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The blinding inflammatory lesion stromal keratitis (SK), which occurs in some patients in

response to ocular herpes simplex virus (HSV) infection, represents mainly an immune

cell mediated inflammatory response to the virus infection. The principal orchestrators

of the immunopathological lesions are T cells although additional events participate that

include the extent of recruitment of non-lymphoid cells, the extent of neoangiogenesis,

and the extent of damage to nerve function. This review focuses on evidence that

the balance of the functional subsets of T cells has a major impact on lesion severity

and duration. Accordingly, if proinflammatory Th1 and Th17 CD4T cells, and perhaps

in some cases CD8T cells, predominate lesions occur earlier and are more severe.

Lesions are diminished when cells with regulatory function predominate. Moreover, when

regulatory cells acquire the property to produce Amphiregulin this may facilitate lesion

resolution. An objective to controlling lesions is to learn how to manipulate the balance

of T cells to favor the representation and function of regulatory T cells and their products

over proinflammatory cells. In this review we emphasize how exploiting the differential

metabolic requirements of immune cells could be a valuable approach to control SK.
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BACKGROUND

Herpes simplex virus (HSV) type 1 is a major human pathogen worldwide. It is estimated that
around 67% of people worldwide (under age 50) are infected with HSV-1 (1). HSV-1 establishes a
lifelong, latent infection for which no effective vaccine is currently available (2). Primary infection
with HSV-1 is usually mild or subclinical and most individuals remain asymptomatic (3). However,
HSV-1 infection can cause several complications in humans. Among these, corneal infection can
lead to blinding immunopathological lesions in the eye referred to as herpes stromal keratitis (SK)
(4, 5). Epidemiology studies outside of the United States have estimated incidence rates of HSV
eye disease range from ∼4 to 13 new cases per 100,000 per year. A previous study from Rochester,
Minnesota, estimated an incidence of 8.4 new cases per 100,000 and 20.7 total episodes per 100,000
people per year. Extrapolating these data to the US population census in 2000, the study predicted
an estimated incidence of ∼24,000 new cases and 58,000 total episodes per year (6). Moreover, a
study published in 2014, estimated an incidence of 6.8 new cases/100,000 in Northern California
(7). Thus, herpes keratitis represents a clinically relevant syndrome and the SK form is a frequent
cause of vision damage.
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Primary ocular infection most likely occurs by the direct
infection of the eye with HSV-1. Upon infection, the virus
replicates in the corneal epithelial cells and can causes epithelial
lesions. These primary lesions can last up to 2 weeks and usually
resolve with minimal damage and the virus is efficiently cleared
by the immune system (8). However, one of the consequences
of HSV ocular infection is the establishment of latency in the
trigeminal ganglia (TG) (9). Some of the HSV virions can
enter the sensory nerve endings which innervate the infected
cells and traffic via retrograde transport mechanisms to the
sensory ganglia where the virus can persist in a latent stage (10).
Sometimes the latent virus reactivates by disturbances caused by
environmental or physiological stress and the reactivated HSV
replicates in the TG. The virus can then travel by anterograde
axonal transport to the peripheral tissues and cause recurrent
lesions either in the corneal or orofacial tissues often resulting in
clinical consequences (11). In humans, recurrent virus infections
of the cornea are usually confined to the epithelial layer, but in
some individuals such frequent recurrent infections could affect
the deeper corneal stroma leading to an immunopathological
disease referred to as herpes stromal keratitis (SK). This chronic
inflammatory response in the corneal stroma is mediated by
both innate and adaptive immune cells in response to virus
infection and can lead to progressive corneal scarring and vision
loss. The local corneal epithelial lesions and virus infections
are usually treated using antivirals such as acyclovir, but SK
lesions are often treated with a combination of an antiviral and
a corticosteroid (12).

Most of our current understanding of the pathogenesis of SK
in humans comes from studies done animal models (5, 13). HSV-
1 corneal infection in mice is the most widely used animal model
to study SK as it offers several advantages and the inflammatory
lesions in the corneal stroma mimic SK lesions observed in
humans (14). However, one limitation of the mice model is that it
is mainly a primary infection model, but not a reactivation model
of disease as mostly occurs in humans. The immune response to
HSV-1 ocular infection occurs in a bi-phasicmanner and involves
both innate and adaptive components of the immune system (8).
During the pre-clinical or acute phase, the first wave of immune
cells mainly consisting of neutrophils, natural killer cells, and
macrophages enter into the corneal stroma and help to clear the
replicating virus (5). In the later clinical or chronic phase of the
disease, CD4T cells start to appear in the cornea around day 6–7
post-infection, a stage when virus is usually already cleared from
the cornea (8). The CD4T cells are considered to be the primary
orchestrators of SK lesions as they facilitate the influx of the
second wave of neutrophils (15). The massive cellular infiltration
especially neutrophils coupled with the inflammatory mediators
secreted by the immune cells are primarily responsible for the
swelling and destruction of the cornea (16, 17).

ROLE OF Th1, Th17, AND CD8T CELLS IN

SK LESIONS

Stromal keratitis (SK) is an immunopathological disease
orchestrated by T cells (14). This view is supported by findings
which show that mice depleted of T cells are less susceptible to

HSV-1 induced corneal stromal disease. In both humans and
mice, there is a predominance of CD4T cells in the ocular tissues
during SK and their functional activities are often associated with
the tissue damage in the corneal stroma. In mice, CD4T cells
appear in the corneas around day 6 post-ocular infection with
HSV-1 and their numbers continue to increase during the latter
stage of SK development. Among the CD4T cell population,
there is a preferential accumulation of CD4T helper (Th1) subset
in the eye (18). Th1 cells express the transcription factor, T-
bet, and produce various immune-modulatory mediators which
play a role in SK lesion expression. The Th1 cells secrete the
cytokines IFN-γ and IL-2 which are capable of inducing corneal
inflammation and neovascularization (19, 20). In addition, these
cytokines alsomodulate chemokine factors, and in doing so could
facilitate the massive influx of neutrophils and macrophages
into the cornea during the latter phase of SK development
(21, 22). Another CD4 subset which gained recent prominence
in inflammation and autoimmunity are the Th17 cells (23).
These cells express the transcription factor ROR-γt and produce
cytokines such as IL-17, IL-21, and IL-22. They preferentially
produce IL-17 which is a potent inducer of additional pro-
inflammatory cytokines, chemokines, and metalloproteinases
(24, 25). Th17 cells accumulate in the HSV infected cornea
during the later stages of SK pathogenesis and help sustain and
expand the disease (26, 27). Moreover, HSV-1 ocular infection
of IL-17R knock-out mice or neutralization of IL-17 using
monoclonal antibodies delayed disease progression and reduced
the severity of HSK (26). Importantly, IL-17 was expressed in
corneas of patients with SK (28). In addition, the human corneal
fibroblasts constitutively express the IL-17R. The data from these
studies suggest that IL-17 strongly induces the production of
key inflammatory mediators such as IL-6, IL-8, and matrix
mettalloproteinase-1 in the human corneal fibroblast cultures
(28). Thus, Th17 cells through the production of IL-17 modulate
the levels of chemotactic factors such as CXCL-1 and IL-8 and
influence the migration of neutrophils into the inflamed corneal
tissues (26).

Although, CD4T cells are considered to be the chief
perpetuators of SK, the data presented in some experimental
models implicate CD8T cells in the pathogenesis of SK. The
outcome depends to a large extent on the virus strain used for
the studies. Some studies found that ocular infection of mice
with the HSV-1 RE strain mainly induces SK mediated by CD4T
cells, whereas infection of the same stain of mice with HSV-
1 KOS show SK which is dependent on CD8T cells (29). In
mice infected with a recombinant stain of HSV-1 (HSV-gK), the
corneal scaring and the corneal disease were mainly mediated by
CD8T cells (30, 31). Results from these studies suggest that gK
strongly induces CD8T cell responses leading to exacerbation of
SK lesions. Of note, the recombinant HSV-gK strain used in these
studies contains three copies of glycoprotein K (gk) (a protein
essential for virus replication) compared to one copy in the wild
type HSV-1McKrae strain (30). The HSV-1 mutant strains which
lack gK were found to be defective in infectivity and failed to
establish latency in the neurons in mouse models which suggests
that gK expression is crucial for virus replication (32). Thus,
the respective roles of different CD4 and CD8 subsets in SK is
not clear and remains an unresolved issue. Additionally, some
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evidence shows that CD8T cells mainly play more of a protective
role (33). Observations in bothmice and humans show that HSV-
1 specific CD8T cells are selectively retained in the TG andmight
help control HSV reactivation (34–36). These tissue resident
CD8T cells appear to use IFN-γ and non-cytolytic mechanisms
to block virus reactivation in the TG (37, 38).

ROLE OF REGULATORY T CELLS (TREG)

IN SK PATHOGENESIS

A beneficial subset of CD4T cells in SK are regulatory T cells
(Treg) (39, 40). Treg express the master transcription factor,
Foxp3 which controls their development, and function (41). Treg
are either produced as a functionallymature T cell sub population
in the thymus (natural Treg) or are induced in the periphery
from naive CD4T cells (induced Treg). Treg mainly function
to maintain tolerance to self-antigens and prevent autoimmune
diseases (42). They also constrain excessive immune responses
to non-self-antigens or infectious agents and help to maintain
peripheral tolerance and immune homeostasis (41). Treg use
several mechanisms to suppress aberrant immune responses and
these include immunomodulatory cytokines (IL-10, TGF-β, IL-
35) or contact dependent suppression (granzyme/perforin) (41,
43, 44). In addition, Tregs also exert their function on effector
T cells through inhibitory molecules such as CTLA-4. Treg also
condition dendritic cells to secrete indoleamine 2,3-dioxygenase,
a molecule which suppresses the activation of effector T cells (44).

During microbial infections, a major function of Treg is
to control the excessive inflammatory responses to prevent
collateral tissue damage and limit injury to the host. In HSV-
1 ocular infection, Treg were shown to be crucial to control
HSV induced corneal immunopathology. SK lesions were more
severe if mice were depleted of Treg before infection using
monoclonal antibody treatment, whereas adoptive transfer of
in vitro converted Treg suppressed HSK severity (45, 46).
Furthermore, findings using the depletion of regulatory T cells
(DEREG) transgenic mice showed that lesions became more
severe even when depletion was begun in the later phases
(clinical/chronic phase) of the disease (47). The DEREG mice
carry the diphtheria toxin receptor-enhanced green fluorescent
protein (DTR-eGFP) transgene under the control of an additional
Foxp3 promoter, which facilitates specific depletion of Treg
by application of diphtheria toxin at any chosen point of
time (48). Thus, measures to expand the representation of
Treg by the administration of various reagents have been
useful in reducing the severity of SK lesions in the mouse
model. One such approach used was galectin-9 which induces
apoptosis of pathogenic CD4 Th1 cells and increases the
representation of the anti-inflammatory Treg population (49).
In addition, a combination treatment using a tumor necrosis
factor receptor superfamily member 25 (TNFRSF25) agonist
antibody which expands Treg numbers along with galectin-9
was particularly effective in diminishing HSV-1 induced corneal
immunopathology (50). Other approaches that were successful in
expanding Treg population and reducing SK lesions included the
use of IL-2/anti-IL-2 mAb complexes and the fungal metabolite

drug, fingolimod hydrochloride (FTY720) (51, 52). In addition,
phosphorylated FTY720 also targets sphingosine-1-phosphate
receptor and perhaps diminishes inflammation by modulating
lymphocyte trafficking (53).

Although increasing the representation of Treg in lesions is
a valuable approach to minimize lesion severity, it has become
evident that the Treg population is functionally heterogeneous.
Accordingly, some functions are more valuable to achieve control
than others. For example, our group recently observed that a
function of Treg valuable for resolving SK lesions is their ability
to produce amphiregulin (AMP) (54). This molecule acts to
facilitate tissue repair by binding to the epidermal growth factor
receptor expressed mainly on epithelial cells and stem cells and
its binding can result in the activation of downstream signaling
kinases resulting in growth, proliferation, and migration of cells
(55). Treg that produce AMP are relatively infrequent in the early
stages of SK, but their representation is most evident in later
stages. The change of Treg function to become AMP producers
appears to be driven by the cytokines IL-12 and IL-18. In fact,
exposure of AMP negative Treg cells in vitro to these cytokines
can induce them to become AMP producers. In addition, if
animals were treated in vivo with a plasmid which expresses IL-
18, this led to the reduced expression of SK lesions, an effect
that correlated with a higher frequency of Treg that were AMP
producers (54). Finding practical approaches to induce cells in
SK to become AMP producers could represent a useful approach
to therapy, an issue that merits further investigation.

PLASTICITY OF REGULATORY T

CELL POPULATIONS

Some recent observations suggest that Treg might become
unstable in certain highly inflammatory environments and lose
their regulatory activity (56). Under such conditions, Treg that
downregulate Foxp3 expression might even take up an effector
phenotype and start producing pro-inflammatory cytokines such
as IFN-γ and IL-17 Treg, a phenomenon commonly referred
to as plasticity (57–59). In recent times, plasticity in T cells
has been a matter of debate as it has biological implications
especially in therapeutic regimens which use Treg (60, 61).
Factors which influence Treg stability are as yet not clear and
remains an active area of research. Althoughmultiple mechanism
might be involved in the stability and plasticity of Treg, most
evidence indicates that Treg stability and Foxp3 expression is
controlled by epigenetic mechanisms, namely DNA methylation
in the non-coding region (CNS2) of the Foxp3 gene locus, also
known as Treg-specific demethylation region (TSDR) (62). Any
changes or modifications in the DNA methylation status in the
TSDR region tend to have an effect on Foxp3 expression and
stability of Treg populations (63). Most Treg populations are
generally resistant to destabilization and reprogramming and
maintain their transcriptional expression of regulatory genes
and functional phenotype (61). Some of the Tregs generated in
vitro or in vivo which have incomplete demethylation status in
the cytosine-phospho-guanine (CpG) sites in the TSDR region
are more prone to instability when exposed to cytokine milieu
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containing IL-6, IL-12, IL-21, or IL-23 (57, 64). The Bluestone
group, using Foxp3-Cre reporter mice in an Experimental
autoimmune encephalomyelitis (EAE)model observed that some
of the Treg cells downregulated Foxp3 expression and these were
referred to as exFoxp3 cells (59). Such exFoxp3 cells isolated
from the CNS at the peak of the response produced IFN- γ

when stimulated with cognate antigen (59). Our group using
fate mapping mice showed that Treg plasticity can occur in
HSV-1-induced inflammatory environment and such Treg may
contribute to SK lesion severity by secreting the proinflammatory
cytokine IFN-γ (65). In particular, Treg cells showing low
expression of the IL-2R (CD25) could exhibit instability, in part
due to the exposure to the pro-inflammatory cytokine IL-12 in
the cornea (65). In such circumstances, drugs such as azacytidine,
retinoic acid, and vitamin C which maintain demethylation
of the TSDR region of Foxp3, can be helpful in promoting
the stability and improving the functionality of Treg especially
under chronic inflammatory conditions (65). In fact, in a recent
study, Treg generated in vitro in the presence of Azacytidine
expressed a fully demethylated TSDR and these cells displayed
enhanced suppressive activity (66). Moreover, administration
of 5-Azacytidine reduced the incidence of SK lesions in mice
infected ocularly with HSV-1 (66).

MANIPULATING METABOLISM TO

CONSTRAIN SK LESIONS

In the previous section, we have argued that the clinical
expression of SK is affected by the representation of different
participants in lesions. When the T cell participants were
dominated by Treg, lesions will be less severe and may even
resolve. Hence, a potentially valuable approach to therapy is to
use maneuvers that can shift the balance of events away from
dominance by proinflammatory components. This therapeutic
challenge is also faced by those working with other in other
chronic inflammatory diseases, especially autoimmune diseases
(AID). In the AID field, some are considering using approaches
such as adoptive cell transfer to enrich the population of Treg
(67). However, such an approach, which is most effective when
the Treg are antigen specific, would likely fail to adequately
gain access to the eye. Other approaches include administering
reagents that expand the Treg population as we discussed
previously. A potentially more useful therapeutic option would
be to exploit the accumulating knowledge that cells involved in
immune function may differ in the major metabolic pathways
they use to provide them with energy and other events that
maintain of their various functions (68, 69). For example,
proinflammatory and Treg cells use different pathways to
provide energy with the former mainly use extracellular glucose
and Treg rely on fatty acid oxidation (68). Rathmell’s group
reported that effector T cells (both CD4 and CD8) express
high levels of the glucose transporter Glut1 and utilize the
mammalian target of rapamycin (mTOR) pathway to increase
glycolysis to support their function (70). In contrast, Treg
primarily use AMP-activated protein kinase and rely upon lipid
oxidation for their energy. The activated AMPK pathway in

Treg acts to inhibit mTOR by suppressing mTOR signaling
and promotes mitochondrial oxidative metabolism rather than
glycolysis and is considered to be anti-inflammatory (70). In our
own studies, we have begun to exploit the differences by which
proinflammatory and Treg cells derive their energy needs. We
have shown that if glucose utilization is inhibited, as can be
achieved by the use of 2 deoxy glucose administration from the
initial time of lesion development, that lesions are significantly
reduced (71). The outcome occurred because the activity of
proinflammatory cells such as Th1 and Th17 cells were inhibited,
but Treg were unaffected. Thus, the representation of the two
populations changedwith Treg becoming enriched (71). Findings
from another group demonstrated the importance of hypoxia
associated glycolytic molecules in SK pathogenesis (72). Besides
glycolytic metabolism, T effectors, and Treg also show differences
in amino acid metabolism. Amino acids, particularly glutamine,
plays a key role in fueling effector T cell differentiation, whereas
Treg are less dependent on amino acids for their energy (68). In
addition, microbial metabolites such as short chain fatty acids
or diets rich in vitamin A promote Treg differentiation and
function in the gut (73, 74). Additional metabolic differences
are also under investigation such as the differential use of
lipid oxidation and synthesis pathways. Thus, manipulating
metabolic pathways to influence inflammatory lesions is in the
early stages of investigation but the approach has great potential
and could be more affordable than many of the alternatives.
However, the strategy will need considerable scrutiny especially
if used for long term therapy. Indeed, our own studies have
already documented some untoward consequences when glucose
metabolism is compromised during the time when virus is
actively replicating.

CONTRIBUTION OF CORNEAL NERVE

DAMAGE TO SK PATHOLOGY

Following corneal infection, HSV-1 replicates in the epithelial
cells and gains access to the sensory nerve endings which
drain the corneal tissues and can travel up (retrograde) to the
TG where the virus establishes latency. The virus travels back
(anterograde) from the TG to the cornea through the sensory
nerves after reactivation. HSV-1 corneal infection can result in
destruction of corneal nerve endings resulting in loss of corneal
sensitivity (75). Such loss of corneal sensation and nerve function
is one of the hall marks of SK in humans and is commonly
referred to as neurotrophic keratopathy (76). Evidence from
recent studies in mice have shown that sympathetic nerves
innervate the cornea and replace the sensory nerve endings
lost after HSV-1 corneal infection (75). These sympathetic
nerves enhance the infiltration of immune cells resulting in
severe corneal inflammation and pathology. A surgical procedure
called superior cervical ganglionectomy (SCGx) that removes
sympathetic nerves from the cornea helped to alleviate SK
severity. Of note, after the SCGx procedure, the sensory nerves
reinnervated the cornea resulting in the restoration of corneal
sensitivity (75). The exact mechanisms involved in sympathetic
corneal innervation are not known and this aspect requires
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further examination. It is likely that immune cells such as CD4T
cells could play a key role, as their depletion resulted in reversing
nerve damage (77). Findings from another study suggest that
the molecule involved in cell migration, semaphorin 7A might
play a role in the corneal nerves degeneration and regeneration
process in HSV-1 infected mice (78). The cytokine IL-6 produced
during the inflammatory response to HSV-1 infection in the
cornea might also be responsible for causing corneal sensory
nerve damage (79).

CONCLUDING REMARKS

Stromal keratitis (SK) caused by HSV-1 corneal infection is a
debilitating disease and one of the major causes of vision loss due
to an infectious agent. As T cells are the primary orchestrators
of SK, steps to improve the host environment which favors Treg
over pathogenic Th1/Th17 cells is likely to help ease the severity
of SK lesions. In addition, it is becoming increasingly clear from
recent developments that metabolism plays a key role in immune
function. Thus, as discussed in this review, understanding the

events involved in pathogenesis along with key molecules and
metabolic pathways involved in inflammation and applying this
knowledge to develop better therapies might help control SK in
the future.
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