. This also means that Bayesian learn-
ing performs well with noisy data, as is the case in this
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study which has a large amount of primary assay data
and an expected high number of false positives and
negatives.
Another advantage of Bayesian learning is that it does

not require the active/inactive ratio in the training set to
be balanced; instead, the assumption is that the ratio
present in the training set is representative of the ratio
in the set where predictions are to be made. Therefore
pre-processing to derive a training set with balanced
active/inactive data is not required.
We have used Bayesian learning with publicly available

and in-house cytotoxicity assay data to predict the cyto-
toxicity of compounds.
We start by discussing the use of Bayesian learning to

model cytotoxicity using publicly available data and the
validation of these methods. Next we describe the appli-
cation of these methods to a much larger Pfizer in-
house data set collected from multiple different assays.
Prediction networks, based on the ability of assay data
to predict the results of other assays are generated and
then used to select assay data suitable as a training set
for a general cytotoxicity model.

Results and Discussion
Modelling Public Data
Two publicly available cytotoxicity datasets were down-
loaded from PubChem [24]: “Scripps” which contained a
mixture of single point (percent inhibition) primary data
and IC50 confirmation data and “NCGC” which con-
tained only IC50 data [25]. These datasets have pre-
viously been used by Guha and Schürer to derive
Random Forest models [11]. For each data set, two ver-
sions of Bayesian models have been built using different
descriptors. The FCFP_6 models used FCFP_6 finger-
prints, AlogP, number of hydrogen bond donors, num-
ber of hydrogen bond acceptors, number of rotational
bonds and molecular fractional polar surface area as
descriptors. The BCI models used BCI-1052 structural
keys as descriptors, as used in the published Random
Forest models [11]. We were not able to calculate the
BCI fingerprints for all compounds therefore some com-
pounds were left out (11 from the NCGC data, 33 from
the Scripps IC50 data and 3800 from the Scripps per-
cent inhibition data). For each model, the data set was
split into 5 equal-sized random sets. The models were
built on 4 of these sets (80% of the data) and tested
with the remaining 20%. This process was repeated so
that 5 models were built, each tested on the set that was
left out of the training data. This is a technique known
as 5-fold cross-validation. For each validation a receiver
operating characteristic plot (ROC plot) and truth table
were generated. The models’ performance can be
assessed from the average ROC plot and truth table for
the 5 models.

Scripps IC50 Data
We built a Bayesian model with a potency cut-off of 5.5,
in accordance with Guha and Schürer [11]. This means
that all molecules with pIC50 > 5.5 were considered
cytotoxic. A ROC plot charts the false positive rate of a
model versus its true positive rate and represents the
cost-benefit trade-off [26]. The area under the curve is
the ROC score: the probability that the model will cor-
rectly identify an active molecule from a randomly
selected pair consisting of an active and an inactive
molecule. A perfect model will have a ROC score of 1
corresponding to 100% true positive (TP) rate, and 0%
false positive (FP) rate, while a random model will have
a ROC score of 0.5 as there is a 50% chance of correctly
classifying the active molecule from the pair. In Figure 1
the ROC scores for the 5 fold validation of the Scripps
FCFP and BCI models are shown. The average ROC
scores and standard deviations in the ROC score for the
FCFP_6 and BCI models are 0.70 ± 0.03 and 0.66 ±
0.05, respectively. These scores indicate the models are
poorly predictive and show no clear advantage or disad-
vantage for using either descriptor. The truth tables and
derived specificity/selectivity data in Tables 1 and 2
show that although the specificity is fairly high, the sen-
sitivity is rather poor, suggesting that the cut off for
cytotoxicity is too low. The published Random Forest
model by Guha and Schürer performed comparably to
the Bayesian model described here [11]. Their sensitivity
of 0.56 is comparable to our BCI model at 0.53 ± 0.10,
but the Random Forest model is better at predicting
inactivity with a specificity of 0.80 compared to the
value of 0.68 ± 0.03 we obtained. The Random Forest
model has a ROC score of 0.73. This is higher than the
average score achieved here (0.66 ± 0.05), although for
one of our five sets a close score of 0.72 was obtained,
this illustrates the need for multiple cross-validation.
The results here show that the performance of a model
depends on the training set, as different ROC scores
were obtained for each of the 5 validations. If the Ran-
dom Forest model had been cross-validated multiple
times an average closer to ours may have been obtained.

Scripps Percent Inhibition Data
In an attempt to increase the performance of their
model, Guha and Schürer added 10,000 molecules
classed as non-toxic from the Scripps percent inhibition
data set to the IC50 training set [11]. The reasoning
behind this was to emphasise the difference between the
two classes. We used a similar approach to improve our
model, but included the entire Scripps percent inhibi-
tion data set in the training set (59,780 measurements).
The Scripps percent inhibition data came from two
assays (PubChem AID 364 and 463). The cut-off value
above which a compound was considered toxic was
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calculated by taking the the average percent inhibition
of all compounds tested plus three times the standard
deviation. This equates to 39% in assay 364 and 30% in
assay 463. However, not all of these compounds were
available for submission to the corresponding IC50
assay and therefore some less active compounds were
submitted instead. Applying a cut-off to classify a com-
pound as toxic or non-toxic is arbitrary. There is no
expectation that the toxicity differs significantly between
a compound with a percent inhibition just above the
cut-off and one with a cut-off just below, especially
when taking into account the experimental error. The
optimal cut-off can be determined by the desire to see
as few false positives as possible in the IC50 confirma-
tion assay, for which there typically exists a resource
constraint limiting the number of compounds that can
be submitted. Choosing a high percent inhibition cut-off
like mean plus three standard deviations will limit the
number of hits and the false positives amongst them,
thereby ensuring a large proportion of compounds will
pass the confirmation assay. However, the cost of build-
ing a Bayesian model is independent on the cut-off, in
fact the cost of model building is low enough that the
optimal cut-off can be found by building multiple mod-
els and choosing the best model according to a prede-
fined metric. This idea was suggested by David Rogers
[27]. This method assumes that the actives found in the
IC50 confirmation assays are the true actives that can
be found in the entire data set. All 100 models with

percent inhibition cut-offs ranging from 1 to 100 were
built. For each model, the ROC score was calculated for
predicting the toxic compounds found in the IC50 assay
as positives (toxic) and all other compounds from the
HTS as negatives (non-toxic). In Figure 2 the ROC score
is plotted against the percent inhibition cut-off. The opti-
mum cut-off is 29% (ROC 0.89) for the FCFP_6 model
and 28% (ROC 0.77) for the BCI model. This is close to
the cut-off of 30% that was applied in assay 463, which is
not surprising since this assay contributed ~17 times as
many measurements as assay 364. However, the curves in
Figure 2 are nearly flat; a similarly predictive model can
be obtained using any cut-off between ~10% and ~80%.
This was also observed previously by Rogers, who specu-
lated that this could be used to exploit structure-activity
relationships (SAR) that exist mostly or entirely in the
region of low (below the cut-off) percent inhibition.
Bayesian modelling is biased towards compound sets dis-
playing clear SAR, i.e. actives that are part of a series of
chemically similar compounds. By lowering the cut-off
many random false positives will be included but, as long
as enough additional members of the various SAR series
are added, the model will improve or at least not deterio-
rate. The mean percent inhibition of all 59780 measure-
ments was 1.2% with a standard deviation of 9.8%. The
lower viable cut-off for toxicity (10%) is therefore close to
just one standard deviation from the mean. The FCFP_6
models clearly outperform the BCI models, which is not
unexpected since the FCFP_6 fingerprints contain far
more features than the BCI fingerprints and the FCFP_6
models were built using additional physical property
descriptors.
In Tables 3 and 4 the results are presented when the

Scripps percent inhibition models derived with opti-
mised cut-offs are applied to the IC50 data set. Models
were derived from percent inhibition data and evaluated
using IC50 data as in Table 1.
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Figure 1 ROC scores for the 5-fold cross validation of the Scripps IC50 FCFP_6 (left) and BCI (right) models. Minimum and maximum
ROC scores are shown.

Table 1 Truth table for 5-fold cross-validation of the
Scripps IC50 FCFP_6 and BCI models

Scripps IC50 FCFP_6 Model Scripps IC50 BCI Model

Experiment Cytotoxic Non-toxic Cytotoxic Non-toxic

Cytotoxic 21 ± 1.5% 16 ± 1.6% 20 ± 3.7% 17 ± 3.7%

Non-toxic 18 ± 0.9% 45 ± 0.9% 20 ± 2.1% 43 ± 2.1%
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The prediction accuracy of cytotoxic compounds
expressed by the sensitivity has increased markedly
compared to models derived previously from IC50 data:
but this was achieved at the cost of a decreased specifi-
city. In contrast, Guha and Schürer did not obtain an
appreciable difference in the sensitivity (or specificity)
when adding 10,000 non-toxic compounds to the train-
ing set [11]. The cost of the increased sensitivity in our
model is a much higher rate of false positives. However,
of the 484 compounds classified as non-toxic (pIC50 ≤
5.5), nearly half (231) could be classified as moderately
toxic since they possess an IC50 ≤ 10 μM (pIC50 ≥ 5).
The majority of these (151) are predicted as toxic by the
FCFP_6 model (model score >0). For the BCI model
similar numbers were obtained (463 compounds classi-
fied as non-toxic compounds, 223 moderately toxic, 136
with Bayesian score >0). Both Bayesian models derived
from the Scripps percent inhibition data are good at
picking compound series with toxicity issues but not as
good at differentiating which member of the series is
toxic and which one is not. This is illustrated in Table 5

where a series of 4 compounds is shown all of which
are predicted toxic. Only one of these (CID 659940)
actually has a pIC50 value above 5.5 but the toxic pre-
diction counts it as true active. The other three are
counted as false positive. However, it should also be
noted that Guha and Schürer lowered the pIC50 cut-off
for toxicity to 4.68 when they compared Scripps data
with NCGC data [11]. Our main aim is to derive a
model that highlights potentially problematic series
early on in the drug discovery process and in this con-
text one false positive such as compound 663916 which
is a very close analogue to the moderately cytotoxic
compound 664633 would not necessarily indicate failure
of the model. Indeed, a slightly higher false positive rate
could be considered an advantage when using the model
output as a compound triage tool for deleterious safety
effects.

NCGC Data
As with the Scripps IC50 data, 5-fold cross-validated
FCFP_6 and BCI Bayesian models were built from the

Table 2 Specificity and sensitivity of Scripps IC50 FCFP_6 and BCI models

Scripps IC50 FCFP_6 Model Scripps IC50 BCI Model

Cytotoxic (sensitivity) Non-toxic (specificity) Cytotoxic (sensitivity) Non-toxic (specificity)

Fraction correctly classified 0.57 ± 0.04 0.71 ± 0.01 0.53 ± 0.1 0.68 ± 0.03
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Figure 2 ROC score and percent inhibition cut-off for toxicity while training a Bayesian model. Each point represents a different model.
The ROC scores are calculated using all compounds from the percent inhibition data set with actives defined as pIC50 > 5.5.
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NCGC Jurkat IC50 data set. The cut-off for cytotoxicity
was set at pIC50 > 4.64 to enable comparison of our
results to Guha and Schürer [11]. In Figure 3 the ROC
plots for the 5-fold cross-validation are shown. The
average ROC scores and standard deviations in the ROC
score for the FCFP_6 and BCI models are 0.67 ± 0.07
and 0.65 ± 0.15, respectively, which indicates poor
model performance, similar to the results obtained for
the Scripps data. As was the case with the Scripps IC50
data, there is no appreciable difference between the BCI
and the FCFP_6 models apart from the much larger var-
iation of the ROC score for the BCI model. This can be
explained by the lower number of toxic molecules in
this dataset: with 5-fold cross validation there are on
average 12 toxic compounds present in each test set.
Tables 6 and 7 illustrate that the classification of cyto-
toxic molecules as expressed by the sensitivity is again
low, but the specificity is high.
The low sensitivities of the Scripps and NCGC IC50

models are not a result of the percentage of toxic com-
pounds in the data set since the Scripps IC50 set con-
tained 37% toxic compounds while the hit rate of the
NCGC set was much lower at 4.6%. Furthermore Guha
and Schürer have selected compounds in their training
sets to have a toxic/non-toxic ratio of 1/1 [11], yet they
also obtained models with low sensitivity. A compound
which is cytotoxic can be so via multiple mechanisms -
a fundamental difference when comparing with single
endpoint toxic mechanisms like hERG or P450 inhibi-
tion [17]. While for the latter category a single pharma-
cophore can be derived, this is not possible for
cytotoxicity as a model of cytotoxicity is in effect a col-
lection of models for each of the different toxicity
mechanisms that result in the measured endpoint. To
illustrate this point, even though the biological assay
data for the Scripps and NCGC compounds was actually
obtained from experiments using the same cell line (Jur-
kat) and measured cell viability determined by ATP con-
centration, the sensitivity of the NCGC model (0.32) is
much lower than the sensitivity of the Scripps IC50
model (0.57). The most likely explanation is that the

two compound sets act via different mechanisms to
achieve the same endpoint - a reduction in ATP levels.
This hypothesis is strengthened further upon examina-
tion of the different similarity distributions of both sets
of compounds. In Figure 4 the internal similarity of
toxic compounds is compared to the internal similarity
of non-toxic compounds. For each compound, the
FCFP_6 Tanimoto similarity scores were calculated ver-
sus all other compounds in the same class (toxic or
non-toxic) and the highest value was retained. The toxic
compounds in the Scripps IC50 set are more similar to
each other (average similarity 0.52) than the non-toxic
compounds (average similarity 0.44), while the opposite
is the case for the NCGC set (average similarity 0.33
toxic versus 0.59 non-toxic). The toxic compounds in
the NCGC set are less like each other than in the
Scripps set which makes prediction of toxicity more dif-
ficult for the NCGC set.

Cross Predictions Between Scripps And NCGC
In Figure 5 we show the results of using models derived
from the public datasets to cross-predict each other,
compared with predictions from Ref. [23] and from the
trivial “all toxic” and “all non-toxic” models.
Firstly, we tested the NCGC Jurkat IC50 models

(FCFP_6, toxicity cut-off pIC50 > 4.64) against the
Scripps IC50 dataset (FCFP_6, toxicity cut-off pIC50 >
5.5). The NCGC models don’t distinguish toxic from
non-toxic, as indicated by the quasi-random ROC scores
at 0.52 (the BCI model was no better at 0.50). In ref
[23], Guha and Schürer considered their NCGC model
predictive, but only after altering the fingerprint descrip-
tors (CATS2D) used to train the model, and applying a
different toxicity cut-off to the Scripps set, resulting in
640 out of 775 compounds being toxic (about 83%).
They did not report a ROC score, but a percentage of
correctly classified compounds (68%). This is shown in
Figure 5 together with the value of 61% we obtained
against the Scripps set with the original cut-off of 5.5.
The model in ref [23] had a high sensitivity (0.76) and a
low specificity (0.26); in effect the model was successful

Table 3 Truth table for Scripps percent inhibition FCFP_6 and BCI models

Scripps percent inhibition FCFP_6 model Scripps percent inhibition BCI model

Experiment Cytotoxic Non-toxic Cytotoxic Non-toxic

Cytotoxic 30 ± 3.4% 7 ± 1.7% 27 ± 2.6% 11 ± 0.7%

Non-toxic 41 ± 2.0% 22 ± 3.3% 40 ± 3.2% 23 ± 3.1%

Table 4 Specificity and sensitivity of Scripps percent inhibition FCFP_6 and BCI models

Scripps percent inhibition FCFP_6 model Scripps percent inhibition BCI model

Cytotoxic (sensitivity) Non-toxic (specificity) Cytotoxic (sensitivity) Non-toxic (specificity)

Fraction correctly classified 0.82 ± 0.05 0.35 ± 0.04 0.72 ± 0.03 0.37 ± 0.05
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by predicting most compounds to be toxic - possibly as
a consequence of forcing down the cut-off. The model
“all compounds are toxic” would have correctly classified
83% of the compounds. Our FCFP_6 model can be con-
sidered the reverse. With the original cut-off for toxicity
(pIC50 > 5.5) the sensitivity is low (0.08) and the specifi-
city is high (0.92); this model yielded a 61% correct clas-
sification by predicting the majority of compounds to be
non-toxic. The simplistic “all compounds are non-toxic”
model would have correctly classified 63% of the com-
pounds. As illustrates, the two trivial models would per-
form better than the models reported by Guha and
Schürer and ourselves, indicating that our models failed
at predicting each other. We also tried to predict the
NCGC outcomes by models from the Scripps dataset.
Again, the models derived from the Scripps IC50 could
not correctly classify the NCGC set, as shown by the
ROC scores of 0.51 (FCFP_6) and 0.40 (BCI). The ROC
scores improved to 0.60 (FCFP_6) and 0.51 (BCI) when
the Scripps percent inhibition models were used, but

not enough to indicate good predictive power. Figure 5
shows the percentage of correct prediction (65%) of the
FCFP_6 model.
We conclude that all attempts to predict NCGC from

Scripps or the reverse have failed. Guha and Schürer
derived bit spectra to show that the toxic class of the
NCGC IC50 set is equally similar to the toxic and non-
toxic class of the Scripps IC50 [11]. This was used to
explain the failed prediction of Scripps results by a
model generated from the NCGC data. In Figure 6 the
FCFP_6 similarity distribution is shown between the
toxic compounds from the NCGC set compared to the
toxic and non-toxic compounds from the Scripps IC50
and percent inhibition sets. The NCGC toxic set is dis-
similar to both the Scripps IC50 toxic and non-toxic
compounds. When the NCGC toxic compounds are
compared to the larger Scripps percent inhibition set,
the similarity to the non-toxic compounds has increased
slightly, partly due to the disproportionally larger num-
ber of non-toxic compounds in this set. The NCGC

Table 5 Example series of compounds which are all predicted to be toxic (Scripps percent inhibition FCFP_6 model
score >0).

CID 663916 664633 664724 659940

pIC50 <4.40 (non-toxic) 5.24 (moderate toxic) 4.84 (non-toxic) 5.64 (toxic)

Score 36.80 28.77 41.14 42.45

Only one is truly toxic as defined by Guha and Schürer [11], but two still have a measurable pIC50. All of these were hits in the percent inhibition assay (min
percent inhibition was 53% obtained for 664724).
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toxic compounds are also dissimilar to this larger
Scripps set, which explains why a model derived from
the latter is also not predictive for NCGC.
Since both assay formats were similar and we

observed an increase in predictive power when all
Scripps percent inhibition data were included, in all like-
lihood the NCGC and Scripps assays should be predic-
tive for each other if there is sufficient overlap in
chemical space. To test this hypothesis we merged the
NCGC and Scripps IC50 sets into one set of 2103 com-
pounds of which 345 are labelled cytotoxic. As with the
separate NCGC and Scripps IC50 sets we built a Baye-
sian model with 5-fold cross validation. In Figure 7 the
ROC plots are shown for the unified models built with
FCFP_6 and BCI fingerprints. These models perform
much better than the previous models from the indivi-
dual NCGC or Scripps IC50 sets: the ROC score using
the FCFP_6 fingerprints is 0.82 ± 0.02 and 0.75 ± 0.05
for the BCI fingerprints. These results clearly show that
merging these two datasets has been synergistic, and
therefore corroborates the hypothesis that it is only the
lack of overlap in chemical space preventing better pre-
diction scores in the separate models. However, the
improvement in predictive power is unbalanced. The
unified model is worse in finding the cytotoxic com-
pounds that originated from the NCGC set (9 true posi-
tives for the unified FCFP_6 model versus 16 for the
NCGC model), but better in identifying the true posi-
tives originating from the Scripps set (218 versus 161).
The unified model identifies more true positives (and
better ROC scores) because the number increased more
in the Scripps set than it decreased in the NCGC set.
Merging the sets is equivalent to adding more inactives
to the Scripps set since the hit rate of NCGC is much
lower at 4.7% compared to Scripps at 37%. In Bayesian
statistics the probability of a compound being cytotoxic
is compared to the baseline occurrence of cytotoxicity,
mixing data sets with significantly different baseline hit

rates will potentially yield unbalanced models as
observed here.

Modelling Pfizer Data
The results obtained modelling the Scripps and NCGC
sets using naïve Bayesian were comparable to the result
obtained by Guha and Schürer using Random Forest
models. Since Bayesian models do not need rebalancing
of training sets with toxic/non-toxic ratios far from 1/1
we decided to use Bayesian models to analyse Pfizer
data. We consistently obtained better results using
FCFP_6 fingerprints than with BCI fingerprints and
therefore decided to subsequently only use FCFP_6 fin-
gerprints. We concluded from modelling the Scripps
data that Bayesian models can improve if all percent
inhibition data are used to augment the data set and
that a much lower cut-off can be used than is typically
applied by the experimenter. The Pfizer data set con-
tains results from 33 assays with percent inhibition data
and 52 assays with IC50 data. These data have been
obtained by Pfizer and its multiple legacy companies
and not surprisingly a variety of assay formats have
been applied. We developed assay meta data collection
tools for the biological assays to focus on the factors
most likely to influence cytotoxicity (e.g. cell-line, incu-
bation time, dose, endpoint detection method). Exten-
sive data profiling was applied to generate a well
characterised data set (Pfizer dataset collection and
profiling - Methods).
Many of the Pfizer assays were selectivity assays, aimed

at removing “actives” from the primary assay where the
activity was in fact due to cytotoxicity or another non-spe-
cific event. Since the compounds submitted to these assays
had already shown activity in a cell-based assay, they are
not true random subsets of the Pfizer file and the expected
toxic hit rate is closer to the Scripps IC50 set (37%) than
to the Scripps percent inhibition set (1.4%). The cytotoxi-
city assay collection also covered different % inhibition
and IC50 dose ranges. A particular cut off may give 20%
actives in one assay, but 100% actives in another. There-
fore to enable cross-assay comparison, the top 20% of
compounds (by activity or pIC50) were considered active
so that every assay would have the same hit rate. For an
assay with a normal distribution this would equal mean
plus (just under) one standard deviation. Modelling the
Scripps percent inhibition data has shown that including
this many actives in the training set can still yield a predic-
tive model. An important feature of Bayesian learning is
that it is not sensitive to the ratio of actives in the dataset;
the ROC scores in Figure 2 illustrate this point: essentially
the same model is obtained from the Scripps percent inhi-
bition data, whether the cut-off for activity is set to 10% or
to 80% or to any value in between. This advantage of
Bayesian learning means we can pragmatically define the

Table 6 Truth table for the 5-fold cross-validation of the
NCGC IC50 FCFP_6 and BCI models

NCGC IC50 FCFP_6 model NCGC IC50 BCI model

Experiment Cytotoxic Non-toxic Cytotoxic Non-toxic

Cytotoxic 1.5 ± 0.3 3.3 ± 1.2 1.7 ± 0.6 2.9 ± 1.4

Non-toxic 8.7 ± 2.0 86.6 ± 2.8 13.5 ± 1.8 81.9 ± 2.3

Table 7 Specificity and sensitivity of the NCGC IC50
FCFP_6 and BCI models

NCGC IC50 FCFP_6
Model

NCGC IC50 BCI
Model

Cytotoxic Non-toxic Cytotoxic Non-toxic

Fraction correctly
classified

0.32 ±
0.06

0.91 ±
0.02

0.41 ±
0.20

0.86 ±
0.02
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top 20% of compounds as toxic without decreasing the
quality of the model.
Our aim was to derive one generally applicable cyto-

toxicity model and it was therefore tempting to integrate
all data into one training set, hoping for a synergy in
predictive power similar to that observed when the
NCGC and Scripps IC50 sets were combined. We
decided to take a more systematic approach and to only
include data sets leading to models that are predictive
for at least one other data set.
For each assay with at least 10 toxic molecules, a

Bayesian model was derived and the ROC scores were

calculated predicting the outcome of each of the other
assays. To visualise connections between data sets pre-
diction networks were created. (see Prediction Net-
works - Methods)

Prediction Networks
In a prediction network the nodes represent data from
different assays, and the size of the node is proportional
to the number of molecules in the corresponding data
set. Nodes are considered predictive if the model yields
a ROC score greater than or equal to 0.60. Two nodes
are connected if the data at one node can be used to
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Figure 4 Histograms of FCFP_6 Tanimoto internal similarity distribution. Toxic (red) and non-toxic (blue) compounds are shown for the
Scripps IC50 set (left) and NCGC IC50 set (right). For each compound, the highest similarity score was kept to any other compound in the same
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NCGC set the opposite is the case, toxic compounds do resemble each other less than non-toxic compounds. Similar distributions were
obtained with BCI fingerprints. A similarity of 1 does not necessarily imply compounds are identical

Figure 5 Illustration of cross-predictive power for a number of models derived from public datasets. Trivial models ("All compounds are
clean” and “All compounds are toxic”) are compared to models developed in this study ("This study”) and in reference [11] ("Ref[11]“). Arrows
indicate the direction of prediction. The percentage shown below each arrow is the percentage of correctly classified compounds: (true positives
+ true negatives)/all. The toxicity cutoff of the Scripps dataset (b) was defined in ref[11] resulting in 83% toxic compounds. Toxic and non-toxic
sets are shown in red and green, respectively.
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build a predictive model for the cytotoxicity of the
molecules at the other node. The nodes are only con-
nected if predictions are bi-directional.
The percent inhibition and IC50 prediction networks

are shown in Figures 8 and 9 respectively. The edges
connecting the nodes have an arrow indicating the
direction of the prediction from the training set to the
test set. The width of the edges is proportional to the
ROC score. Differences in distances between nodes have
no meaning. In both networks there is one main cluster
of nodes connected to each other, showing that most
models derived from these assays are predictive for at
least one other model. As described previously, the
Scripps and NCGC IC50 data sets were not mutually
predictive and their nodes are not connected to each
other or indeed to any other node (nodes 53 and 54 in
Figure 9). However, the Scripps and NCGC nodes are
connected to other assays in the percent inhibition pre-
diction network (nodes 33 and 34 in Figure 8). This
situation also occurs with other assays in the prediction
networks, the assay pair (A.B) are mutually predictive,

and pair (B,C) is also mutually predictive, but (A,C) is
not as with the Scripps and NCGC data sets, this could
be due to a lack in overlap in chemical space between
assays A and C. Although there is enough overlap
between (A,B) and (B,C) for the pairs to be mutually
predictive, the pair (A,C) are too far apart in chemical
space to be predictive. The nodes in the IC50 network
are more inter-connected than in the percent inhibition
network. This is not surprising since a higher percentage
of true actives can be expected in the IC50 set com-
pared to the percent inhibition set if the first is the fol-
low up for the latter. Even with multiple mechanisms
leading to toxicity, each of which coming with a differ-
ent pharmacophore, the true actives are expected to be
more like each other than random compounds and
cross prediction should be easier.

One Predictive Cytotoxicity Model
Although further investigation is required to determine
why some assays are predictive of each other and some
are not, it is worth examining the effect of utilising the
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Figure 6 FCFP_6 Tanimoto similarity between the toxic compounds from NCGC and the Scripps compounds. In the Scripps data set,
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Figure 7 Comparison of ROC plots for models derived using different fingerprints. ROC plots of the 5 fold cross-validated NCGC/Scripps
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Figure 8 Prediction network of percent inhibition models. Nodes represent assays with arbitrary assay number. Node size is proportional to
number of molecules in assay. The presence of edges between two nodes indicates that a model from one set is predictive for the other and
vice versa. All data sets are Pfizer assays except for 33 (Scripps) and 34 (NCGC). Assays with fewer than 10 actives were removed.

Figure 9 Prediction network of IC50 models. Nodes represent assays, with arbitrary assay number. Node size is proportional to number of
molecules in assay. The presence of edges between two nodes indicates that a model from one set is predictive for the other and vice versa.
All data sets are Pfizer assays except for 53 (NCGC) and 54 (Scripps). Assays with fewer than 10 actives were removed.
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information gained from our prediction networks to
derive one predictive cytotoxicity model. The 17 con-
nected assays in the percent inhibition prediction net-
work were combined into a training set to derive the
percent inhibition cytotoxicity model. The same was
done for the 31 connected screens in the IC50 predic-
tion network to derive the IC50 cytotoxicity model. The
models were derived with the same descriptors and defi-
nition of cytotoxicity as the models built when con-
structing the prediction networks. These models were
evaluated using a 5-fold cross-validation method as
before. The ROC scores from the cross validation are
shown in Table 8. The models have good ROC scores
and the variance in ROC score between each cross-vali-
dation is also much smaller than that observed for the
earlier Scripps and NCGC models.
These results show that using a prediction network

allows appropriate assay data to be selected to construct
a training set to derive a predictive model. It appears
that using data from a diverse set of assays and employ-
ing a prediction network to select assays for inclusion in
the combined model is a powerful approach. The next
step was to see if these two cytotoxicity models can be
combined to give an overall predictive cytotoxicity
model. A test set was created containing 10% of the
molecules from the percent inhibition model training
set and 10% of the molecules from the IC50 model
training set. The two models were re-trained with the
remaining 80% of molecules. Both the percent inhibition
and IC50 cytotoxicity models were tested with the new
test set. The Bayesian scores for the compounds in each
assay were plotted against each other to see if there was
a positive correlation between the two models. The
scores were binned and for each bin a pie diagram was
generated showing the percentage of cytotoxic mole-
cules (Figure 10). The majority of cytotoxic molecules
are at high Bayesian scores in both the percent inhibi-
tion and IC50 cytotoxicity models. As both models
score cytotoxic compounds highly and there is a positive
correlation, the two models can be combined. The train-
ing sets for the percent inhibition and IC50 cytotoxicity
models are combined to give a new training set used to
derive a predictive cytotoxicity model. The ROC score
for the 5-fold cross-validated model is 0.842 ± 0.002,
between the ROC scores of the IC50 and the percent
inhibition models. This is a good model with little

variance in performance between the 5 test sets.
Although merging the two models does not produce a
model better than the two separate models, its enrich-
ment is still high and it creates a neater tool for predict-
ing cytotoxicity, rather than having to use two models.
The merged model also covers a larger area of chemical
space making it more general than the individual
models.
The merged model was also validated with a set of 87

drugs approved by the FDA since 2000. Approved drugs
for obvious reasons are assumed to be non-cytotoxic;
however we assumed the 11 drugs with an anti-cancer
indication to be cytotoxic. Figure 11 shows the ROC
plot for the predictive cytotoxicity model when validated
with this set of drug compounds. The ROC score is
0.84, which means the model performed well at distin-
guishing cytotoxic drugs from other drugs.
In addition, to investigate translation of cytotoxicity

score to toxic effects, ~11,000 compounds which had
been tested in a Pfizer in vitro toxicity/safety assay were
tested in silico through the cytotoxicity prediction
model. Examining the in vitro toxicity/safety data, at
high Bayesian scores (Figure 12) there are proportionally
more toxic compounds (with IC50 < 50 uM), than at
the lower Bayesian scores - i.e. the activity distribution
of toxic compounds with IC50 < 50 uM, centres to the
right of the inactives distribution (IC50 > 50 uM), which
has a lower average Bayesian score. There is therefore a
good indication that compounds flagged as active in the
in vitro toxicity/safety assay would have been identified
as cytotoxic by the model.
Cytotoxicity can also be related to the descriptors used

to derive the model. After the FCFP_6 fingerprints, the
descriptor which has the largest impact on the Bayesian
score is AlogP. Compounds having AlogP between 3.7
and 34 are given a high probability of being toxic by the
model, the probability of being toxic increases at the
higher end of the range. Compounds with AlogP below
3.3 are given a low probability of being toxic, generally
the lower the AlogP the lower the probability of being
toxic. There is one exception where an AlogP in the
range of 34 to 63 gives a non toxic compound, but
there is only one example of such a compound occur-
ring, therefore this is an anomalous result. These are
also unusually high values for logP; therefore AlogP is
an unreliable estimate of logP for these compounds.
Compounds with a high logP are lipophilic and can
therefore easily cross cell membranes, their tendency to
preferentially bind with proteins rather than remain in a
polar solvent making them more likely to have non-spe-
cific intracellular effects. Molecular weight is the next
most important descriptor. The model gives a low prob-
ability of a molecule being toxic if its molecular weight
is below 370. Higher molecular weights give a high

Table 8 ROC scores from the 5-fold cross-validation of
the models derived from the predictive assays

Model ROC score

Percent inhibition cytotoxicity model 0.846 ± 0.003

IC50 cytotoxicity model 0.836 ± 0.002

Merged Percent inhibition/IC50 model 0.842 ± 0.002
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probability of toxicity. A molecule’s lipophilicity will
increase as its mass increases; therefore it is not surpris-
ing that heavier compounds have a higher probability of
being cytotoxic. The polar surface area and the number
of hydrogen bond donors and acceptors also show how
cytotoxicity is dependent on the lipophilicity of the
compounds.
The number of rotatable bonds also has a positive

correlation with cytotoxicity score. This is to be
expected, since a flexible molecule can adopt a greater
number of conformations, allowing it to bind to many
different sites, possibly leading to unwanted effects.
Typically molecules with a large number of rotatable
bonds also have a higher molecular weight - which is
again correlated with logP.
The observed correlation of lipophilicity and related

properties with cytotoxicity is not surprising as this has
also been observed in studied linking in vivo toxicity[28]
and bioavailability to physiochemical properties[29].

Conclusions
There is a wealth of data from cytotoxicity assays avail-
able both publicly and within pharmaceutical companies
that can be used to derive predictive models. Here, a
predictive Bayesian model has been derived from public
and in-house Pfizer data.
During the development of this model the need for

multiple-fold cross-validations has been reinforced, as
this gives the most accurate validation results. A method
for cut-off optimisation has also been shown to provide
an appropriate definition of cytotoxicity to build a suc-
cessfully predictive model. Prediction networks have
been used to make informed decisions on which data
sets should be included in the training set and have
identified the need for more detailed examinations of
what makes two data sets predictive of each other. The
prediction networks identified assay data that could be
used to derive predictive models. These assays were
combined into one training set that produced a

Figure 10 Correlation of Bayesian scores of a test set calculated from the IC50 and percent inhibition models. The test set consisted of
10% of the molecules from the percent inhibition cytotoxicity model training set and the IC50 cytotoxicity model training set. The Bayesian
scores are binned to get 16 bins. The pies represent the number of molecules within those bins with size proportional to the number of
molecules. Red segments represent the proportion of non-cytotoxic molecules and blue segments represent the proportion of cytotoxic
molecules. A similar plot (not shown) was obtained using all of the data in the training set.
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successful predictive cytotoxicity model with a ROC
score of 0.842 ± 0.002.
The data indicate that some assays are highly predictive

of each other. We speculated that this may because they
shared common assay conditions (cell line, species, incu-
bation time, detection method etc.). To investigate this
further, more networks were created in Cytoscape to
incorporate the assay conditions available. However no
clear relationship between these factors and cytotoxicity
could be demonstrated. This does not necessarily rule
out a relationship as there was little overlap in assay con-
ditions between data sets, and only a few compounds
have been tested in more than one assay. To study this
hypothesis further, the prediction network method
should be repeated with a dense matrix of assays span-
ning diverse experimental conditions and compounds
tested against all assays. This information can be repre-
sented in the network and any assay relationships
between predictive data sets will become apparent.
Although there are gaps in the understanding of

why the combination of assay data used to derive the
predictive cytotoxicity model works, the model is still

an extremely useful tool and also supports previous
evidence in the literature that toxicity is related to
lipophilicity. This model could be used to triage hits
from primary cell-based screens for cytotoxicity,
rather than running parallel cytotoxicity assays. The
model predictions track well with the in vitro safety/
toxicology assay we examined, but the applicability of
the model as a tool to help identify toxic molecules
early on in the drug discovery pipeline would be
increased if its output could be compared with more
in vitro assays of this type. Once more is understood
on what makes a data set predictive, this knowledge
can be utilised to derive a more accurate predictive
model. Modelling methods described in this paper are
not limited to cytotoxicity; they can also be used
when predicting other molecular properties, or com-
pound activities.

Experimental Methods
Data sets
Cytotoxicity assay data from publicly available sources
and Pfizer in-house screening data were used to train
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Figure 11 Validating the predictive cytotoxicity model with a set of 87 FDA-approved drug compounds. ROC plot generated from a
range of FDA approved drugs
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the Bayesian models. Four data sets were used covering
172,506 compounds from 89 assays and contain a mix-
ture of percent inhibition and IC50 data (Table 9).
Pfizer dataset collection and profiling
We conducted a gap analysis on the original dataset to
identify those protocols where a substantial proportion
of the assay experimental conditions was missing or
inconsistent, which was the case for some legacy proto-
cols. Examination of the full assay documents and direct
contact with the biologists involved allowed us to gener-
ate a list of 82 assays with comprehensive coverage of
the assay experimental parameters.
Assay endpoint detection methods were classified as

Fluorescence emission, Luminescence, RNA quantifi-
cation and Absorbance. The assay technologies

included dye binding, flow cytometry, formazan dye
formation, luciferase, PCR, and Resorufin dye forma-
tion. Data was used from a variety of species -
Human, Hamster, Mouse, Pig, Rat, and Monkey - and
a total of 34 different cell lines across all of the assays.
To standardize the data and improve confidence in the
model, the cell lines were re-classified according to
their tissue origin (blood, skin, colon, cervix, ovary,
lung, kidney, breast, foreskin, liver, aorta, brain, con-
nective tissue, muscle, and nerve). Incubation times
were standardised to a base unit of hours - our obser-
vations indicate that a wide range of incubation peri-
ods are used in cytotoxicity screens (2 hours to 145
hours) and they can vary within the same tissue type,
or assay technology.
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Figure 12 Distribution of cytotoxicity scores generated from Pfizer model (combined IC50 and Pct inhibition). A range of compounds
tested in an in vitro toxicity/safety assay. Actives (red), having IC50 < 50 μM, inactives (blue) with IC50 > 50 μM.

Table 9 Summary of the 4 data sets used to build Bayesian models to predict cytotoxicity

Data set Source Description No. of
assays

No. of
compounds

IC50 Percent
inhibition

Scripps PubChem, AID
364, 463, 464

T-Cell (Jurkat) proliferation data containing a mixture of percent
inhibition and IC50 measurements

3 60503 768 59735

NCGC PubChem, AID
426

T-Cell (Jurkat) proliferation data containing IC50 measurements 1 1277 1277 0

Pfizer percent
inhibition

Pfizer Percent inhibition data from a variety of different cytotoxicity
assays

33 83284 0 83284

Pfizer IC50 Pfizer IC50 data from a variety of different cytotoxicity assays 52 28492 28492 0
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In addition to assay profiling and classification we
analysed the percent inhibition and IC50 results for
each assay to determine whether these results could be
included in our models. Wherever we could not identify
the convention used to distinguish cytotoxic compounds
we decided to remove this data from further analysis.
The assays where we could not reliably differentiate
between true actives, artefacts and different naming con-
ventions were likewise excluded.
To allow the model to make appropriate comparisons,

data from the remaining HTS assays was examined to
ensure there was the expected normal distribution
around zero % inhibition. Assays were excluded from
further analysis where this was not the case. Assay
results where the endpoint value violated the standard
business rules (e.g. zero or null) were also excluded. Sci-
tegic Pipeline Pilot was used to develop an automated
data cleaning tools to perform the tasks described in
this section. In addition, using curve fit descriptors and
quality parameters, we generated Spotfire plots and
screen data confidence scores [30] which enable interac-
tive exploration and assessment of the data quality.
These tools were used to refine the IC50 data set to a
list of 52 assays where the data, curve fits and endpoints
were reliable and well understood.
Bayesian Learning and Bayesian score
Pipeline Pilot[31,32] was used to perform all calcula-
tions. During the period of research versions 6.5, 7.0
and 7.5 were used, but there are no differences in the
components used in these versions. Bayesian learning is
based on Bayes’ rule for conditional probability which
gives the probability of an event A occurring given that
event B has already occurred. In a cytotoxicity context,
this is the probability of a compound being toxic, given
that it contains a particular descriptor. For each descrip-
tor, D, the probability of a molecule being toxic given it
contains descriptor D is calculated as P(Active|;D) =
AD/(AD+ID), where AD is the number of active com-
pounds containing descriptor D and ID is the number of
inactive compounds containing descriptor D. These
probabilities become unreliable as the number of mole-
cules containing descriptor D becomes small. Therefore
a Laplacian modified model is derived which takes into
account the different sampling frequencies of different
features by adding samples with the same hit rate as
observed in the training set.
Laplacian modified model
If we assume most features have no relationship to
activity then we would expect P(active|;D) to be equal
to the overall activity rate, P(active) = A/(A+I). If we
sample a feature K additional times, where K = 1/P
(active), we would expect P(active)K of these samples to
be active. Therefore the Laplace corrected probability of
a compound being active given a certain descriptor D, P

(Active|;D), is equal to (AD+P(active)*K)/((AD+ID)+K).
As (AD+ID) approaches 0 the feature probability con-
verges towards P(active) which is expected if it is
assumed the feature has no relationship to activity. The
Bayesian score calculated for a compound of unknown
class is calculated by multiplying the probabilities for
each descriptor contained in the compound; this score
represents the likeliness of the compound being active.

Model Building
Percent inhibition cut-off optimisation
The following method was used to find the best percent
inhibition value to use as the definition for cytotoxicity
for the molecules in the Scripps data set. The best cut-
off is the value that gives the highest ROC score when
used to build a model. The ROC score is the area under
the curve of the ROC plot for the model. This method
was originally suggested by David Rogers [27]. A set of
121 models was built, each with a different percent inhi-
bition cut-off as the definition for toxicity. The cut-offs
ranged from -20% to 100% in 1% increments. The ROC
score was calculated for each of these models and was
plotted against the corresponding cut-off. The optimum
cut-off is defined as the cut-off that yields the highest
ROC score. As 5-fold cross-validation is used to test the
models, the same method is also used in the cut-off
optimisation. The set of 121 models is trained on 80%
of the data and the ROC scores are calculated by testing
on the remaining 20% of the data. This is repeated 5
times using a different 20% to test the model each time.
When the ROC score is calculated the cytotoxic com-
pounds are defined as those that were labelled as active
in the original data extracted from PubChem. These
labels were assigned based on the percent inhibition or
IC50 values if available for the molecules. This proce-
dure was repeated twice. Once for the FCFP_6 finger-
prints and once for the BCI fingerprints.
Prediction networks
A major challenge for machine learning methods is to
understand the applicability domain of models. For
example a model trained on a particular data set may
perform well when cross-validated, but fail at classifying
compounds from a different data set. This research aims
to determine which assay data can be used to predict
the outcome of other assays and to understand any rela-
tionship between such data sets. To do this we have cre-
ated prediction networks.
The available Pfizer data were split into two cate-

gories: IC50 and percent inhibition data. This is because
IC50 data are often obtained as confirmations of pre-
vious data and are therefore enriched in hit rate but
with lower chemical diversity of compounds (as was the
case with the Scripps data). The hit rate for the Pfizer
assays was artificially set to 20%, but the chemical
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diversity has probably been artificially lowered by routi-
nely removing compounds with undesirable chemical
functional groups and/or physical properties. The
NCGC and Scripps data were included as well as sepa-
rate screens. There are no distinct percent inhibition
measurements available for NCGC, therefore we took
the percent inhibition at 9.2 μM from the full curve
data as a surrogate.
The Pfizer percent inhibition data set contains data

from 33 assays, A Bayesian model was derived for each
assay, giving a total of 28 models (5 of the assays con-
tained only 1 molecule so a model could not be trained).
Each of these models was then tested in turn with data
from the remaining assays not used to train the model.
Each of the models was also tested on the Scripps per-
cent inhibition and NCGC percent inhibition data sets,
and the Scripps percent inhibition and NCGC models
were be tested with each of the Pfizer percent inhibition
models. A text delimited file was created containing a
column for training set, a column for test set and a col-
umn for the ROC score when a model trained with the
training set, is tested with the test set. This file was
imported into Cytoscape v.2.6.1[33] where the predic-
tion networks were created.
The same method was applied to the 52 assays in the

Pfizer IC50 data set. A total of 45 models were pro-
duced as 7 of the assays only contained 1 molecule. The
Scripps IC50 and NCGC data sets were also included.
For all models built, FCFP_6 fingerprints, AlogP, num-
ber of hydrogen bond donors, number of hydrogen
bond acceptors, number of rotational bonds and mole-
cular fractional polar surface area were used as descrip-
tors. Since for most of the assays it had not been
recorded what constitutes as a cytotoxic outcome the
top 20% compounds (top percent inhibition or top
pIC50) of each assay were classed as toxic. For the
Scripps and NCGC data sets the definitions for toxicity
described above were used.
Two prediction networks were built, one for the Pfizer

percent inhibition data set and one for the Pfizer IC50
data set. Assays are represented in the network as
nodes, and the nodes are connected with an edge if a
model trained with the screen at the source node is suc-
cessful in predicting the cytotoxicity of the screen at the
target node as defined by a ROC score greater than
0.60. The networks are arranged using a spring-
embedded layout. A spring-embedded layout positions
nodes to give an aesthetically appealing layout. This is
done by replacing the nodes with rings and each edge
with a spring. The nodes are placed in an initial layout
then are let go so the springs force the nodes to move
to a minimal energy layout.
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