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ABSTRACT: The bile salt export pump (BSEP) is a key
transporter involved in the efflux of bile salts from hepatocytes
to bile canaliculi. Inhibition of BSEP leads to the accumulation of
bile salts within the hepatocytes, leading to possible cholestasis and
drug-induced liver injury. Screening for and identification of
chemicals that inhibit this transporter aid in understanding the
safety liabilities of these chemicals. Moreover, computational
approaches to identify BSEP inhibitors provide an alternative to
the more resource-intensive, gold standard experimental ap-
proaches. Here, we used publicly available data to develop
predictive machine learning models for the identification of
potential BSEP inhibitors. Specifically, we analyzed the utility of
a graph convolutional neural network (GCNN)-based approach in
combination with multitask learning to identify BSEP inhibitors. Our analyses showed that the developed GCNN model performed
better than the variable-nearest neighbor and Bayesian machine learning approaches, with a cross-validation receiver operating
characteristic area under the curve of 0.86. In addition, we compared GCNN-based single-task and multitask models and evaluated
their utility in addressing data limitation challenges commonly observed in bioactivity modeling. We found that multitask models
performed better than single-task models and can be utilized to identify active molecules for targets with limited data availability.
Overall, our developed multitask GCNN-based BSEP model provides a useful tool for prioritizing hits during early drug discovery
and in risk assessment of chemicals.

1. INTRODUCTION
The bile salt export pump (BSEP; gene symbol ABCB11) is a
member of the ATP-binding cassette transporter family and is
an important cell-membrane protein that regulates the efflux of
bile salts from hepatocytes to bile canaliculi (Figure 1A).1 Bile
salts play a key role in the digestion of fatty substances, and
nearly 90% of bile salts are reabsorbed from the intestines and
shuttle back to the hepatocytes through entero-hepatic
circulation.2,3 BSEP acts as the rate-limiting step in bile
formation and is essential for normal liver function and
maintenance of bile flow.4 Patients with a genetic mutation
that results in loss of BSEP function are known to develop
progressive familial intrahepatic cholestasis type 2 (PFIC2), a
genetic disorder that is marked by cholestasis within ∼3
months after birth and can lead to death at a young age (<30
years) if left untreated.4 Drug- or toxic chemical-induced
inhibition of BSEP is now recognized as the molecular
initiating event for the cholestasis adverse outcome pathway,
i.e., inhibition of BSEP is causally related to the adverse
outcome.5 When BSEP is inhibited, intracellular bile acid levels
rise to cytotoxic concentrations (Figure 1B).6 The degree of
cytotoxicity is determined by the hydrophobicity of the bile
acid, with more hydrophobic bile acids being more toxic.7,8

This can result in hepatocyte injury through multiple

mechanisms, including oxidative stress, mitochondrial damage,
apoptosis, and necrosis.5,7,9 For example, troglitazone, an
approved antidiabetic drug, was withdrawn from the market
due to the drug-induced liver injury (DILI) caused by BSEP
inhibition.10 Furthermore, BSEP inhibition is considered as an
indicator of the DILI potential of drugs.11 Due to the
physiological significance of BSEP and its role in adverse health
effects, the European Medicines Agency now recommends in
vitro screening for BSEP inhibition as part of the evaluation of
new drugs.12,13 Overall, there is a growing emphasis on earlier
screening and identification of BSEP inhibition potential of
new hits/lead molecules as it will help avoid costly, late-stage
failures during drug development and support risk assessments
of chemicals.
Because experimental screening approaches are resource-

intensive and time-consuming, it is not feasible to perform
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high-volume screening of large chemical databases for BSEP
during the early hit identification/prioritization stage of drug
discovery.14 Computational approaches provide an alternative
to experimental screening approaches and can be grouped into
two categories: (1) structure-based and (2) ligand-based.15−17

Structure-based approaches focus on the protein structure of
BSEP and molecular docking calculations. Jain et al. have
performed docking analyses using a homology model of
BSEP12 and observed that combining ligand-based models
with docking resulted in better performance when classifying
BSEP inhibitors than utilizing a docking approach alone.12 In
general, structure-based approaches are challenging when
considering protein flexibility, identifying varied ligand-binding
sites, and accurately characterizing the effect of solvent and
membrane-mediated interactions.15,18 Ligand-based ap-
proaches do not have these limitations, but rely on the
availability of bioactivity data for a set of ligands.19−21 Hence,
ligand-based approaches are more commonly used to develop
BSEP classification models.14,22−26 Hirano et al. reported the
first ligand-based model for BSEP,22 developing multiple linear
regression models using a small dataset of 38 compounds.
They reported a coefficient of determination (R2) of 0.952 for
their training set, but no test set or cross-validation set was
evaluated.22 Warner et al. developed a support vector machine
model using 196 AstraZeneca in-house descriptors, and their
best model had an accuracy of 87%.23 Their work also
highlights the need for additional descriptors and machine
learning models, as they showed that the use of simple
molecular descriptors, such as molecular weight and logP,
alone can lead to false negatives.23 The data used in their work
were disclosed in the paper, but the model and in-house
descriptor calculation program are not available.23 Montanari
et al. developed a random forest model using 838 compounds
shared internally by AstraZeneca as part of the eTox project.24

They utilized the commercial Molecular Operating Environ-
ment (MOE) software for descriptor calculation, and their best
model had an accuracy of 80% during test set evaluation.24

Their model is provided as a KNIME workflow but requires
the commercial MOE software for descriptor calculation, and
the data used for model development are not publicly
available.24 McLoughlin et al. utilized a proprietary GSK
dataset and developed classification (neural network and
random forest) and regression models for BSEP using their
ATOM Modeling Pipeline (AMPL).14 They also developed an
open model using public data, but it was evaluated using the
proprietary dataset and requires the use of their AMPL
platform.14 The model provided an accuracy of 77% when
examining an external test set.14 More recently, Rodriǵuez-

Peŕez et al. reported the development of a BSEP classification
and regression model using in-house Novartis BSEP inhibition
assay data.25 Their extreme gradient boosting classification
model has a balanced accuracy of 69% on the calibration set.25

Overall, the previous computational modeling work either
lacks publicly available data for model development and
evaluation or lacks easily accessible models. Significantly, all of
the previous models utilize molecular descriptors or finger-
prints to represent the compounds during model building.
There are no reports so far that utilize an alternative graph
convolutional neural network (GCNN) approach for model
building. The GCNN is a recent development in the field of
cheminformatics where the molecular structure is learned in an
automated manner, in contrast to previous fingerprint-based
approaches that require predefined sets of chemical sub-
structures/functional groups.27,28 A detailed evaluation of the
computational models using benchmark datasets showed
better performance of the GCNN approach over traditional
fingerprint/descriptor-based approaches.27 While other studies
have shown that multitask models perform better than single-
task models,29,30 so far the utility of GCNN and multitask
approaches in BSEP modeling has not been studied.
In this work, we developed GCNN models to predict BSEP

inhibitors and performed a detailed comparison between
single- and multitask models. First, we collected publicly
available BSEP inhibition data from BindingDB. Next, we
utilized ChemProp,27 a publicly available tool, to develop
GCNN models for BSEP and compared the performance of
GCNN models with variable-nearest neighbor and Bayesian
approaches. We found that the GCNN model outperformed
the other types of models. Then, we collected datasets
associated with the blood−brain barrier (BBB) and the
human ether-a-̀go-go-related gene (hERG) to develop multi-
task models. We also evaluated whether multitask models are
useful in addressing data limitation challenges, a common
problem in bioactivity modeling. We found that multitask
models consistently performed better than single-task models
in predicting the activity of evaluation test sets. Finally, we
evaluated the effect of additional datasets on the performance
of multitask models. We found that the addition of human
immunodeficiency virus protease (HIVpro) further helped to
improve model performance. This agrees with the literature
finding that many HIVpro inhibitors are known to inhibit
BSEP and other transporters. Overall, the developed multitask
GCNN-based BSEP models provide a rapid computational
method for safety risk assessment during early drug discovery.

Figure 1. (A) Schematic illustration of the role of bile salt export pump (BSEP), the primary transporter involved in the efflux of bile salts from
hepatocytes to bile canaliculi. Bile salts are either synthesized in the hepatocytes or reabsorbed from the blood through entero-hepatic circulation,
and BSEP performs the efflux of bile salts from the hepatocytes. (B) Summary of BSEP inhibition leading to cholestasis through excessive
accumulation of cytotoxic bile acids within the hepatocytes. BSEP inhibition acts as the molecular initiating event in the cholestasis adverse
outcome pathway.
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2. METHODS
2.1. Dataset and Preprocessing. We collected 1,689

compounds with publicly available BSEP bioactivity data from
BindingDB (accessed on 5-19-2022).31 BindingDB curates the
activity data for each target from various literature sources,
including patents.31 We used Pipeline Pilot (Version
18.1.100.11) to preprocess the molecules, removing duplicate
compounds, salts, and mixtures and standardizing the
molecules.32 Standardization refers to a molecule preprocess-
ing step wherein proper bond order, aromaticity, and
hydrogens are assigned.33 As suggested in the International
Transporter Consortium workflow on BSEP inhibition in drug
discovery, we used a half-maximal inhibitory concentration
(IC50) cutoff of 25 μM,4 designating compounds with IC50
values <25 μM as inhibitors and >100 μM as noninhibitors of
BSEP. We excluded compounds with IC50 values between 25
and 100 μM from our analysis. Our final dataset consisted of
925 compounds with 152 BSEP inhibitors and 773 non-
inhibitors (Table S1, Supporting Information).
2.2. Molecular Properties, Chemical Space, and

Scaffold Analysis. In order to understand the chemical
space associated with BSEP inhibitors, we used Pipeline Pilot
and calculated seven physicochemical properties, namely,
molecular weight, log of the octanol/water partition coefficient
(AlogP), number of rings, number of rotatable bonds, number
of hydrogen-bond acceptors, number of hydrogen-bond
donors, and molecular polar surface area. We used R statistical
software34 to generate boxplots and compared the differences
in the distribution of physiochemical properties between the
BSEP inhibitors and noninhibitors. We evaluated the chemical
space of each BSEP inhibitor by comparing it to the chemical
space of approved drugs using principal component analysis.
Specifically, we collected 1150 approved drugs from DrugBank
and calculated the same seven physiochemical properties as
above.35 We then used R package prcomp to perform the
principal component analysis.36 In addition, we used the
Pipeline Pilot component “scaffold frequency analysis” to
identify the frequently occurring scaffolds among the collected
BSEP inhibitors. This tool calculates Bemis-Murcko scaffolds
and calculates their frequency in the given dataset.37

2.3. Model Building. 2.3.1. Variable-Nearest Neighbor
Models. The variable-nearest neighbor (v-NN) method, a
variant of the k-nearest neighbor (k-NN) method, is widely
used to develop quantitative structure−activity relationship
(QSAR) models20,38−40 and addresses the limitation associated
with the k-NN method by using a structural similarity
criterion.38 The predicted biological activity (y) is a weighted
average across structurally similar neighbors
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where di denotes the Tanimoto distance between a query
molecule for which a prediction is made and a molecule i of the
training set, yi represents the experimentally measured activity
value of molecule i, v denotes the total number of molecules in
the training set that satisfy the condition di ≤ d0, h represents a
smoothing factor which dampens the distance penalty, and d0
denotes a Tanimoto distance threshold beyond which two
molecules are no longer considered to be sufficiently similar to
be included in the average. We set the yi value to 1 for
predicting BSEP inhibitors and to 0 for predicting non-

inhibitors. The v-NN method has two adjustable parameters
that influence performance: the Tanimoto distance threshold
d0 and the smoothing factor h. In order to enable comparison
across different machine learning approaches, we set the
Tanimoto distance threshold d0 to 1. To identify structurally
similar compounds, we used RDKit Morgan circular finger-
prints with a radius of two chemical bonds.41 We implemented
the v-NN model development framework as KNIME pipeline,
and it is available on a public web server as a v-NN-absorption,
distribution, metabolism, excretion, toxicity (ADMET) plat-
form (https://vnnadmet.bhsai.org/vnnadmet/).39

2.3.2. Bayesian Models. We used Naiv̈e Bayes learner node
in KNIME for building Bayesian classification models,42

another popular QSAR approach widely used in ADMET
studies.43−45 Details of the Bayesian classifier approach have
been described earlier.19 Briefly, this approach uses Bayes’
theorem and a “learn-by-example” model to predict the
likelihood that a given compound is active.19 It calculates the
frequency of occurrence of each molecular feature among the
inhibitors compared with all compounds in the dataset and
generates as output a Laplacian-adjusted probability estimate,
which provides the likelihood of compounds being from the
inhibitor set.19 The KNIME protocol uses an RDKit Morgan
circular fingerprint with a radius of two chemical bonds as an
input feature for this model.41

2.3.3. Graph Convolutional Neural Network Models.
2.3.3.1. GCNN Single-Task Models. We used the publicly
available ChemProp program to develop our GCNN models.27

ChemProp is an open-source Python software package that
uses a directed message-passing neural network (D-MPNN) to
generate molecular descriptors.27 ChemProp operates in two
steps, namely, the message-passing phase (graph encoder) and
the readout phase (feed-forward neural network).27 The
structure of the compounds in the training set is learned in
the message-passing phase, and the activity prediction is
performed in the readout phase. This approach differs from
fingerprint-based approaches in that the molecular representa-
tion is learned by the program automatically and need not be
predefined as in the case of chemical fingerprints. D-MPNN
treats the structure of the molecule as a graph, where each
atom is a node and each bond is an edge. These nodes and
edges have associated feature vectors representing the identity
of the respective atoms and bonds. D-MPNN iteratively
updates the associated features based on the neighboring
node/edge information in each convolution operation and
finally creates the learned representation of the compound
using a built-in aggregation function that collects the final
updated atom-level and bond-level features.46 The feed-
forward neural network uses this learned representation as
the input feature vector and predicts the activity of the
compound.
The program takes a list of simplified molecular-input line-

entry system (SMILES) and associated activity values, given as
1 and 0 for active and inactive molecules, respectively, in .csv
format as input. In this work, we chose “classification” as the
modeling type and used fivefold cross-validation for the
“number of folds” option. We developed 10 ensemble models
in each run and used 30 epochs. We used the default values for
the rest of the model development parameters: a depth value of
3, i.e., the number of message-passing steps in D-MPNN, the
ReLu activation function, 300 hidden neurons, and two layers
for the feed-forward neural network. We created the single-task
GCNN models for BSEP activity data only.
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2.3.3.2. GCNN Multitask Models. We also used ChemProp
to run multitask learning models, where one neural network is
used to make predictions for multiple properties at the same
time. To perform multitask learning, we first collected two
additional datasets associated with BBB permeability and
hERG. We used the BBB data provided by Roy et al.47 and the
hERG data provided by Schyman et al.39 We preprocessed the
datasets and removed duplicates and inconsistent compounds.
After preprocessing the data, we had 3439 compounds for BBB
(2489 actives and 950 inactives) and 645 compounds for
hERG (271 actives and 374 inactives). In addition to
comparing the performance between single-task learning and
multitask learning GCNNs, we also wanted to evaluate the
utility of multitask learning in situations where there are
limited activity data available for training. In order to perform
this analysis, we randomly split the data 10 times into training
and test sets. Each of the training sets was further split into
multiple smaller subsets (10, 20, 30, 50, and 80%). Then, we
developed single- and multitask models and evaluated model
performance on the same test set from the corresponding
initial split.
Next, we evaluated the influence of additional datasets on

multitask learning performance. For this, we collected two
additional bioactivity datasets associated with 3-phosphoinosi-
tide-dependent kinase-1 (PDK-1) and HIVpro from public
databases. We collected PDK-1 bioactivity data from Bind-
ingDB31 (accessed on 8-11-2022) and HIVpro data from
ChEMBL (accessed on 8-11-2022).48 We preprocessed the
datasets and removed duplicates and inconsistent compounds.
After preprocessing the data, we had 952 compounds for PDK-

1 (788 actives and 164 inactives) and 2427 compounds for
HIVpro (2129 actives and 298 inactives).
2.4. Performance Evaluation. We carried out fivefold

cross-validation as well as a common external test set-based
validation to validate and compare model performance. In the
fivefold cross-validation procedure, we split the dataset into
five groups and left one group out; subsequently, we used the
model built from the compounds in the remaining four groups
to predict the compounds in the left-out group. Once we
completed this prediction cycle by leaving out each of the five
groups, we calculated the model evaluation parameter, the
receiver operating characteristic (ROC) area under the curve
(AUC). To compare different models’ performances using the
same external test set, we randomly split the data into training
and test sets. We used the training set to develop the model
using different approaches, such as v-NN, Bayesian, and
GCNN, and calculated model performance based on their
activity prediction on the common external test set. We used
an R script to calculate performance evaluation parameters
using a common external test set. We calculated the following
metrics: Matthews correlation coefficient (MCC); sensitivity
(also known as the recall or true positive rate), the ability to
correctly predict positive results; specificity (also known as the
true negative rate), the ability to correctly predict negative
results; and accuracy, the total percentage correctly predicted.
These parameters are defined as follows

=
+

sensitivity
TP

TP FN (2)

Figure 2. Boxplots showing the distribution of four molecular properties among bile salt export pump (BSEP) inhibitors and noninhibitors. (A)
Molecular weight. (B) Log of the octanol/water partition coefficient (AlogP). (C) Number of rings (nRings). (D) Number of rotatable bonds
(nRot).
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=
+

specificity
TN

TN FP (3)

= +
+ + +

accuracy
TP TN

TP TN FP FN (4)

where TP refers to true positive, TN to true negative, FP to
false positive, and FN to false negative. We generated ROC
and precision-recall (PR) curves and calculated the ROC-AUC
and PR-AUC, respectively.

3. RESULTS AND DISCUSSION
BSEP is the key hepatic transporter for the efflux of bile salts
into bile fluid, and the inhibition of this transporter leads to the
accumulation of bile acids within the hepatocytes, leading to
cell death and eventually resulting in cholestasis and liver
injury. Earlier prediction of BSEP inhibition potential during
the drug discovery process can help screen out drugs with
potential liver toxicity liabilities. In this work, we utilized
publicly available BSEP data and developed GCNN models
that can predict the potential of a chemical to inhibit BSEP.
3.1. Analysis of Molecular Properties and Chemical

Space of BSEP Inhibitors. After preprocessing the data and
removing duplicates, we obtained a final dataset of 925
compounds with 152 BSEP inhibitors and 773 noninhibitors
(Table S1, Supporting Information). We evaluated the
variation between the BSEP inhibitors and noninhibitors in
terms of the following seven physiochemical properties:
molecular weight, AlogP, number of rings, number of rotatable
bonds, polar surface area, and hydrogen-bond acceptors and
donors. Figures 2 and S1 (Supporting Information) show
boxplots with the medians and quartiles of these seven
properties. We used the nonparametric Mood’s median test to
evaluate whether the median for each physiochemical property
of BSEP inhibitors and noninhibitors was significantly
different. Our analysis showed that, with the exception of
hydrogen-bond donors (p > 0.1), all other properties were
significantly different between BSEP inhibitors and non-
inhibitors. For example, the mean and median molecular
weights of BSEP inhibitors were 522 and 453, respectively,
whereas those for BSEP noninhibitors were 337 and 301
(Figure 2 and Table S2, Supporting Information). This result
agrees with the previous work of Pedersen et al., which
reported significant differences between BSEP inhibitors and
noninhibitors in terms of lipophilicity/hydrophobicity and
size.49

We utilized these seven physiochemical properties and
evaluated the mapping of the chemical space associated with
BSEP inhibitors with respect to that of approved drugs. Figure

3A shows the comparison of the chemical space of these
known BSEP inhibitors with those of approved drugs,
indicating that most of the BSEP inhibitors occupy a similar
chemical space as that of approved drugs. This demonstrates
that many BSEP inhibitors have druglike properties, and
utilization of simple physiochemical properties will not be able
to separate BSEP inhibitors from other compounds when
screening druglike compound databases. The large overlap of
chemical spaces between these compound classes supports the
need to develop machine learning models that capture
structural features that differentiate these two classes. We
evaluated the frequently occurring scaffolds among the known
BSEP inhibitors. We found that scaffolds, such as dihydropyr-
idines, dihydropyrans, piperazines, pyrazoles, and tetradecahy-
dro-cyclopentaphenanthren-3-one, are more frequently found
among BSEP inhibitors (Figure 3B).
3.2. Comparison of Graph Convolutional Neural

Network and Other Machine Learning Models. Machine
learning models are an integral part of the drug discovery
process and are widely used for predicting various activity
endpoints. Our group has developed many predictive models
for various ADMET endpoints using v-NN and Bayesian
approaches.19,38−40 These traditional machine learning ap-
proaches typically use fingerprints to represent the structure of
the compounds. In particular, circular fingerprints are
considered the de facto standard in representing chemical
structures for developing machine learning models.19 This
approach captures the presence of predefined sets of chemical
substructures/functional groups to represent the chemical
structure. More recently, GCNN-based approaches have
provided an alternative to the traditional fingerprint approach
and allowed us to learn the chemical structures in an
automated manner.27 The learned representation of the
molecule can then be used with a feed-forward neural network
to predict the activity of the compounds. Yang et al. have
performed a detailed analysis of benchmark datasets and
showed that GCNNs perform better than other machine
learning approaches for predicting the properties of com-
pounds.27 GCNNs were successfully used to discover new
compounds with antibacterial activity as well as to predict
various ADMET endpoints.28,50 So far, the utility of GCNNs
in predicting BSEP inhibition potential of chemicals has not
been studied. In this work, we focused on developing a GCNN
model for BSEP using the open-source ChemProp program.
First, we evaluated three different machine learning

approaches, i.e., v-NN, Bayesian, and GCNN. The first two
methods use standard circular fingerprints to represent
chemical structures, and the GCNN method employs graph-

Figure 3. (A) Chemical space analysis of bile salt export pump (BSEP) inhibitors (brown) compared with approved drugs (cyan) showing overlap
of both datasets. (B) Frequently occurring scaffolds among the known BSEP inhibitors.
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derived automatically learned molecular representation of the
chemical structures. We carried out a fivefold cross-validation
analysis using the three approaches. Figure 4 shows that the

GCNN approach had the best overall performance in terms of
ROC-AUC compared to either the Bayesian or v-NN
approach. We also evaluated the predictive ability of the
model using a common external test set and calculated the
ROC-AUC for the three approaches (Figure S2, Supporting
Information).
3.3. Analysis of Single-Task and Multitask Learning

GCNN Models. GCNNs can be used to develop single- or
multitask learning models.51 In the above model comparison
analysis, we used only the BSEP data and developed the
prediction model, i.e., single task. Previous reports have shown
that multitask models perform better than single-task
models.29,30 Although deep learning/GCNN approaches are
successfully used in many real-world problems, such as image
classification, voice recognition, and self-driving cars, their
utility is limited in biomedical and drug discovery prob-
lems.52,53 The main reason for this is limited data availability.
For example, organic anion transporter-1 is another transporter
similar to BSEP that is recommended for evaluation during the
drug discovery process by regulatory agencies,54 but a search of
ChEMBL showed that only 50 compounds with bioactivity
values are available for this transporter. This impedes the
development of machine learning models for this transporter
and poses a significant challenge for developing computational
profilers/tools. Providing a possible path forward, multitask
models have been reported to be useful in addressing such data
limitation challenges.55

In this work, in addition to comparing single- and multitask
BSEP models, we extensively evaluated the utility of the
multitask model approach to address the data limitation
challenge. To this end, we included related targets with
sufficient data and developed multitask models, using BSEP
data together with BBB permeability and hERG inhibition
data. BBB permeability involves multiple transporters, and
hERG is a channel located in the cell membrane. We
performed 10 random splits of the data into training and test
sets to make sure that model performance was not influenced
by the data composition in random splits. Each of the training
sets was further split into multiple smaller subsets (10, 20, 30,
50, and 80%). We then developed multitask and single-task
models and evaluated model performance on the same external

test set from the corresponding initial split (Figure 5). We
developed 10 ensemble models for each training dataset and

optimized parameters with fivefold cross-validation. Overall,
we generated 6000 GCNN models as part of this analysis. The
average ROC-AUC for the multitask models was higher than
for the single-task models when the data availability was below
80% (Figure 6). The average PR-AUC values for multitask
models with 10, 20, 30, 50, and 80% subsets were 0.38, 0.43,
0.42, 0.55, and 0.63, respectively, and for single-task models,
they were 0.16, 0.27, 0.32, 0.39, and 0.55, respectively (Figure
6). Similarly, the average MCC value for the multitask models
was consistently better than for the single-task models for all
subsets of training data (Figure 6). Our results show that
multitask models consistently performed better than single-task
models even with limited data availability.
Next, we evaluated the influence of additional datasets on

the performance of the multitask models. We collected two
additional bioactivity datasets associated with PDK-1 and
HIVpro. These two proteins were selected as they belong to a
different enzyme class and represent a nonhuman target. After
preprocessing the data, we had 952 compounds for PDK-1 and
2427 compounds for HIVpro. We developed single-task and
multitask models and evaluated their performance. For the
multitask models, we tested the influence of different
additional datasets along with BSEP (BBB+hERG, PDK-
1+HIVpro, and BBB+hERG+PDK-1+HIVpro). We carried out
extensive analyses as described above, repeating the process
with 10 random splits, and developed 10 ensemble models for
each training dataset. We evaluated model performance using
ROC-AUC, PR-AUC, and MCC. We found that multitask
models consistently performed better than single-task models,
and additional datasets did not decrease the performance of
the multitask models (Figure 7). With an average PR-AUC of
71%, the combined dataset (BBB+hERG+PDK-1+HIVpro)
had the best performance, compared to an average PR-AUC of
55% for single-task models and an average PR-AUC of 64% for
other combinations (Figure 7). Our results show that even if
the additional data are from an unrelated protein, such as

Figure 4. Performance of graph convolutional neural network
(GCNN), Bayesian, and variable-nearest neighbor (v-NN) models
for bile salt export pump (BSEP) data. The GCNN model performed
better than the other two approaches. ROC-AUC, receiver operating
characteristic area under the curve. Figure 5. Schema for single-task and multitask model comparison.

The bile salt export pump (BSEP) data were split into training and
external test sets. The training set was further split into six subsets of
data from 10 to 100%. Each of the subsets was used to develop single-
task and multitask models. Both models were evaluated using the
same common external test created in the first step of the process.
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PDK-1, they can help improve multitask model performance as
they can be used to identify more inactive compounds in the
dataset. We further searched through the literature and found
that HIVpro inhibitors are indeed known to have cross-
reactivity/inhibition of human transporter proteins, including
BSEP.56 This further provides a rationale for the improved
performance of our final combined model using this additional
dataset.
Overall, we developed a predictive, multitask GCNN model

for BSEP that can be used for screening of large chemical

databases. It should be noted that the utilization of public data
enables the development of an openly available model, but it
may not be comprehensive of the available chemical space,
which could limit its utility. Additionally, while the model has
shown promising performance in cross-validation, its real-
world predictive accuracy may be influenced by other factors
not accounted for in the model, such as drug metabolism or
species differences. Understanding these limitations will ensure
the proper interpretation and use of the model in drug
discovery and risk assessment.

4. CONCLUSIONS
In this work, we developed a GCNN model for predicting the
potential of a chemical to inhibit BSEP, an important
transporter that plays a role in drug-induced liver injury. Our
analysis of BSEP’s molecular properties showed that BSEP
inhibitors are more hydrophobic and have a larger molecular
weight compared to noninhibitors and occupy a similar
chemical space as that of approved drugs. We found that our
GCNN model performed better than the other machine
learning approaches we evaluated, and we showed that
multitask models consistently performed better than single-
task models. Specifically, we showed the utility of multitask
learning models to address data limitation challenges. Thus, we
developed multitask GCNN-based BSEP models that allow for
a rapid computational screening of liver safety risk assessment
during the early drug discovery stages.
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Figure 6. Comparison of single-task learning (STL) and multitask
learning (MTL) models using various subsets of bile salt export pump
(BSEP) data. We evaluated model performance using 10, 20, 30, 50,
80, and 100% of the training data and calculated the receiver
operating characteristic area under the curve (ROC-AUC), precision-
recall area under the curve (PR-AUC), and Matthews correlation
coefficient (MCC).

Figure 7. Comparison of the predictive performance of single-task learning (STL) and different multitask learning (MTL) models. We developed
bile salt export pump (BSEP) MTL models using different additional datasets, including blood−brain barrier (BBB) permeability, human ether-a-̀
go-go-related gene (hERG) inhibition, 3-phosphoinositide dependent kinase-1 (PDK-1) inhibition, and human immunodeficiency virus protease
(HIVpro) inhibition. We found that the multitask models performed better than the single-task models. Of the multitask models, the model
developed with all four datasets (BBB+hERG+PDK-1+HIVpro) performed better than those developed with the other two datasets. ROC-AUC,
area under the receiver operating characteristic curve; PR-AUC, area under the precision-recall curve; MCC, Matthews correlation coefficient.
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and performance of GCNN, Bayesian, and v-NN models
for BSEP data using a common external test set for all
three approaches (Figure S2) (PDF)
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